在Dirichlet级数增长性和相关方面,众多数学工作者已经取得了一系列重要研究成果[1-4]。其中有很多关于整函数的研究,例如,Ritt定义了由Dirichlet级数所确定的增函数的级和下级,用来描述级数的增长性。随后,2010年孔荫莹和甘会林[5]通过引入一族函数,定义了更精确的广义级,并得到广义级与其系数和指数之间的关系。另一方面,徐洪焱和易才凤[6]从Dirichlet多项式估计Dirichlet级数时得到的误差着手,探讨了其与Dirichlet级数的级之间的关系。随机Dirichlet级数本质上是一族Dirichlet级数。1932年,Paley和Zygmund研究了Steinhaus-Dirichlet级数和Rademacher-Dirichlet级数两类以独立随机变量序列为系数的随机Dirichlet级数的收敛性。随后,余家荣[7]进一步讨论了以独立随机变量序列为系数的随机Dirichlet级数的收敛性问题。丁晓庆和肖益民[8]借助Dirichlet级数研究了系数为独立且一致非退化的随机Dirichlet级数的自然边界问题。2012年,孔荫莹和霍颖莹[9]在广义级的基础上,探讨了一类以独立随机变量序列为系数的随机Dirichlet级数的最大模与最大项指标之间的关系。但在现实中,独立这一条件并不具有普遍性,而且也难以检验。自然的想法是,当随机变量序列为非独立时,随机Dirichlet级数会具有什么性质?本文将在此基础上,去研究一类系数是非独立的随机变量序列
下面给出与本文相关的定义与记号,为了方便起见,本文将
定义1[1] 设Dirichlet级数
| $ g(s) = \sum\nolimits_{n = 0}^\infty {b_n}{{{\rm{e}}} ^{ - {\lambda _n}s}}$ | (1) |
式中:
假设级数
| $ \mathop {\lim \sup }\limits_{n \to + \infty } {\mkern 1mu} \frac{{\ln {b_n}}}{{{\lambda _n}}} = 0$ | (2) |
| $ \mathop {\lim \inf }\limits_{n \to + \infty } {\mkern 1mu} ({\lambda _{n + 1}} - {\lambda _n}) = h > 0$ | (3) |
那么由式(3)和文献[1]中引理3.1.1可得
| $ \mathop {\lim \sup }\limits_{n \to + \infty } {\mkern 1mu} \frac{n}{{{\lambda _n}}} = D < + \infty $ | (4) |
式(3)、(4)中:
| $ \mathop {\lim \sup }\limits_{n \to + \infty } {\mkern 1mu} \frac{{\ln n}}{{{\lambda _n}}} \leqslant \mathop {\lim \sup }\limits_{n \to + \infty } {\mkern 1mu} \frac{{\ln (D + \varepsilon ) }}{{{\lambda _n}}} = 0 $ |
若令
| $ \begin{gathered} \mathop {\lim \sup }\limits_{n \to + \infty } {\mkern 1mu} \frac{{\ln {b_n}}}{{{\lambda _n}}} \leqslant {\sigma _c} \leqslant {\sigma _u} \leqslant {\sigma _a} \leqslant \\ \mathop {\lim \sup }\limits_{n \to + \infty } {\mkern 1mu} \frac{{\ln {b_n}}}{{{\lambda _n}}} + \mathop {\lim \sup }\limits_{n \to + \infty } {\mkern 1mu} \frac{{\ln n}}{{{\lambda _n}}} \\ \end{gathered} $ |
可得
| $ {\sigma _c} = {\sigma _u} = {\sigma _a} = 0$ |
即级数
| $ \begin{array}{*{20}{c}} {M(\sigma ,g) = \sup \left\{ {\left| {g(\sigma + it) } \right|:{\text{ }}t \in \bf{R}} \right\}} \\ {m(\sigma ,g) = \max \left\{ {\left| {{b_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }}:{\text{ }}n \in \bf{N}} \right\}} \\ {n(\sigma ) = n(\sigma ,g) = \max \left\{ {n:{\text{ }}\left| {{b_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} = m(\sigma ,g) } \right\}} \end{array} $ |
为了描述慢增长
条件1
条件2 令
| $ \mathop {\lim }\limits_{x \to + \infty } {\mkern 1mu} \frac{{{\text{d}}\alpha (x) }}{{{\rm{d}}({{\ln }^{[p]}}x)}} = k \in (0,\infty ) $ |
式中:
定义2[12] 设
| $ \rho = \rho (\alpha ,g) = \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} {\mkern 1mu} \frac{{\alpha \left( {\ln M(\sigma ,g) } \right) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} $ |
若
| $ \tau = \tau (\alpha ,g) = \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} {\mkern 1mu} \frac{{\beta \left( {\ln M(\sigma ,g) } \right) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}}$ |
式中:
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha \left( {\ln M(\sigma ,g) } \right) }}{{{{\left[ {\alpha \left( {\dfrac{1}{\sigma }} \right) } \right]}^E}}} = \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha \left( {\ln m(\sigma ,g) } \right) }}{{{{\left[ {\alpha \left( {\dfrac{1}{\sigma }} \right) } \right]}^E}}} $ |
为了证明本文所得到的结论,在这里将构造与级数相应的Newton多边形,并得到与级数式(1)具有相同广义级和广义型的Dirichlet级数。具体作法如下。
第1步 取定
| $ \left\{ {{A_n}} \right\} = \{ ({\lambda _n},- \ln {b_n}) \} $ |
中的每一点,作斜率为
| $ \left\{ {L(\sigma ) } \right\} = \{ y|y = - \sigma x - \ln {b_n}{{\rm{e}}^{ - {\lambda _n}\sigma }}\} $ |
由于每一条直线都对应一个在
| $ \begin{split} \ln m\left( {\sigma ,g} \right) =& \max \left\{ {\ln {b_n}{{\rm{e}}^{ - {\lambda _n}\sigma }}:n \geqslant 1} \right\} = \\ & \min \left\{ { - \ln {b_n}{{\rm{e}}^{ - {\lambda _n}\sigma }}:n \geqslant 1} \right\} \end{split} $ |
第2步 根据
| $ {A_{n(\sigma ) }} = \left( {{\lambda _{n(\sigma ) }}, - \ln {b_{n(\sigma ) }}} \right) $ |
便得到级数
由Newton多边形
| $ \left\{ {{A_{{n_l}}}} \right\} = \left\{ {({\lambda _{{n_l}}}, - \ln {b_{{n_l}}}) } \right\} $ |
若令
| $ - {\sigma _l} = \frac{{ - \ln {b_{{n_{l + 1}}}} + \ln {b_{{n_l}}}}}{{{\lambda _{{n_{l + 1}}}} - {\lambda _{{n_l}}}}}$ |
则
| $ \ln m({\sigma _l},g) = \ln {b_{{n_l}}} - {\lambda _{{n_l}}}{\sigma _l} = \ln {b_{{n_{l + 1}}}} - {\lambda _{{n_{l + 1}}}}{\sigma _l} $ |
此外,由
从而得到级数
| $ \overline g\left( \sigma \right) = \sum\nolimits_{l = 0}^\infty {\mkern 1mu} {b_{{n_l}}}{{\rm{e}}^{ - {\lambda _{{n_l}}}\sigma }}$ | (5) |
式中:
| $ \ln m(\sigma ,g) = \ln {b_{n(\sigma ) }}{{\rm{e}}^{ - {\lambda _{n(\sigma ) }}\sigma }} = \ln {b_{{n_l}}}{{\rm{e}}^{ - {\lambda _{{n_l}}}\sigma }} = \ln m(\sigma ,\overline g) $ |
即级数
下文还需要给出级数误差的定义。
定义3[6] 令
| $ {E_n}(g,\alpha ) = \mathop {\inf }\limits_{p \in {\phi _k}} {\mkern 1mu} {\left| {\left| {g - p} \right|} \right|_\alpha }$ |
式中:
为了证明本文提出的结论,还要给出
定义4[10]
| $ \varphi (n) = \mathop {\sup }\limits_{m \in \bf{N}} \mathop {\sup }\limits_{A \in \mathcal{F}_1^m,B \in \mathcal{F}_{m + n}^\infty } \left| {\mathbb{P}(B{\text{|}}A) - \mathbb{P}(B) } \right| \to 0$ |
则称
| $ \mathcal{F}_j^k = \sigma ({X_n}:n = j,j + 1, \cdots ,k) $ |
为
通过
| $ \mathbb{P}(AB) = \mathbb{P}(A) \mathbb{P}(B) $ |
即随机序列
定义5[1] 设随机Dirichlet级数
| $ {f_\omega }(s) = \sum\nolimits_{n = 0}^\infty {X_n}(\omega ) {{\rm{e}}^{ - {\lambda _n}s}}$ |
式中:
| $ 0 \leqslant {d_1^2}b_n^2 = {d_1^2}E{\left| {{X_n}} \right|^2} \leqslant {E^2}\left| {{X_n}} \right| < \infty $ | (6) |
本文假设随机Dirichlet级数
定理1 对于任意的
| $ {\sigma _c}(\omega ) = {\sigma _u}(\omega ) = {\sigma _a}(\omega ) = 0,{\text{ }}{\rm{a}}.{\rm{s}}.,$ |
式中:
此外,本文还得到误差与级之间的关系。
定理2 对于任意的
(1) 当
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln M(\sigma ,{f_\omega }) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} + 1= \mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\alpha ({\lambda _n}) }}{{\alpha \left( {\dfrac{{{\lambda _n}}}{{\ln {E_{n - 1}}(g,\alpha ) {{\rm{e}}^{{\lambda _n}\alpha }}}}} \right) }} $ |
(2) 当
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln M(\sigma ,{f_\omega }) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }}= \mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\alpha ({\lambda _n}) }}{{\alpha \left( {\dfrac{{{\lambda _n}}}{{\ln {E_{n - 1}}(g,\alpha ) {{\rm{e}}^{{\lambda _n}\alpha }}}}} \right) }} $ |
定理3 若级数
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\beta (\ln M(\sigma ,{f_\omega }) ) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}} =\mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\beta ({\lambda _n}) }}{{{{\left[ {\beta \left( {\dfrac{{{\lambda _n}}}{{\ln {E_{n - 1}}(g,\alpha ) {{\rm{e}}^{{\lambda _n}\alpha }}}}} \right) } \right]}^\rho }}} $ |
推论1 设级数
(1) 当
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln M(\sigma ,{f_\omega }) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }}{\text{ + 1 = }}\mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\alpha ({\lambda _n}) }}{{\alpha \left( {\dfrac{{{\lambda _n}}}{{\ln |{b_n}|}}} \right) }} $ |
(2) 当
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln M(\sigma ,{f_\omega }) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }}{\text{ = }}\mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\alpha ({\lambda _n}) }}{{\alpha \left( {\dfrac{{{\lambda _n}}}{{\ln |{b_n}|}}} \right) }} $ |
推论2 设级数
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\beta (\ln M(\sigma ,{f_\omega }) ) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}}{\text{ = }}\mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\beta ({\lambda _n}) }}{{{{\left[ {\beta \left( {\dfrac{{{\lambda _n}}}{{\ln |{b_n}|}}} \right) } \right]}^\rho }}} $ |
引理1[14] 若
| $ \left|{X}_{n}(\omega ) \right|\le n{b}_{n}$ | (7) |
且对于
| $ \mathbb{P}\left( {\left\{ {|{X_{{n_k}}}{\text{|}} \geqslant \frac{d_1}{2}{b_{{n_k}}}} \right\},{\text{ }}{\rm{i}}.{\rm{o}}.} \right) = 1 $ | (8) |
为了证明所提出的结论,还需要用到误差与系数、最大项之间的关系。
引理2[6] 若级数
| $ \left| {{b_n}} \right|{{\text{e}}^{ - {\lambda _n}\alpha }} \leqslant 2{E_{n - 1}}(g,\alpha ) \leqslant Tm(\sigma ,g) {{\rm{e}}^{ - {\lambda _n}(\alpha - \sigma ) }}$ |
式中:
其次,广义级函数有以下性质。
引理3[12] 设
(1) 对于任意的正数
| $ \mathop {\lim }\limits_{x \to + \infty } \frac{{\alpha ({C_1}x + {C_2}) }}{{\alpha (x) }} = 1,{\text{ }}\mathop {\lim }\limits_{x \to + \infty } \frac{{\alpha ({x^A}) }}{{\alpha (x) }} = A $ |
(2) 对于任意的
| $ \mathop {\lim }\limits_{x \to + \infty } \frac{{{\alpha ^{ - 1}}\left[ {{A_1}\alpha (x) } \right]{\alpha ^{ - 1}}\left[ {{A_2}\alpha (x) } \right]}}{{{\alpha ^{ - 1}}\left[ {{A_3}\alpha (x) } \right]}} = 0 $ |
(3) 当
使得
| $ \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln Ax}}{{\dfrac{x}{{{\alpha ^{ - 1}}\left[ {B\alpha (x) } \right]}}}}{\text{ = }}0 $ |
(4) 当
| $ \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln {A_1}x}}{{\dfrac{x}{{{\alpha ^{ - 1}}\left[ {{A_2}\alpha ({x^B}) } \right]}}}}{\text{ = }}0 $ |
证明 对于该引理(1)、(2)的证明,可以参考文献[12]中的引理2.2。下证明(3)、(4)。
首先,由
| $ \mathop {\lim }\limits_{x \to + \infty } \frac{{\alpha (x) }}{{{{\ln }^{\left[ p \right]}}x}} = k \in (0,\infty ) $ |
可知,对任意正数
| $ {{\text{α }}^{ - 1}}\left[ {{A_1}\alpha (x) } \right] < {\exp ^{\left[ p \right]}}\left\{ {\frac{{{A_1}(k + \delta ) {{\ln }^{\left[ p \right]}}x}}{{(k - \delta ) }}} \right\} $ |
下文先证明引理3(3)。
当
| $ \frac{{\ln x}}{{\dfrac{x}{{{\alpha ^{ - 1}}\left[ {B\alpha (x) } \right]}}}} \leqslant {x^{\tfrac{{B(k + \delta ) }}{{(k - \delta ) }}}}(2{x^{\tfrac{1}{2}}} - 2) \leqslant 2{x^{\tfrac{{B(k + \delta ) }}{{(k - \delta ) }} - \tfrac{1}{2}}} $ |
因此,当正数
| $ \begin{gathered} 0 \leqslant \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln Ax}}{{\dfrac{x}{{{\alpha ^{ - 1}}\left[ {B\alpha (x) } \right]}}}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln x}}{{\dfrac{x}{{{\alpha ^{ - 1}}\left[ {B\alpha (x) } \right]}}}} \leqslant\\ \mathop {\lim }\limits_{x \to + \infty } 2{x^{\tfrac{{B(k + \delta ) }}{{(k - \delta ) }} - \tfrac{1}{2}}} = 0 \\ \end{gathered} $ |
下文再证明引理3(4)。
当
| $ \begin{gathered} \frac{{\ln x}}{{\dfrac{x}{{{\alpha ^{ - 1}}\left[ {{A_1}\alpha ({x^B}) } \right]}}}} \leqslant \frac{{2\sqrt x - 2}}{x}{\alpha ^{ - 1}}\left[ {{A_1}\alpha (\sqrt x ) } \right] \leqslant\\ \frac{1}{{\sqrt x }}{\alpha ^{ - 1}}\left[ {{A_1}\alpha (\sqrt x ) } \right] \\ \end{gathered} $ |
又由引理3(2) 可得
| $ \begin{gathered} 0 \leqslant \mathop {\lim }\limits_{x \to + \infty } \frac{{\ln {A_1}x}}{{\dfrac{x}{{{\alpha ^{ - 1}}\left[ {{A_2}\alpha ({x^B}) } \right]}}}}{\text{ = }}\mathop {\lim }\limits_{x \to + \infty } \frac{{\ln x}}{{\dfrac{x}{{{\alpha ^{ - 1}}\left[ {{A_2}\alpha ({x^B}) } \right]}}}} \leqslant \\ \mathop {\lim }\limits_{x \to + \infty } \frac{{{\alpha ^{ - 1}}\left[ {{A_2}\alpha (\sqrt x ) } \right]}}{{\sqrt x }} = \mathop {\lim }\limits_{x \to + \infty } \frac{{{\alpha ^{ - 1}}\left[ {{A_2}\alpha (\sqrt x ) } \right]}}{{{\alpha ^{ - 1}}\left[ {\alpha (\sqrt x ) } \right]}} = 0 \end{gathered} $ |
证毕。
引理4 对于级数
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha \left( {\ln M(\sigma ,{f_\omega }) } \right) }}{{{{\left[ {\alpha \left( {\dfrac{1}{\sigma }} \right) } \right]}^E}}} = \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha \left( {\ln m(\sigma ,{f_\omega }) } \right) }}{{{{\left[ {\alpha \left( {\dfrac{1}{\sigma }} \right) } \right]}^E}}} $ |
证明 与参考文献[12]中的引理2.3类似,此处不再证明。
引理5[15] 级数
(1) 当
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln M(\sigma ,g) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} + 1 = \mathop {{\lim \sup }}\limits_{n \to {\text{ + }}\infty } \frac{{\alpha ({\lambda _n}) }}{{\alpha \left( {\dfrac{{{\lambda _n}}}{{\ln {E_{n - 1}}(g,\alpha ) {{\rm{e}}^{{\lambda _n}\alpha }}}}} \right) }} $ |
(2) 当
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln M(\sigma ,g) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} = \mathop {{\lim \sup }}\limits_{n \to {\text{ + }}\infty } \frac{{\alpha ({\lambda _n}) }}{{\alpha \left( {\dfrac{{{\lambda _n}}}{{\ln {E_{n - 1}}(g,\alpha ) {{\rm{e}}^{{\lambda _n}\alpha }}}}} \right) }} $ |
(3) 若级数
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\beta (\ln M(\sigma ,g) ) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}} = \mathop {{\lim \sup }}\limits_{n \to {\text{ + }}\infty } \frac{{\beta ({\lambda _n}) }}{{{{\left[ {\beta \left( {\dfrac{{{\lambda _n}}}{{\ln {E_{n - 1}}(g,\alpha ) {{\rm{e}}^{{\lambda _n}\alpha }}}}} \right) } \right]}^\rho }}} $ |
最后,还需要用到以下结论。
引理6[7] 设
| $ h(x) = - bx{\text{ln}}x - x\sigma $ |
在
| $ h(x) = {x^{ - b}} + \sigma x $ |
在
定理1证明 首先由式(4) ,即
| $ \mathop {\lim \sup }\limits_{n \to {\text{ + }}\infty } {\mkern 1mu} \frac{n}{{{\lambda _n}}} = D < \infty $ |
和式(7)可知,对于任意的
| $ \begin{gathered} \mathop {\lim \sup }\limits_{n \to + \infty } \frac{{\ln |{X_n}|}}{{{\lambda _n}}} \leqslant \mathop {\lim \sup }\limits_{n \to + \infty } \frac{{\ln n}}{{{\lambda _n}}} + \mathop {\lim \sup }\limits_{n \to + \infty } \frac{{\ln {b_n}}}{{{\lambda _n}}} \leqslant \\ \mathop {\lim \sup }\limits_{n \to + \infty } \frac{{\ln (D + \varepsilon ) {\lambda _n}}}{{{\lambda _n}}} + \mathop {\lim \sup }\limits_{n \to + \infty } \frac{{\ln {b_n}}}{{{\lambda _n}}} = 0. \\ \end{gathered} $ |
其次由式(8)可知,序列
| $ |{X_{{n_k}}}| \geqslant \frac{d_1}{2}{b_{{n_k}}} $ |
因此,有
| $ \mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\ln \left| {{X_n}} \right|}}{{{\lambda _n}}} \geqslant \mathop {{\lim \sup }}\limits_{k \to + \infty } \frac{{\ln \left| {{X_{{n_k}}}} \right|}}{{{\lambda _{{n_k}}}}} \geqslant \mathop {{\lim \sup }}\limits_{k \to + \infty } \frac{{\ln \dfrac{d_1}{2}{b_{{n_k}}}}}{{{\lambda _{{n_k}}}}} = 0 $ |
最后由Valiron公式可得
| $ {\sigma _c}(\omega ) = {\sigma _u}(\omega ) = {\sigma _a}(\omega ) = 0,{\text{ }}{\rm{a}}.{\rm{s}}{\text{.}} $ |
证毕。
定理2证明 首先,根据引理4可知,对于任意的
下记
| $ \mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\alpha ({\lambda _n}) }}{{\alpha \left( {\dfrac{{{\lambda _n}}}{{\ln {A_{n,\alpha }}(g,\alpha ) }}} \right) }} = L$ | (9) |
则对任意的正数
| $ \ln {A_{n,\alpha }}(g,\alpha ) < \frac{{{\lambda _n}}}{{{\alpha ^{ - 1}}\left[ {\dfrac{{\alpha ({\lambda _n}) }}{{L + \varepsilon }}} \right]}} $ |
再由引理2可得
| $ \ln \left| {{b_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} < \frac{{{\lambda _n}}}{{{\alpha ^{ - 1}}\left[ {\dfrac{{\alpha ({\lambda _n}) }}{{L + \varepsilon }}} \right]}} - {\lambda _n}\sigma + \ln 2 $ |
最后由式(7)和式(4)可得,对于任意的
| $ \begin{gathered} \ln |{X_n}{\text{|}}{{{\rm{e}}} ^{ - {\lambda _n}\sigma }} \leqslant \ln {b_n}{{{\rm{e}}} ^{ - {\lambda _n}\sigma }} + \ln n \leqslant\\ \frac{{{\lambda _n}}}{{{\alpha ^{ - 1}}\left[ {\dfrac{{\alpha ({\lambda _n}) }}{{L + \varepsilon }}} \right]}} - {\lambda _n}\sigma + \ln 2(D + \varepsilon ) {\lambda _n} \\ \end{gathered} $ | (10) |
情形(1) 当
| $ \ln \left| {{X_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} \leqslant {\lambda _n}\left\{ {\frac{2}{{{\alpha ^{ - 1}}\left[ {\dfrac{{\alpha ({\lambda _n}) }}{{L + B\varepsilon }}} \right]}} - \sigma } \right\} $ | (11) |
其次,由
| $ \mathop {\lim }\limits_{n \to + \infty } \frac{{{\rm{d}}\alpha ({x}) }}{{\rm{d}}({{{\ln }^{\left[ p \right]}}{x}})} = k \in (0,\infty ) $ |
可知,对于任意的正数
| $ {\exp ^{\left[ p \right]}}\left\{ {\frac{{(k - \delta ) {{\ln }^{\left[ p \right]}}{\lambda _n}}}{{(L + B\varepsilon ) (k + \delta ) }}} \right\}{\text{ < }}{\alpha ^{ - 1}}\left[ {\frac{1}{{L + B\varepsilon }}\alpha ({\lambda _n}) } \right]$ |
由式(11)及引理6可得,当
| $ \begin{gathered} \ln \left| {{X_n}} \right|{{\text{e}}^{ - {\lambda _n}\sigma }} \leqslant {\lambda _n}\left\{ {\frac{2}{{{\alpha ^{ - 1}}\left[ {\dfrac{{\alpha ({\lambda _n}) }}{{L + B\varepsilon }}} \right]}} - \sigma } \right\} \leqslant\\ \mathop {\max }\limits_{x \in {\bf{R}}} \left\{ {x\left[ {2{{\left( {\frac{1}{x}} \right) }^{\tfrac{{k - \delta }}{{(k + \delta ) (L + B\varepsilon ) }}}} - \sigma } \right]} \right\} =\\ C{\left( {\frac{1}{\sigma }} \right) ^{\tfrac{{(k + \delta ) (L + B\varepsilon ) - (k - \delta ) }}{{k - \delta }}}} \\ \end{gathered} $ |
最后,当
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha \left( {\ln m(\sigma ,{f_\omega }) } \right) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} \leqslant L - 1 $ |
情形(2) 当
| $ \ln \left| {{X_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} \leqslant {\lambda _n}\left\{ {\frac{2}{{{\alpha ^{ - 1}}\left[ {\dfrac{{\alpha (\lambda _n^B) }}{{L + B\varepsilon }}} \right]}} - \sigma } \right\} $ |
且
| $ {\alpha ^{ - 1}}\left[ {\frac{{\alpha (\lambda _n^B) }}{{L + \varepsilon }}} \right] \geqslant 2 $ |
因此,当
| $ \frac{2}{{{\alpha ^{ - 1}}\left[ {\dfrac{{\alpha (\lambda _n^B) }}{{L + \varepsilon }}} \right]}} - \sigma \leqslant 1 $ |
当
| $ H = H\left( \sigma \right) = {\alpha ^{ - 1}}\left[ {\left( {L + \varepsilon } \right) \alpha \left( {\frac{2}{\sigma }} \right) } \right]$ |
则对任意
| $ \ln \left| {{X_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} \leqslant {\alpha ^{ - 1}}\left[ {(L + \varepsilon ) \alpha \left( {\frac{2}{\sigma }} \right) } \right] $ | (12) |
当
| $ \ln \left| {{X_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} < \frac{{{\lambda _n}}}{2}(\sigma - \sigma ) = 0 $ |
所以对于任意的
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha \left( {\ln m(\sigma ,{f_\omega }) } \right) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} \leqslant L $ |
下证等式成立。
情形(1) 由Newton多边形作法和引理5(1)可知,存在级数式(5),满足
| $ \mathop {\lim \sup }\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln m(\sigma ,\overline g) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} = \mathop {\lim \sup }\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln m(\sigma ,g) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }}{\text{ = }}L - 1 $ |
再选取序列
| $ \mathop {\lim }\limits_{l \to + \infty } \frac{{\alpha (\ln m({\sigma _l},\overline g) ) }}{{\alpha \left( {\dfrac{1}{{{\sigma _l}}}} \right) }}{\text{ = }}L - 1$ | (13) |
并记
| $ F = \left\{ {\omega :\mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln m(\sigma ,{f_\omega }) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} < L - 1} \right\}$ |
| $ {F_\varepsilon } = \left\{ {\omega :\mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha (\ln m(\sigma ,{f_\omega }) ) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} < L - 1 - \varepsilon } \right\} $ |
于是,
若
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\alpha \left( {\ln m(\sigma ,{f_\omega }) } \right) }}{{\alpha \left( {\dfrac{1}{\sigma }} \right) }} < L - 1 - {\varepsilon _0} $ |
此外,由式(8)可知,存在
| $ \omega \in \{ |{X_{{n_l}}}{\text{|}} \geqslant \frac{d_1}{2}{b_{{n_l}}},{\rm{i}}.{\rm{o}}.\} $ |
并且由
| $ \left| {{{\text{X}}_{{n_l}}}({\omega _0}) } \right| \geqslant \frac{d_1}{2}{b_{{n_l}}} $ |
从而
| $ \frac{d_1}{2}m{\text{(}}{s_l}{\text{,}}\overline g{\text{) = }}\frac{d_1}{{\text{2}}}{b_{{n_l}}}{{\text{e}}^{{\text{ - }}{\lambda _{{n_l}}}{s_l}}} \leqslant \left| {{X_{{n_l}}}({\omega _0}) } \right|{{\text{e}}^{{\text{ - }}{\lambda _{{n_l}}}{s_l}}} \leqslant m({\sigma _l},{f_{{\omega _0}}}) ,$ |
即
| $ \text{ln}m\text{(}{s}_{l}\text{,}\overline{g}\text{) < }{\alpha }^{-1}\left[(L-1-{ϵ}_{0}) \alpha \left(\frac{1}{{\sigma }_{l}}\right) \right] $ |
因此
| $ \mathop {\lim \sup }\limits_{l \to + \infty } \frac{{\alpha \left( {\ln m({\sigma _l},\overline g) } \right) }}{{\alpha \left( {\dfrac{1}{{{\sigma _l}}}} \right) }} < L - 1$ |
与式(13)式矛盾。证毕。
情形(2) 同情形1证明类似,此处不再证明。
定理3证明 首先由引理4可知,对于任意的
下记
| $ \mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\beta ({\lambda _n}) }}{{{{\left[ {\beta \left( {\dfrac{{{\lambda _n}}}{{\ln {A_{n,\alpha }}(g,\alpha ) }}} \right) } \right]}^\rho }}} = \tau $ | (14) |
则对于任意的正数
| $ \ln {A_{n,\alpha }}(g,\alpha ) < \frac{{{\lambda _n}}}{{{\beta ^{ - 1}}\left\{ {{{\left[ {\dfrac{{\beta ({\lambda _n}) }}{{\tau + \varepsilon }}} \right]}^{\tfrac{1}{\rho }}}} \right\}}} $ |
又由引理2可得
| $ \ln \left| {{b_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} < \frac{{{\lambda _n}}}{{{\beta ^{ - 1}}\left\{ {{{\left[ {\dfrac{{\beta ({\lambda _n}) }}{{\tau + \varepsilon }}} \right]}^{\tfrac{1}{\rho }}}} \right\}}} - {\lambda _n}\sigma + \ln 2 $ |
最后由式(4),即
| $ \mathop {\lim \sup }\limits_{n \to + \infty } {\mkern 1mu} \frac{n}{{{\lambda _n}}} = D < \infty $ |
和式(17)可得,对于任意的
| $ \begin{gathered} \ln \left| {{X_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} \leqslant \ln {b_n}{{\rm{e}}^{ - {\lambda _n}\sigma }} + \ln n \leqslant \\ \frac{{{\lambda _n}}}{{{\beta ^{ - 1}}\left\{ {{{\left[ {\dfrac{{\beta ({\lambda _n}) }}{{\tau + \varepsilon }}} \right]}^{\tfrac{1}{\rho }}}} \right\}}} - {\lambda _n}\sigma + \ln 2(D + \varepsilon ) {\lambda _n} \\ \end{gathered} $ | (15) |
由于
| $ \ln \left| {{X_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} \leqslant \frac{{2{\lambda _n}}}{{{\beta ^{ - 1}}\left\{ {{{\left[ {\dfrac{{\beta (\lambda _n^B) }}{{\tau + \varepsilon }}} \right]}^{\tfrac{1}{\rho }}}} \right\}}} - {\lambda _n}\sigma $ |
且
| $ {\beta ^{ - 1}}\left\{ {{{\left[ {\frac{{\beta (\lambda _n^B) }}{{\tau + \varepsilon }}} \right]}^{\tfrac{1}{\rho }}}} \right\} \geqslant 2$ |
因此,当
| $ \frac{2}{{{\beta ^{ - 1}}\left\{ {{{\left[ {\dfrac{{\beta (\lambda _n^B) }}{{\tau + \varepsilon }}} \right]}^{\tfrac{1}{\rho }}}} \right\}}} - \sigma \leqslant 1 $ |
当
| $ H = H(\sigma ) = {\beta ^{ - 1}}\left\{ {(\tau + \varepsilon ) {{\left[ {\beta \left( {\frac{2}{\sigma }} \right) } \right]}^\rho }} \right\}$ |
则对任意
| $ \ln \left| {{X_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} \leqslant {\beta ^{ - 1}}\left\{ {(\tau + \varepsilon ) {{\left[ {\beta \left( {\frac{2}{\sigma }} \right) } \right]}^\rho }} \right\}$ | (16) |
当
| $ \ln \left| {{X_n}} \right|{{\rm{e}}^{ - {\lambda _n}\sigma }} < \frac{{{\lambda _n}}}{2}(\sigma - \sigma ) = 0 $ |
所以对任意
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\beta \left( {\ln m(\sigma ,{f_\omega }) } \right) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}} \leqslant \tau $ |
下证等式成立。由Newton多边形作法和引理5(3)可知,存在级数式(5),满足
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\beta (\ln M(\sigma ,\overline g) ) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}} = \mathop {{\lim \sup }}\limits_{n \to + \infty } \frac{{\beta (\ln M(\sigma ,g) ) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}} = \tau $ |
再选取序列
| $ \mathop {{\text{lim}}}\limits_{l \to + \infty } \frac{{\beta (\ln M({\sigma _l},\overline g) ) }}{{{{\left[ {\beta \left( {\dfrac{1}{{{\sigma _l}}}} \right) } \right]}^\rho }}} = \tau $ | (17) |
并记
| $ F = \left\{ {\omega :\mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\beta \left( {\ln m(\sigma ,{f_\omega }) } \right) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}} < \tau } \right\}$ |
| $ {F_\varepsilon } = \left\{ {\omega :\mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\beta \left( {\ln m(\sigma ,{f_\omega }) } \right) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}} < \tau - \varepsilon } \right\}$ |
于是,
若
| $ \mathop {{\lim \sup }}\limits_{\sigma \to {0^ + }} \frac{{\beta \left( {\ln m(\sigma ,{f_\omega }) } \right) }}{{{{\left[ {\beta \left( {\dfrac{1}{\sigma }} \right) } \right]}^\rho }}} < \tau - {\varepsilon _0} $ |
此外,由式(8)可知,存在
| $ \omega \in \{ |{X_{{n_l}}}{\text{|}} \geqslant \frac{d_1}{2}{b_{{n_l}}},{\rm{i}}.{\rm{o}}.\} $ |
且由
| $ \left| {{{\text{X}}_{{n_l}}}({\omega _0}) } \right| \geqslant \frac{d_1}{2}{b_{{n_l}}} $ |
从而
| $ \frac{d_1}{2}m{\text{(}}{s_l}{\text{,}}\overline g{\text{) = }}\frac{d_1}{{\text{2}}}{b_{{n_l}}}{{\text{e}}^{-{\lambda _{{n_l}}}{s_l}}} \leqslant \left| {{X_{{n_l}}}({\omega _0}) } \right|{{\text{e}}^{-{\lambda _{{n_l}}}{s_l}}} \leqslant m({\sigma _l},{f_{{\omega _0}}}) $ |
即
| $ {\text{ln}}m{\text{(}}{{\text{s}}_l}{\text{,}}\overline g{\text{) < }}{\beta ^{ - 1}}\left\{ {(\tau - {\varepsilon _0}) {{\left[ {\beta \left( {\frac{1}{{{\sigma _l}}}} \right) } \right]}^\rho }} \right\} $ |
因此
| $ \mathop {{\lim \sup }}\limits_{l \to + \infty } \frac{{\beta (\ln M({\sigma _l},\overline g) ) }}{{{{\left[ {\beta \left( {\dfrac{1}{{{\sigma _l}}}} \right) } \right]}^\rho }}} < \tau $ |
与式(17)矛盾。证毕。
| [1] |
余家荣, 丁晓庆, 田范基. Dirichlet级数与随机Dirichlet级数的值分布 [M]. 武汉: 武汉大学出版社, 2004.
|
| [2] |
陈青远, 霍颖莹. Dirichlet级数的广义级[J].
广东工业大学学报, 2019, 36(4): 52-58.
CHEN Q Y, HUO Y Y. The generalized order of Dirichlet series[J]. Journal of Guangdong University of Technology, 2019, 36(4): 52-58. DOI: 10.12052/gdutxb.180140. |
| [3] |
应锐, 崔永琴, 徐洪焱. 半平面上Dirichlet级数的广义级与逼近[J].
数学的实践与认识, 2020, 50(12): 210-219.
YING R, CUI Y Q, XU H Y. The generalizes order and approximation of Dirichlet series converges in the half plane[J]. Mathematics in Practice and Theory, 2020, 50(12): 210-219. |
| [4] |
毕家烨, 霍颖莹. 多重Laplace-Stieltjes变换的两个等式[J].
广东工业大学学报, 2021, 38(1): 82-88.
BI J Y, HUO Y Y. Two equalities of multiple Laplace-Stieltjes transform[J]. Journal of Guangdong University of Technology, 2021, 38(1): 82-88. DOI: 10.12052/gdutxb.200025. |
| [5] |
KONG Y Y, GAN H L. On orders and types of Dirichlet series of slow growth[J].
Turkish Journal of Mathematics, 2010, 34(1): 1-11.
|
| [6] |
徐洪焱, 易才凤. 半平面上有限级Dirichlet级数的逼近[J].
数学学报, 2010, 53A(3): 617-624.
XU H Y, YI C F. The approximation problem of Dirichlet series of finite order in the half plane[J]. Acta Mathematica Sinica, 2010, 53A(3): 617-624. |
| [7] |
YU J R. Some properties of random Dirichlet series[J].
Acta Mathematica Sinica, 1978, 21A(2): 97-118.
|
| [8] |
DING X Q, XIAO Y M. Natural boundary of random Dirichlet series[J].
Ukrainian Mathematical Journal, 2006, 58(7): 997-1005.
|
| [9] |
孔荫莹, 霍颖莹. 慢增长的随机Dirichlet级数[J].
数学年刊, 2012, 33A(3): 323-328.
KONG Y Y, HUO Y Y. The random Dirichlet series with slow growth[J]. Chinese Annals of Mathematics, 2012, 33A(3): 323-328. |
| [10] |
IBRAGIMOV I A. Some limit theorems for stochastic processes stationary in the strict sense[J].
Doklady Akademii Nauk SSSR, 1959, 125(4): 711-714.
|
| [11] |
COGBURN R. Asymptotic properties of stationary sequences [M]. California: University of California, 1960.
|
| [12] |
HUO Y Y, KONG Y Y. On generalized orders and generalized types of Dirichlet series in the right half-plane[J].
Acta Mathematica Scientia, 2014, 34B(1): 175-182.
|
| [13] |
GUNDY R F. The martingale version of a theorem of Marcinkiewicz and Zygmund[J].
The Annals of Mathematical Statistics, 1967, 38(3): 725-734.
DOI: 10.1214/aoms/1177698865. |
| [14] |
王辉坚, 孙道椿. B-值双随机Dirichlet 级数[J].
数学物理学报, 2010, 30A(6): 1604-1611.
WANG H J, SUN D C. B-valued Bi-random Dirichlet series[J]. Acta Mathematica Scientia, 2010, 30A(6): 1604-1611. |
| [15] |
宁菊红, 朱丽荣, 黄文平. Dirichlet级数余项在右半平面的广义级和广义型[J].
数学的实践与认识, 2020, 50(17): 162-168.
NING J H, ZHU L R, HUANG W P. Generalized order and generalized type of the remainder of Dirichlet series in the right half plane[J]. Mathematics in Practice and Theory, 2020, 50(17): 162-168. |
2023, Vol. 40

