近些年,多智能体系统在实际中广泛应用,它的相关研究引起了很多学者的高度重视,针对多智能体系统的一致性问题的研究取得了丰硕的成果[1-4]。众所周知,分布式协同控制技术是多智能体系统研究的重要基础,而一致性问题又是分布式协同控制领域的关键课题。因此,对于多智能体系统一致性问题的研究具有重要的理论及应用价值。所谓一致性是指在特定控制器的作用下系统中所有智能体的状态最终能够趋于一致。根据系统中有无领导者可以将多智能体系统的一致性分为领导跟随一致性与非领导跟随一致性(比如常见的平均一致性[5])。其中领导跟随一致性是目前的一个研究热点,并且已经取得大量研究成果[6-9]。所谓的领导跟随一致是指多智能体系统中所有跟随者的状态在控制器的作用下能够与领导者的状态趋于一致。通常,领导者是不受控的自治智能体或者其状态值是预先设定的特定目标值。
在实际应用中,由于工程环境的复杂性与多变性,多智能体系统可能会受到以一定概率和强度随机出现的参数不确定性甚至非线性动力学行为的影响[10]。这种客观现象将可能导致严重后果,如系统性能下降、系统故障甚至崩溃。对此,研究人员提出随机发生不确定性(Randomly Occurring Uncertainties,ROUs)和随机发生非线性(Randomly Occurring Nonlinearities,RONs)概念对上述现象进行刻画。目前为止,具有ROUs或者RONs的多智能体系统的一致性问题研究已经受到研究者们的广泛关注,并且取得了大量有价值的研究成果[11-13]。文献[8]首次提出了具有ROUs和RONs的新系统,比较全面地考虑了系统的随机不确定性,文献[13]讨论了具有ROUs和RONs的多智能体系统领导跟随一致性。
当前,研究多智能体系统的一致性问题所用控制策略主要分为两种,即时间触发控制和事件触发控制。时间触发控制是一种传统的控制方式,其控制时刻取决于事先预设的时间序列(即控制时刻是已知的),现有的大多数控制系统都是基于时间触发控制策略[14-15]。时间触发控制的优点在于控制时刻的选取与设置更易操作,但是所选取的控制时刻序列可能会偏保守,如增加不必要的控制次数等。为了克服这一不足,事件触发控制策略被适时提出[16]。具体地,事件触发控制策略要求控制时刻的生成取决于所设计的事件触发函数,在满足控制需求的前提下通过灵活调节函数中的相关参数来得到控制次数以及资源消耗更少的控制时刻序列,从而降低保守性。由于事件触发控制策略下控制方式可以是连续的也可以是离散的,因此为了进一步降低控制成本,研究人员在该策略中引入了离散式的脉冲控制,从而提出了事件触发脉冲控制策略[17]。显然,事件触发脉冲控制机制结合了脉冲控制以及事件触发控制的优点,可以有效地节约通信资源以及控制成本[18]。值得注意的是,在文献[19]中,作者指出在事件触发函数的设计中引入Lyapunov函数可以更容易确保对象系统的稳定性。在此基础上,利用基于Lyapunov函数的事件触发函数来研究多智能体系统的一致性问题具有不错的研究前景且相关研究成果较少。
受上述讨论启发,为了使所得研究结果更符合实际情形,本文设计了一个基于Lyapunov函数的事件触发函数,研究了基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性问题。本文贡献如下:
(1) 将基于Lyapunov函数的事件触发机制引入具有ROUs和RONs的多智能体系统,在此基础上研究了目标多智能体系统的领导跟随一致性问题。
(2) 本文设计了一类基于Lyapunov函数的事件触发函数,与以往研究相比此类触发函数的阈值不需要在非触发时间段内连续计算,进一步减少系统的资源消耗,且在确保系统能够实现领导跟随一致性的同时不会出现Zeno行为。
1 模型构造与预备知识 1.1 代数图论在多智能体系统的网络拓扑图中单个智能体可以被看作一个顶点,用集合
考虑由一个领导者和
$ {{\boldsymbol{\dot x}}_i}\left( t \right) = {\boldsymbol{A}}\left( t \right) {{\boldsymbol{x}}_i}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_i}\left( t \right) } \right) + {{\boldsymbol{u}}_i}\left( t \right) $ | (1) |
式中:
$ \left\{ \begin{gathered} {\rm{Pr}}\left\{ {\alpha \left( t \right) = 1} \right\} = \tilde \alpha ,{\rm{Pr}}\left\{ {\alpha \left( t \right) = 0} \right\} = 1 - \tilde \alpha \\ {\rm{Pr}}\left\{ {\beta \left( t \right) = 1} \right\} = \tilde \beta , {\rm{Pr}}\left\{ {\beta \left( t \right) = 0} \right\} = 1 - \tilde \beta \\ \end{gathered} \right. $ |
式中:
考虑领导者的动力学方程为
$ {{\boldsymbol{\dot x}}_0}\left( t \right) = {\boldsymbol{A}}\left( t \right) {{\boldsymbol{x}}_0}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_0}\left( t \right) } \right) $ | (2) |
式中:
为了确保跟随者与领导者的状态能够趋于一致,本文给出如下事件触发脉冲控制协议:
$ \begin{split} {{\boldsymbol{u}}_i}\left( t \right) =& \sum\nolimits_{k = 1}^\infty {\delta \left( {t - {t_k}} \right) \times } \\& {\mu _k}\left( {\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{{\boldsymbol{x}}_i}\left( t \right) - {{\boldsymbol{x}}_j}\left( t \right) } \right) } + {b_i}\left( {{{\boldsymbol{x}}_i}\left( t \right) - {{\boldsymbol{x}}_0}\left( t \right) } \right) } \right) \end{split} $ | (3) |
式中:
具体地,设计的一类基于Lyapunov函数的事件触发条件如式(4)所示。
$ {t_k} = \inf \left\{ {t \geqslant {t_{k - 1}}:V\left( {{\boldsymbol{e}}\left( t \right) } \right) \geqslant {\theta _k}V\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right) } \right\} $ | (4) |
式中:
注释 1 与文献[20-21]相比,式(4) 不需要在两个相邻脉冲时刻之间的连续时间段内连续计算阈值
联立式(1) 、式(3) ,得到多智能体系统模型如式(5)所示。
$ \left\{ \begin{gathered} {{{\boldsymbol{\dot x}}}_i}\left( t \right) = {\boldsymbol{A}}\left( t \right) {x_i}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_i}\left( t \right) } \right) \;,t \ne {t_k}{\text{ }} \\ \Delta{{\boldsymbol{x}}_i}\left( {{t_k}} \right) = {{\boldsymbol{x}}_i}\left( {t_k^ + } \right) - {{\boldsymbol{x}}_i}\left( {{t_k}} \right) = \\ {\mu _k}\Bigg( {\sum\limits_{j \in {N_i}}^{} {{a_{ij}}\left( {{{\boldsymbol{x}}_i}\left( {{t_k}} \right) - {{\boldsymbol{x}}_j}\left( {{t_k}} \right) } \right) + {b_i}\left( {{{\boldsymbol{x}}_i}\left( {{t_k}} \right) - {{\boldsymbol{x}}_0}\left( {{t_k}} \right) } \right) } } \Bigg) \\ {{\boldsymbol{x}}_i}\left( {t_0^ + } \right) = {{\boldsymbol{x}}_i}\left( {{t_0}} \right) ,{t_0} \geqslant 0 \\ \end{gathered} \right. $ | (5) |
式中:假设智能体在脉冲时刻的状态左连续,即
定义 1 如果存在等式
$ \mathop {\lim }\limits_{t \to \infty } E\left( {{{\left\| {{{\boldsymbol{x}}_i}\left( t \right) - {{\boldsymbol{x}}_0}\left( t \right) } \right\|}^2}} \right) = 0,{\text{ }}i = 1,2,\cdots, N$ |
则称多智能体系统(5)在控制协议(3)的作用下可以实现领导跟随一致性。
引理 1[22] 对于
$ {{\boldsymbol{x}}^{\rm T}}{\boldsymbol{y }}+ {{\boldsymbol{y}}^{\rm T}}{\boldsymbol{x}} \leqslant \eta {{\boldsymbol{x}}^{\rm T}}{\boldsymbol{x}} + {\eta ^{ - 1}}{{\boldsymbol{y}}^{\rm T}}{\boldsymbol{y}} $ |
假设 1 对于
$ \left\| {f\left( {t,{\boldsymbol{x}}} \right) - f\left( {t,{\boldsymbol{y}}} \right) } \right\| \leqslant \left\| {{\boldsymbol{J}}\left( {{\boldsymbol{x}} - {\boldsymbol{y}}} \right) } \right\| $ |
式中:
假设 2 假设多智能体系统通信拓扑结构具有以领导者为根节点的一棵生成树。
接下来,构造误差系统如式(6)所示。
$ \left\{ \begin{array}{l} {{{\boldsymbol{\dot e}}}_i}\left( t \right) = {\boldsymbol{{\boldsymbol A}}}\left( t \right) {{\boldsymbol{e}}_i}\left( t \right) + \beta \left( t \right) \tilde f\left( {t,{{\boldsymbol{e}}_i}\left( t \right) } \right) \;,{\text{ }}t \ne {t_k} \\ \Delta{{\boldsymbol{e}}_i}\left( t \right) = {{\boldsymbol{e}}_i}\left( {{t^ + }} \right) - {{\boldsymbol{e}}_i}\left( t \right)= \\ {\mu _k}\Bigg( {\displaystyle\sum\limits_{j \in {N_i}}^{} {{a_{ij}}\left( {{{\boldsymbol{e}}_i}\left( t \right) - {{\boldsymbol{e}}_j}\left( t \right) } \right) + {b_i}{{\boldsymbol{e}}_i}\left( t \right) } } \Bigg) ,{\text{ }}t = {t_k} \\ {{\boldsymbol{e}}_i}\left( {t_0^ + } \right) = {{\boldsymbol{e}}_i}\left( {{t_0}} \right) ,\;{t_0} \geqslant 0 \end{array} \right. $ | (6) |
式中:
令
$ \left\{ \begin{array}{l} \dot{\boldsymbol{ e}}\left( t \right) = \left( {{{\boldsymbol{I}}_N} \otimes {\boldsymbol{A}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + \beta \left( t \right) \tilde{\boldsymbol{ F}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) \;,t \ne {t_k} \\ {\boldsymbol{e}}\left( {{t^ + }} \right) = \left( {{{\boldsymbol{I}}_N} \otimes {{\boldsymbol{I}}_n} + {\mu _k}\left( {{\boldsymbol{H}} \otimes {{\boldsymbol{I}}_n}} \right) } \right) {\boldsymbol{e}}\left( t \right) {\text{,}}t = {t_k} \end{array} \right. $ | (7) |
定理 1 基于假设1和假设2,如果存在正实数
$ \frac{{\ln \sigma }}{{{\tau _{\max }}}} + \tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\| < 0 $ | (8) |
$ \sum\nolimits_{k = 1}^\infty {\,\ln {\theta _k}} \to \infty $ | (9) |
式(8)中:
证明 构建如下Lyapunov函数:
$ V\left( {{\boldsymbol{e}}\left( t \right) } \right) = {{\boldsymbol{e}}^{\rm T}}\left( t \right) {\boldsymbol{e}}\left( t \right) $ | (10) |
沿着系统(6) 的解轨迹对式(10) 求导得到
$ \begin{split} \dot V\left( {{\boldsymbol{e}}\left( t \right) } \right) =& {{\boldsymbol{e}}^{\rm T}}\left( t \right) [ {{{\left( {{{\boldsymbol{I}}_N} \otimes {\boldsymbol{A}}\left( t \right) } \right) }^{\rm T}} + \left( {{{\boldsymbol{I}}_N} \otimes {\boldsymbol{A}}\left( t \right) } \right) } ]{\text{ }}{\boldsymbol{e}}\left( t \right)+ \\& \beta \left( t \right) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + \beta \left( t \right) {{\boldsymbol{e}}^{\rm T}}\left( t \right) \tilde F\left( {t,{\boldsymbol{e}}\left( t \right) } \right)= \\& {{\boldsymbol{e}}^{\rm T}}\left( t \right) [ {{{\boldsymbol{I}}_N} \otimes ( {{{\boldsymbol{A}}^{\rm T}} + {\boldsymbol{A}}} ) } ]{\text{ }}{\boldsymbol{e}}\left( t \right) + 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \times \\& \left[ {{{\boldsymbol{I}}_N} \otimes \alpha \left( t \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) + 2\beta \left( t \right) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) \end{split} $ | (11) |
根据引理1可得
$\begin{split} & 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \alpha \left( t \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right)= \\& 2\alpha {{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right)+ \\& 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \left( {\alpha \left( t \right) - \tilde \alpha } \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) \leqslant \\& \alpha {{\boldsymbol{e}}^{\rm T}}\left( t \right) [ {{{\boldsymbol{I}}_N} \otimes ( {\eta {{\boldsymbol{M}}^{\rm T}}{\boldsymbol{M}} + {\eta ^{ - 1}}{\boldsymbol{Q}}{{\boldsymbol{Q}}^{\rm T}}} ) } ]{\text{ }}{\boldsymbol{e}}\left( t \right)+ \\& 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \left( {\alpha \left( t \right) - \tilde \alpha } \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) \end{split} $ | (12) |
由假设1可得
$ \begin{split} & 2\beta \left( t \right) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) = 2\beta {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + \\ & 2( {\beta \left( t \right) - \tilde \beta } ) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) \leqslant 2\beta \left\| {\boldsymbol{J}} \right\|{{\boldsymbol{e}}^{\rm T}}\left( t \right) {\boldsymbol{e}}\left( t \right) + \\& 2( {\beta \left( t \right) - \tilde \beta } ) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) \end{split} $ | (13) |
联立式(11) 、(12) 、(13) 可得
$ \begin{split} & \dot V\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant \tilde \alpha {{\boldsymbol{e}}^{\rm T}}\left( t \right) [ {{{\boldsymbol{I}}_N} \otimes ( {{\boldsymbol{A}} + {{\boldsymbol{A}}^{\rm T}} + \eta {{\boldsymbol{M}}^{\rm T}}{\boldsymbol{M}} + {\eta ^{ - 1}}{\boldsymbol{Q}}{{\boldsymbol{Q}}^{\rm T}}} ) } ]{\text{ }}{\boldsymbol{e}}\left( t \right)+ \\&\qquad 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \left( {\alpha \left( t \right) - \tilde \alpha } \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) + \\&\qquad 2( {\beta \left( t \right) - \tilde \beta } ) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + 2\beta \left\| {\boldsymbol{J}} \right\|{{\boldsymbol{e}}^{\rm T}}\left( t \right) {\boldsymbol{e}}\left( t \right)= \\&\qquad ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) V\left( {{\boldsymbol{e}}\left( t \right) } \right) {\text{ }} + \\&\qquad 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \left( {\alpha \left( t \right) - \tilde \alpha } \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) + \\&\qquad 2( {\beta \left( t \right) - \tilde \beta } ) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,\tilde x\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + 2\beta \left\| {\boldsymbol{J}} \right\|{{\boldsymbol{e}}^{\rm T}}\left( t \right) {\boldsymbol{e}}\left( t \right) \\[-10pt] \end{split} $ | (14) |
当
$ {D^ + }EV\left( {{\boldsymbol{e}}\left( t \right) } \right) = E\dot V\left( {{\boldsymbol{e}}\left( t \right) } \right) {\text{, }}t \in \left( {\left. {{t_{k - 1}},{t_k}} \right]} \right. $ | (15) |
整合式(14) 、(15) 可得
$ {D^ + }EV\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) EV\left( {{\boldsymbol{e}}\left( t \right) } \right) $ |
进而得到
$ EV\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant EV\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_{k - 1}}} \right) $ | (16) |
当
$ \begin{split} & EV\left( {{\boldsymbol{e}}\left( {t_k^ + } \right) } \right) = E( {{{\boldsymbol{e}}^{\rm T}}\left( {{t_k}} \right) {{\left( {{\mu _k}\left( {{\boldsymbol{H}} \otimes {{\boldsymbol{I}}_n}} \right) + {{\boldsymbol{I}}_{Nn}}} \right) }^{\rm T}}} \times \\& {\left( {{\mu _k}\left( {{\boldsymbol{H}} \otimes {{\boldsymbol{I}}_n}} \right) + {{\boldsymbol{I}}_{Nn}}} \right) {\boldsymbol{e}}\left( {{t_k}} \right) } ) \leqslant \sigma EV\left( {{\boldsymbol{e}}\left( {{t_k}} \right) } \right) \end{split} $ | (17) |
若
$ EV\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_0}} \right) $ |
进一步,由式(17) 可知
$ \begin{split} & EV\left( {{\boldsymbol{e}}\left( {t_1^ + } \right) } \right) \; \leqslant \sigma EV\left( {{\boldsymbol{e}}\left( {{t_1}} \right) } \right) \leqslant \\& \sigma EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {{t_1} - {t_0}} \right) \end{split}\;\;\;\;\;\; $ |
以此类推,当
$ \begin{split} & EV\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant EV\left( {{\boldsymbol{e}}\left( {t_k^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_k}} \right)\leqslant \\&\qquad {\sigma ^k}EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_0}} \right)\\[-12pt] \end{split} $ | (18) |
令
$ \frac{{t - {t_0}}}{{{\tau _{\max }}}} - 1 \leqslant N\left( {t,{t_0}} \right) \leqslant \frac{{t - {t_0}}}{{{\tau _{\min }}}} + 1 $ | (19) |
式中:
由式(18) 、式(19) 可知
$ \begin{split} & EV\left( {{\boldsymbol{e}}\left( t \right) } \right)\leqslant \\ & {\sigma ^{\tfrac{{t - {t_0}}}{{{\tau _{\max }}}} - 1}}EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_0}} \right) = \\& {\sigma ^{ - 1}}EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp \left( {\frac{{\ln \sigma }}{{{\tau _{\max }}}} + \tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} \right) \left( {t - {t_0}} \right) \end{split} $ | (20) |
由于
下面证明系统可以排除Zeno行为。
证明 当
$ \begin{split} & V\left( {{\boldsymbol{e}}\left( {{t_1}} \right) } \right) = {\theta _1}V\left( {{\boldsymbol{e}}\left( {{t_0}} \right) } \right)\leqslant \\& V\left( {{\boldsymbol{e}}\left( {{t_0}} \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {{t_1} - {t_0}} \right) \end{split} $ |
进一步得到
$ {t_1} - {t_0} \geqslant \frac{{\ln {\theta _1}}}{{\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|}} > 0 $ |
一般来说,在触发时刻存在
$ \begin{split} & V\left( {{\boldsymbol{e}}\left( {{t_k}} \right) } \right) = {\theta _k}V\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right)\leqslant \\& V\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_{k - 1}}} \right) \end{split} $ |
即
$ {t_k} - {t_{k - 1}} \geqslant \frac{{\ln {\theta _k}}}{{\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|}} > 0 $ | (21) |
由式(21) 通过迭代与求和可得到
$ {t_k} - {t_0} \geqslant \sum\limits_{m = 1}^k {\frac{{\ln {\theta _m}}}{{\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|}}} $ | (22) |
由式(9) 、式(22) 可知,当
考虑由4个跟随者及一个领导者组成的非线性多智能体系统,其拓扑图如图1所示。
![]() |
图 1 系统拓扑图 Figure 1 Topology of system |
由图1可知,Laplacian矩阵
$ {\boldsymbol{L}} = \left[ \begin{gathered} \,2\quad - 1\quad - 1\quad {\kern 1pt} 0 \\ - 1\;\,\,\,\,\,2\quad \;\,0\quad - 1 \\ - 1\;\,\,\,\,\,0\quad \;\,{\kern 1pt} 1\quad \;{\kern 1pt} 0 \\ \,0\;\,\,\,\, - 1\quad \,\,0\quad \;\,1 \\ \end{gathered} \right],{\boldsymbol{B}} = \left[ \begin{gathered} 1 \\ \quad 0 \\ \quad \quad 1 \\ \quad \quad \quad 0 \\ \end{gathered} \right] $ |
${\boldsymbol{H}} = {\boldsymbol{L}} + {\boldsymbol{B}} = \left[ \begin{gathered} \,3\quad - 1\quad - 1\quad {\kern 1pt} 0 \\ - 1\;\,\,\,\,\,2\quad \;\,0\quad - 1 \\ - 1\;\,\,\,\,\,0\quad \;2\quad \;{\kern 1pt} 0 \\ \,0\;\,\,\,\, - 1\quad \,\,0\quad \;\,1 \\ \end{gathered} \right] $ |
假设多智能体系统模型(
$ \left\{ \begin{gathered} {{{\boldsymbol{\dot x}}}_i}\left( t \right) = {\boldsymbol{A}}\left( t \right) {{\boldsymbol{x}}_i}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_i}\left( t \right) } \right) + {{\boldsymbol{u}}_i}\left( t \right) \\ {{{\boldsymbol{\dot x}}}_0}\left( t \right) = {\boldsymbol{A}}\left( t \right) {{\boldsymbol{x}}_0}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_0}\left( t \right) } \right) \\ \end{gathered} \right. $ |
式中:控制器
$ {\boldsymbol{A}} = \left[\begin{array}{ccc} -1.87 & 2.18 & 0 \\ 1 & -1 & 1 \\ 0 & -0.82 & 0 \end{array}\right] $ |
令领导者的初值为
![]() |
图 2 未受控制时系统误差图 Figure 2 Error of system without control |
令
![]() |
图 3 |
![]() |
图 4 |
令
![]() |
图 5 |
![]() |
图 6 |
综上,通过仿真实例验证了本文理论结果的有效性。而且,可以根据实际系统的需求通过调节
本文研究了基于事件触发脉冲控制策略的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性问题,设计了一个基于Lyapunov函数的事件触发函数,利用Lyapunov稳定性分析方法并结合不等式技巧给出了多智能体系统的领导跟随一致性准则。此外,事件触发过程中的Zeno行为也被排除。最后,通过Matlab实例仿真验证了本文理论结果的有效性。
[1] |
OLFATI-SABER R, FAX J A, MURRAY R M. Consensus and cooperation in networked multi-agent systems[J].
Proceedings of the IEEE, 2007, 95(1): 215-233.
DOI: 10.1109/JPROC.2006.887293. |
[2] |
YU W, ZHENG W X, CHEN G, et al. Second-order consensus in multi-agent dynamical systems with sampled position data[J].
Automatica, 2011, 47(7): 1496-1503.
DOI: 10.1016/j.automatica.2011.02.027. |
[3] |
ZHENG Y, ZHAO Q, MA J, et al. Second-order consensus of hybrid multi-agent systems[J].
Systems & Control Letters, 2019, 125: 51-58.
|
[4] |
张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J].
广东工业大学学报, 2019, 36(2): 86-90.
ZHANG H Y, PENG S G. A research on the consensus problem of multi-agent systems with random time delays based on model reduction[J]. Journal of Guangdong University of Technology, 2019, 36(2): 86-90. DOI: 10.12052/gdutxb.180084. |
[5] |
WANG T, ZHANG H, ZHAO Y. Average consensus of multi-agent systems under directed topologies and binary-valued communications[J].
IEEE Access, 2018, 6: 55995-56006.
DOI: 10.1109/ACCESS.2018.2872755. |
[6] |
张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J].
广东工业大学学报, 2018, 35(2): 75-80.
ZHANG Z H, PENG S G. Leader-following consensus of second-order multi-agent systems with switching topology[J]. Journal of Guangdong University of Technology, 2018, 35(2): 75-80. DOI: 10.12052/gdutxb.170125. |
[7] |
WANG X, SU H. Self-triggered leader-following consensus of multi-agent systems with input time delay[J].
Neurocomputing, 2019, 330: 70-77.
DOI: 10.1016/j.neucom.2018.10.077. |
[8] |
DAI J, GUO G. Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies[J].
Information Sciences, 2018, 459: 290-301.
DOI: 10.1016/j.ins.2018.04.054. |
[9] |
DING L, HAN Q L, GUO G. Network-based leader-following consensus for distributed multi-agent systems[J].
Automatica, 2013, 49(7): 2281-2286.
DOI: 10.1016/j.automatica.2013.04.021. |
[10] |
HU J, WANG Z, GAO H, et al. Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities[J].
IEEE Transactions on Industrial Electronics, 2011, 59(7): 3008-3015.
|
[11] |
HU M, GUO L, HU A, et al. Leader-following consensus of linear multi-agent systems with randomly occurring nonlinearities and uncertainties and stochastic disturbances[J].
Neurocomputing, 2015, 149: 884-890.
DOI: 10.1016/j.neucom.2014.07.047. |
[12] |
LI D, MA J, ZHU H, et al. The consensus of multi-agent systems with uncertainties and randomly occurring nonlinearities via impulsive control[J].
International Journal of Control, Automation and Systems, 2016, 14(4): 1005-1011.
DOI: 10.1007/s12555-014-0366-z. |
[13] |
XU Y J, PENG S G, GUO A Y. Leader-following consensus of nonlinear delayed multi-agent systems with randomly occurring uncertainties and stochastic disturbances under impulsive control input[J].
International Journal of Control, Automation and Systems, 2018, 16(2): 566-576.
DOI: 10.1007/s12555-017-0232-x. |
[14] |
HU G. Robust consensus tracking for an integrator-type multi-agent system with disturbances and unmodelled dynamics[J].
International Journal of Control, 2011, 84(1): 1-8.
DOI: 10.1080/00207179.2010.535855. |
[15] |
HE W, CHEN G, HAN Q L, et al. Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control[J].
Information Sciences, 2017, 380: 145-158.
DOI: 10.1016/j.ins.2015.06.005. |
[16] |
DIMAROGONAS D V, JOHANSSON K H. Event-triggered control for multi-agent systems[C]//Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference. Shanghai : IEEE, 2009: 7131-7136.
|
[17] |
LIU B, LIU D N, DOU C X. Exponential stability via event-triggered impulsive control for continuous-timedynamicalsystems[C]//Proceedings of the 33rd Chinese Control Conference. Nanjing : IEEE, 2014: 4056-4060.
|
[18] |
TAN X, CAO J, LI X. Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy[J].
IEEE Transactions on Cybernetics, 2018, 49(3): 792-801.
|
[19] |
LI X, PENG D, CAO J. Lyapunov stability for impulsive systems via event-triggered impulsive control[J].
IEEE Transactions on Automatic Control, 2020, 65(11): 4908-4913.
DOI: 10.1109/TAC.2020.2964558. |
[20] |
ZHANG Z Z, PENG S G, LIU D R, et al. Leader-following mean-square consensus of stochastic multiagent systems with ROUs and RONs via distributed event-triggered impulsive control[J].
IEEE Transactions on Cybernetics, 2022, 52(3): 1836-1849.
DOI: 10.1109/TCYB.2020.2999359. |
[21] |
CHEN T, PENG S G, ZHANG Z Z. Finite-time consensus of leader-following non-linear multi-agent systems via event-triggered impulsive control[J].
IET Control Theory & Applications, 2021, 15(7): 926-936.
|
[22] |
WANG Z, LAURIA S, LIU X. Exponential stability of uncertain stochastic neural networks with mixed time-delays[J].
Chaos, Solitons & Fractals, 2007, 32(1): 62-72.
|