广东工业大学学报  2023, Vol. 40Issue (1): 50-55.  DOI: 10.12052/gdutxb.210064.
0

引用本文 

谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤. 基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究[J]. 广东工业大学学报, 2023, 40(1): 50-55. DOI: 10.12052/gdutxb.210064.
Gu Zhi-hua, Peng Shi-guo, Huang Yu-jia, Feng Wan-dian, Zeng Zi-xian. Leader-following Consensus of Nonlinear Multi-agent Systems with ROUs and RONs via Event-triggered Impulsive Control[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2023, 40(1): 50-55. DOI: 10.12052/gdutxb.210064.

基金项目:

国家自然科学基金资助项目(61973092) ;广东省基础与应用基础研究基金资助项目(2019A1515012104)

作者简介:

谷志华(1995–) ,男,硕士研究生,主要研究方向为多智能体系统一致性问题、非线性系统、脉冲控制,E-mail:498541923@qq.com

文章历史

收稿日期:2021-04-25
基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性研究
谷志华, 彭世国, 黄昱嘉, 冯万典, 曾梓贤    
广东工业大学 自动化学院,广东 广州 510006
摘要: 设计了一个基于Lyapunov函数的事件触发函数,并在此基础上研究了一类具有随机发生不确定性和随机发生非线性的多智能体系统在事件触发脉冲控制策略下的领导跟随一致性。与人为设置脉冲时刻序列的控制方式不同,事件触发脉冲控制策略中脉冲控制时刻的产生依赖于事件触发函数,且当触发条件被满足时才激发脉冲控制,从而减少不必要的控制次数以及系统的资源消耗。基于脉冲微分方程理论、代数图论和Lyapunov稳定性理论,给出了受控多智能体系统实现领导跟随一致性所需要满足的充分性条件,同时证明了Zeno行为可以被排除。最后,通过Matlab实例仿真验证了本文理论结果的有效性。
关键词: 随机发生不确定性    随机发生非线性    多智能体系统    事件触发脉冲控制    领导跟随一致性    
Leader-following Consensus of Nonlinear Multi-agent Systems with ROUs and RONs via Event-triggered Impulsive Control
Gu Zhi-hua, Peng Shi-guo, Huang Yu-jia, Feng Wan-dian, Zeng Zi-xian    
School of Automation, Guangdong University of Technology, Guangzhou 510006, China
Abstract: In term of the event-trigger impulsive mechanism, this paper designs a new event triggering function based on the Lyapunov function, and the leader-following consensus of multi-agent systems with randomly occurring uncertainties and randomly occurring nonlinearities is studied. Different from the control method of artificially setting the impulse time sequence, the generation of the impulsive moment depends on the designed triggering function, and when the trigger condition is met, the impulsive control is activated to reduce unnecessary control times and resource consumption. Based on impulsive differential equation theory, algebraic graph theory, and Lyapunov stability theory, the sufficiency conditions that controlled multi-agent systems can achieve the leader-following consensus are given. Meanwhile, the Zeno behavior can be excluded. Finally, the feasibility of the obtained results is verified by a numerical example.
Key words: randomly occurring uncertainties    randomly occurring nonlinearities    multi-agent systems    event-triggered impulsive control    leader-following consensus    

近些年,多智能体系统在实际中广泛应用,它的相关研究引起了很多学者的高度重视,针对多智能体系统的一致性问题的研究取得了丰硕的成果[1-4]。众所周知,分布式协同控制技术是多智能体系统研究的重要基础,而一致性问题又是分布式协同控制领域的关键课题。因此,对于多智能体系统一致性问题的研究具有重要的理论及应用价值。所谓一致性是指在特定控制器的作用下系统中所有智能体的状态最终能够趋于一致。根据系统中有无领导者可以将多智能体系统的一致性分为领导跟随一致性与非领导跟随一致性(比如常见的平均一致性[5])。其中领导跟随一致性是目前的一个研究热点,并且已经取得大量研究成果[6-9]。所谓的领导跟随一致是指多智能体系统中所有跟随者的状态在控制器的作用下能够与领导者的状态趋于一致。通常,领导者是不受控的自治智能体或者其状态值是预先设定的特定目标值。

在实际应用中,由于工程环境的复杂性与多变性,多智能体系统可能会受到以一定概率和强度随机出现的参数不确定性甚至非线性动力学行为的影响[10]。这种客观现象将可能导致严重后果,如系统性能下降、系统故障甚至崩溃。对此,研究人员提出随机发生不确定性(Randomly Occurring Uncertainties,ROUs)和随机发生非线性(Randomly Occurring Nonlinearities,RONs)概念对上述现象进行刻画。目前为止,具有ROUs或者RONs的多智能体系统的一致性问题研究已经受到研究者们的广泛关注,并且取得了大量有价值的研究成果[11-13]。文献[8]首次提出了具有ROUs和RONs的新系统,比较全面地考虑了系统的随机不确定性,文献[13]讨论了具有ROUs和RONs的多智能体系统领导跟随一致性。

当前,研究多智能体系统的一致性问题所用控制策略主要分为两种,即时间触发控制和事件触发控制。时间触发控制是一种传统的控制方式,其控制时刻取决于事先预设的时间序列(即控制时刻是已知的),现有的大多数控制系统都是基于时间触发控制策略[14-15]。时间触发控制的优点在于控制时刻的选取与设置更易操作,但是所选取的控制时刻序列可能会偏保守,如增加不必要的控制次数等。为了克服这一不足,事件触发控制策略被适时提出[16]。具体地,事件触发控制策略要求控制时刻的生成取决于所设计的事件触发函数,在满足控制需求的前提下通过灵活调节函数中的相关参数来得到控制次数以及资源消耗更少的控制时刻序列,从而降低保守性。由于事件触发控制策略下控制方式可以是连续的也可以是离散的,因此为了进一步降低控制成本,研究人员在该策略中引入了离散式的脉冲控制,从而提出了事件触发脉冲控制策略[17]。显然,事件触发脉冲控制机制结合了脉冲控制以及事件触发控制的优点,可以有效地节约通信资源以及控制成本[18]。值得注意的是,在文献[19]中,作者指出在事件触发函数的设计中引入Lyapunov函数可以更容易确保对象系统的稳定性。在此基础上,利用基于Lyapunov函数的事件触发函数来研究多智能体系统的一致性问题具有不错的研究前景且相关研究成果较少。

受上述讨论启发,为了使所得研究结果更符合实际情形,本文设计了一个基于Lyapunov函数的事件触发函数,研究了基于事件触发脉冲控制的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性问题。本文贡献如下:

(1) 将基于Lyapunov函数的事件触发机制引入具有ROUs和RONs的多智能体系统,在此基础上研究了目标多智能体系统的领导跟随一致性问题。

(2) 本文设计了一类基于Lyapunov函数的事件触发函数,与以往研究相比此类触发函数的阈值不需要在非触发时间段内连续计算,进一步减少系统的资源消耗,且在确保系统能够实现领导跟随一致性的同时不会出现Zeno行为。

1 模型构造与预备知识 1.1 代数图论

在多智能体系统的网络拓扑图中单个智能体可以被看作一个顶点,用集合 $ V $ 表示顶点集,顶点之间的连线表示多智能体之间的通信状态,用集合 $ E $ 表示顶点连线的边集,则多智能体间的无向拓扑图可表示为 $ G = \left( {V,E,{\boldsymbol{C}}} \right) $ 。其中 $ {\boldsymbol{C}} = {\left[ {{a_{ij}}} \right]_{N \times N}} $ 为图 $ G $ 的带权邻接矩阵,对于边 $ \left( {i,j} \right) \notin E $ ,有 $ {a_{ij}} = {a_{ji}} = 0 $ ,反之 ${a_{ij}} = {a_{ji}} > 0$ 。定义 ${\boldsymbol{D}} = {\text{diag}}\left( {{d_1},{d_2},\cdots,{d_N}} \right)$ 为图 $ G $ 的度矩阵,其中 ${d_i} = \displaystyle\sum\nolimits_{j = 1,j \ne i}^N {{a_{ij}}}$ ,则称 $ {\boldsymbol{L}} = {\left[ {{l_{ij}}} \right]_{N \times N}} $ 为图 $ G $ 的Laplacian矩阵且 $ {\boldsymbol{L}} = {\boldsymbol{D}} - {\boldsymbol{C}} $ 。领导者与跟随者之间的通信连接关系用矩阵 ${\boldsymbol{B}}{\text{ = }}\left( {{b_1},{b_2},\cdots,{b_N}} \right)$ 表示。当领导者与跟随者之间存在通信交流,则矩阵 $ {\boldsymbol{B}} $ 的元素 $ {b_i} > 0 $ ,否则 $ {b_i} = 0 $ 。令 $ {\boldsymbol{H}} = {\boldsymbol{L}} + {\boldsymbol{B}} $ 。如果从图 $ G $ 中的某一个顶点可以达到图中任意一个顶点,即称该顶点为根节点,且称图 $ G $ 具有以该顶点为根节点的一棵生成树。

1.2 问题描述及协议构造

考虑由一个领导者和 $ N $ 个跟随者组成的具有ROUs和RONs的非线性多智能体系统,第 $ i $ 个( $i = 1,2,\cdots,N$ ) 智能体的动力学模型为

$ {{\boldsymbol{\dot x}}_i}\left( t \right) = {\boldsymbol{A}}\left( t \right) {{\boldsymbol{x}}_i}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_i}\left( t \right) } \right) + {{\boldsymbol{u}}_i}\left( t \right) $ (1)

式中: $ {{\boldsymbol{u}}_i}\left( t \right) \in {\mathbb{R}^n} $ $ {{\boldsymbol{x}}_i}\left( t \right) \in {\mathbb{R}^n} $ 分别为控制输入以及智能体 $ i $ 的状态向量。 $ f:\mathbb{R} \times {\mathbb{R}^n} \to {\mathbb{R}^n} $ 为一个连续的非线性函数, $\; \beta \left( t \right) f\left( \cdot \right)$ 则为RONs现象。 ${\boldsymbol{A}}\left( t \right) = {\boldsymbol{A}} + \alpha \left( t \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}$ ,其中 $ {\boldsymbol{A}} $ $ {\boldsymbol{M}} $ $ {\boldsymbol{Q}} $ 为适当维度的常矩阵, $ {\boldsymbol{P}}\left( t \right) $ 为时变矩阵且满足 ${\boldsymbol{P}}{\left( t \right) ^{\rm T}}{\boldsymbol{P}}\left( t \right) \leqslant {\boldsymbol{I}}$ $ \alpha \left( t \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}} $ 为ROUs现象。假设随机变量 $ \alpha \left( t \right) $ $ \beta \left( t \right) $ 之间相互独立且服从伯努利分布,同时满足条件

$ \left\{ \begin{gathered} {\rm{Pr}}\left\{ {\alpha \left( t \right) = 1} \right\} = \tilde \alpha ,{\rm{Pr}}\left\{ {\alpha \left( t \right) = 0} \right\} = 1 - \tilde \alpha \\ {\rm{Pr}}\left\{ {\beta \left( t \right) = 1} \right\} = \tilde \beta , {\rm{Pr}}\left\{ {\beta \left( t \right) = 0} \right\} = 1 - \tilde \beta \\ \end{gathered} \right. $

式中: $ \tilde \alpha ,\tilde \beta \in \left[ {0,1} \right] $ 为已知常数。基于上述假设,有 $E\left( {\alpha \left( t \right) - \tilde \alpha } \right) = 0,E( {\beta \left( t \right) - \tilde \beta } ) = 0$

考虑领导者的动力学方程为

$ {{\boldsymbol{\dot x}}_0}\left( t \right) = {\boldsymbol{A}}\left( t \right) {{\boldsymbol{x}}_0}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_0}\left( t \right) } \right) $ (2)

式中: ${{\boldsymbol{x}}_0}\left( t \right) \in {\mathbb{R}^n}$ 为领导者的状态向量。

为了确保跟随者与领导者的状态能够趋于一致,本文给出如下事件触发脉冲控制协议:

$ \begin{split} {{\boldsymbol{u}}_i}\left( t \right) =& \sum\nolimits_{k = 1}^\infty {\delta \left( {t - {t_k}} \right) \times } \\& {\mu _k}\left( {\sum\nolimits_{j \in {N_i}} {{a_{ij}}\left( {{{\boldsymbol{x}}_i}\left( t \right) - {{\boldsymbol{x}}_j}\left( t \right) } \right) } + {b_i}\left( {{{\boldsymbol{x}}_i}\left( t \right) - {{\boldsymbol{x}}_0}\left( t \right) } \right) } \right) \end{split} $ (3)

式中: $\; {\mu _k} $ 为脉冲控制增益, $ {N_i} $ 为智能体 $ i $ 的邻居节点集合, $ \left\{ {{t_k},k \in {\mathbb{Z}_ + }} \right\} $ 为由事件触发机制生成的脉冲控制序列, $ \delta \left( t \right) $ 为狄拉克函数。

具体地,设计的一类基于Lyapunov函数的事件触发条件如式(4)所示。

$ {t_k} = \inf \left\{ {t \geqslant {t_{k - 1}}:V\left( {{\boldsymbol{e}}\left( t \right) } \right) \geqslant {\theta _k}V\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right) } \right\} $ (4)

式中: $ {\theta _k} > 1 $ ${\boldsymbol{e}}\left( t \right) {\text{ = }}{( {{\boldsymbol{e}}_1^{\rm T}\left( t \right) ,{\boldsymbol{e}}_2^{\rm T}\left( t \right) , \cdots ,{\boldsymbol{e}}_N^{\rm T}\left( t \right) } ) ^{\rm T}}$ ${{\boldsymbol{e}}_i}\left( t \right) {\text{ = }}{{\boldsymbol{x}}_i}\left( t \right) - {{\boldsymbol{x}}_0}\left( t \right)$ $ V\left( {{\boldsymbol{e}}\left( t \right) } \right) $ 为候选Lyapunov函数。由式(4) 可知 $ V\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant {\theta _k}V\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right) ,t \in \left( {{t_{k - 1}},{t_k}} \right] $

注释 1  与文献[20-21]相比,式(4) 不需要在两个相邻脉冲时刻之间的连续时间段内连续计算阈值 $ {\theta _k}V\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right) $ 的大小,从而在一定程度上节约了系统的计算资源。

联立式(1) 、式(3) ,得到多智能体系统模型如式(5)所示。

$ \left\{ \begin{gathered} {{{\boldsymbol{\dot x}}}_i}\left( t \right) = {\boldsymbol{A}}\left( t \right) {x_i}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_i}\left( t \right) } \right) \;,t \ne {t_k}{\text{ }} \\ \Delta{{\boldsymbol{x}}_i}\left( {{t_k}} \right) = {{\boldsymbol{x}}_i}\left( {t_k^ + } \right) - {{\boldsymbol{x}}_i}\left( {{t_k}} \right) = \\ {\mu _k}\Bigg( {\sum\limits_{j \in {N_i}}^{} {{a_{ij}}\left( {{{\boldsymbol{x}}_i}\left( {{t_k}} \right) - {{\boldsymbol{x}}_j}\left( {{t_k}} \right) } \right) + {b_i}\left( {{{\boldsymbol{x}}_i}\left( {{t_k}} \right) - {{\boldsymbol{x}}_0}\left( {{t_k}} \right) } \right) } } \Bigg) \\ {{\boldsymbol{x}}_i}\left( {t_0^ + } \right) = {{\boldsymbol{x}}_i}\left( {{t_0}} \right) ,{t_0} \geqslant 0 \\ \end{gathered} \right. $ (5)

式中:假设智能体在脉冲时刻的状态左连续,即 $ {{\boldsymbol{x}}_i}\left( {{t_k}} \right) = {{\boldsymbol{x}}_i}\left( {t_k^ - } \right) $ $\Delta{{\boldsymbol{x}}_i}\left( {{t_k}} \right)$ 为跟随者 $ i $ $ {t_k} $ 时刻脉冲控制作用下状态的跳变值, $ {{\boldsymbol{x}}_i}\left( {{t_0}} \right) $ 为智能体 $ i $ 的初值。

定义 1  如果存在等式

$ \mathop {\lim }\limits_{t \to \infty } E\left( {{{\left\| {{{\boldsymbol{x}}_i}\left( t \right) - {{\boldsymbol{x}}_0}\left( t \right) } \right\|}^2}} \right) = 0,{\text{ }}i = 1,2,\cdots, N$

则称多智能体系统(5)在控制协议(3)的作用下可以实现领导跟随一致性。

引理 1[22]  对于 ${\boldsymbol{x}},{\boldsymbol{y}} \in {\mathbb{R}^n}$ $ \eta > 0 $ ,有

$ {{\boldsymbol{x}}^{\rm T}}{\boldsymbol{y }}+ {{\boldsymbol{y}}^{\rm T}}{\boldsymbol{x}} \leqslant \eta {{\boldsymbol{x}}^{\rm T}}{\boldsymbol{x}} + {\eta ^{ - 1}}{{\boldsymbol{y}}^{\rm T}}{\boldsymbol{y}} $

假设 1  对于 ${\boldsymbol{x}},{\boldsymbol{y}} \in {\mathbb{R}^n}$ ,非线性函数 $ f:\mathbb{R} \times {\mathbb{R}^n} \to {\mathbb{R}^n} $ 满足如下Lipchitz条件:

$ \left\| {f\left( {t,{\boldsymbol{x}}} \right) - f\left( {t,{\boldsymbol{y}}} \right) } \right\| \leqslant \left\| {{\boldsymbol{J}}\left( {{\boldsymbol{x}} - {\boldsymbol{y}}} \right) } \right\| $

式中: ${\boldsymbol{J}}$ 为已知常数矩阵。

假设 2  假设多智能体系统通信拓扑结构具有以领导者为根节点的一棵生成树。

接下来,构造误差系统如式(6)所示。

$ \left\{ \begin{array}{l} {{{\boldsymbol{\dot e}}}_i}\left( t \right) = {\boldsymbol{{\boldsymbol A}}}\left( t \right) {{\boldsymbol{e}}_i}\left( t \right) + \beta \left( t \right) \tilde f\left( {t,{{\boldsymbol{e}}_i}\left( t \right) } \right) \;,{\text{ }}t \ne {t_k} \\ \Delta{{\boldsymbol{e}}_i}\left( t \right) = {{\boldsymbol{e}}_i}\left( {{t^ + }} \right) - {{\boldsymbol{e}}_i}\left( t \right)= \\ {\mu _k}\Bigg( {\displaystyle\sum\limits_{j \in {N_i}}^{} {{a_{ij}}\left( {{{\boldsymbol{e}}_i}\left( t \right) - {{\boldsymbol{e}}_j}\left( t \right) } \right) + {b_i}{{\boldsymbol{e}}_i}\left( t \right) } } \Bigg) ,{\text{ }}t = {t_k} \\ {{\boldsymbol{e}}_i}\left( {t_0^ + } \right) = {{\boldsymbol{e}}_i}\left( {{t_0}} \right) ,\;{t_0} \geqslant 0 \end{array} \right. $ (6)

式中: $\tilde f\left( {t,{{\boldsymbol{e}}_i}\left( t \right) } \right) {\text{ = }}f\left( {t,{{\boldsymbol{x}}_i}\left( t \right) } \right) - f\left( {t,{{\boldsymbol{x}}_0}\left( t \right) } \right)$

$\tilde{\boldsymbol{ F}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) ={ [ {{{\tilde f}^{\;\rm T}}}\left( {t,} {{{\boldsymbol{e}}_1}\left( t \right) } \right){ ,\cdots,{{\tilde f}^{\;\rm T}}\left( {t,{{\boldsymbol{e}}_N}\left( t \right) } \right) } ]^{\rm T}}$ ,利用克罗内克积性质,误差系统(6) 可被重写为

$ \left\{ \begin{array}{l} \dot{\boldsymbol{ e}}\left( t \right) = \left( {{{\boldsymbol{I}}_N} \otimes {\boldsymbol{A}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + \beta \left( t \right) \tilde{\boldsymbol{ F}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) \;,t \ne {t_k} \\ {\boldsymbol{e}}\left( {{t^ + }} \right) = \left( {{{\boldsymbol{I}}_N} \otimes {{\boldsymbol{I}}_n} + {\mu _k}\left( {{\boldsymbol{H}} \otimes {{\boldsymbol{I}}_n}} \right) } \right) {\boldsymbol{e}}\left( t \right) {\text{,}}t = {t_k} \end{array} \right. $ (7)
2 一致性分析

定理 1  基于假设1和假设2,如果存在正实数 $ \eta $ 使得

$ \frac{{\ln \sigma }}{{{\tau _{\max }}}} + \tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\| < 0 $ (8)
$ \sum\nolimits_{k = 1}^\infty {\,\ln {\theta _k}} \to \infty $ (9)

式(8)中: $\;{\boldsymbol{\varLambda }} = \left( {{{\boldsymbol{I}}_N} \otimes \left( {{\boldsymbol{A}} + {{\boldsymbol{A}}^{\rm T}} + \eta {{\boldsymbol{M}}^{\rm T}}{\boldsymbol{M}} + {\eta ^{ - 1}}{\boldsymbol{Q}}{{\boldsymbol{Q}}^{\rm T}}} \right) } \right)$ $\sigma = {\sup _{k \in {\mathbb{N}_ + }}} {\lambda _{\max }} \left( {{{\boldsymbol{\varPi }}_k}} \right)$ ${{\boldsymbol{\varPi }}_k} = {\left( {{\mu _k}\left( {{\boldsymbol{H}} \otimes {{\boldsymbol{I}}_n}} \right) + {{\boldsymbol{I}}_{Nn}}} \right) ^{\rm T}}\left( {{\mu _k}\left( {{\boldsymbol{H}} \otimes {{\boldsymbol{I}}_n}} \right) + {{\boldsymbol{I}}_{Nn}}} \right)$ $ {\lambda _{\max }}\left( \cdot \right) $ 为矩阵的最大特征值, $ {\tau _{\max }} $ 为事件触发间隔的最大值,则具有ROUs和RONs的非线性多智能体系统(5) 在脉冲控制器(3) 作用下可以实现领导跟随一致性,且在触发机制(4) 的作用下系统在控制过程中不会出现Zeno行为。

证明  构建如下Lyapunov函数:

$ V\left( {{\boldsymbol{e}}\left( t \right) } \right) = {{\boldsymbol{e}}^{\rm T}}\left( t \right) {\boldsymbol{e}}\left( t \right) $ (10)

沿着系统(6) 的解轨迹对式(10) 求导得到

$ \begin{split} \dot V\left( {{\boldsymbol{e}}\left( t \right) } \right) =& {{\boldsymbol{e}}^{\rm T}}\left( t \right) [ {{{\left( {{{\boldsymbol{I}}_N} \otimes {\boldsymbol{A}}\left( t \right) } \right) }^{\rm T}} + \left( {{{\boldsymbol{I}}_N} \otimes {\boldsymbol{A}}\left( t \right) } \right) } ]{\text{ }}{\boldsymbol{e}}\left( t \right)+ \\& \beta \left( t \right) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + \beta \left( t \right) {{\boldsymbol{e}}^{\rm T}}\left( t \right) \tilde F\left( {t,{\boldsymbol{e}}\left( t \right) } \right)= \\& {{\boldsymbol{e}}^{\rm T}}\left( t \right) [ {{{\boldsymbol{I}}_N} \otimes ( {{{\boldsymbol{A}}^{\rm T}} + {\boldsymbol{A}}} ) } ]{\text{ }}{\boldsymbol{e}}\left( t \right) + 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \times \\& \left[ {{{\boldsymbol{I}}_N} \otimes \alpha \left( t \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) + 2\beta \left( t \right) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) \end{split} $ (11)

根据引理1可得

$\begin{split} & 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \alpha \left( t \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right)= \\& 2\alpha {{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right)+ \\& 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \left( {\alpha \left( t \right) - \tilde \alpha } \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) \leqslant \\& \alpha {{\boldsymbol{e}}^{\rm T}}\left( t \right) [ {{{\boldsymbol{I}}_N} \otimes ( {\eta {{\boldsymbol{M}}^{\rm T}}{\boldsymbol{M}} + {\eta ^{ - 1}}{\boldsymbol{Q}}{{\boldsymbol{Q}}^{\rm T}}} ) } ]{\text{ }}{\boldsymbol{e}}\left( t \right)+ \\& 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \left( {\alpha \left( t \right) - \tilde \alpha } \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) \end{split} $ (12)

由假设1可得

$ \begin{split} & 2\beta \left( t \right) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) = 2\beta {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + \\ & 2( {\beta \left( t \right) - \tilde \beta } ) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) \leqslant 2\beta \left\| {\boldsymbol{J}} \right\|{{\boldsymbol{e}}^{\rm T}}\left( t \right) {\boldsymbol{e}}\left( t \right) + \\& 2( {\beta \left( t \right) - \tilde \beta } ) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) \end{split} $ (13)

联立式(11) 、(12) 、(13) 可得

$ \begin{split} & \dot V\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant \tilde \alpha {{\boldsymbol{e}}^{\rm T}}\left( t \right) [ {{{\boldsymbol{I}}_N} \otimes ( {{\boldsymbol{A}} + {{\boldsymbol{A}}^{\rm T}} + \eta {{\boldsymbol{M}}^{\rm T}}{\boldsymbol{M}} + {\eta ^{ - 1}}{\boldsymbol{Q}}{{\boldsymbol{Q}}^{\rm T}}} ) } ]{\text{ }}{\boldsymbol{e}}\left( t \right)+ \\&\qquad 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \left( {\alpha \left( t \right) - \tilde \alpha } \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) + \\&\qquad 2( {\beta \left( t \right) - \tilde \beta } ) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,{\boldsymbol{e}}\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + 2\beta \left\| {\boldsymbol{J}} \right\|{{\boldsymbol{e}}^{\rm T}}\left( t \right) {\boldsymbol{e}}\left( t \right)= \\&\qquad ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) V\left( {{\boldsymbol{e}}\left( t \right) } \right) {\text{ }} + \\&\qquad 2{{\boldsymbol{e}}^{\rm T}}\left( t \right) \left[ {{{\boldsymbol{I}}_N} \otimes \left( {\alpha \left( t \right) - \tilde \alpha } \right) {\boldsymbol{MP}}\left( t \right) {\boldsymbol{Q}}} \right]{\text{ }}{\boldsymbol{e}}\left( t \right) + \\&\qquad 2( {\beta \left( t \right) - \tilde \beta } ) {{\tilde{\boldsymbol{ F}}}^{\rm T}}\left( {t,\tilde x\left( t \right) } \right) {\boldsymbol{e}}\left( t \right) + 2\beta \left\| {\boldsymbol{J}} \right\|{{\boldsymbol{e}}^{\rm T}}\left( t \right) {\boldsymbol{e}}\left( t \right) \\[-10pt] \end{split} $ (14)

$ t \in \left( {\left. {{t_{k - 1}},{t_k}} \right]} \right. $ $V\left( {{\boldsymbol{e}}\left( t \right) } \right)$ 是连续的,可得

$ {D^ + }EV\left( {{\boldsymbol{e}}\left( t \right) } \right) = E\dot V\left( {{\boldsymbol{e}}\left( t \right) } \right) {\text{, }}t \in \left( {\left. {{t_{k - 1}},{t_k}} \right]} \right. $ (15)

整合式(14) 、(15) 可得

$ {D^ + }EV\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) EV\left( {{\boldsymbol{e}}\left( t \right) } \right) $

进而得到

$ EV\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant EV\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_{k - 1}}} \right) $ (16)

$ t = {t_k} $ 时,有

$ \begin{split} & EV\left( {{\boldsymbol{e}}\left( {t_k^ + } \right) } \right) = E( {{{\boldsymbol{e}}^{\rm T}}\left( {{t_k}} \right) {{\left( {{\mu _k}\left( {{\boldsymbol{H}} \otimes {{\boldsymbol{I}}_n}} \right) + {{\boldsymbol{I}}_{Nn}}} \right) }^{\rm T}}} \times \\& {\left( {{\mu _k}\left( {{\boldsymbol{H}} \otimes {{\boldsymbol{I}}_n}} \right) + {{\boldsymbol{I}}_{Nn}}} \right) {\boldsymbol{e}}\left( {{t_k}} \right) } ) \leqslant \sigma EV\left( {{\boldsymbol{e}}\left( {{t_k}} \right) } \right) \end{split} $ (17)

$ k = 1 $ ,则 $ t \in \left( {\left. {{t_0},{t_1}} \right]} \right. $ ,由式(16) 可得

$ EV\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_0}} \right) $

进一步,由式(17) 可知

$ \begin{split} & EV\left( {{\boldsymbol{e}}\left( {t_1^ + } \right) } \right) \; \leqslant \sigma EV\left( {{\boldsymbol{e}}\left( {{t_1}} \right) } \right) \leqslant \\& \sigma EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {{t_1} - {t_0}} \right) \end{split}\;\;\;\;\;\; $

以此类推,当 $ t \in \left( {\left. {{t_k},{t_{k + 1}}} \right]} \right. $ 时,有

$ \begin{split} & EV\left( {{\boldsymbol{e}}\left( t \right) } \right) \leqslant EV\left( {{\boldsymbol{e}}\left( {t_k^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_k}} \right)\leqslant \\&\qquad {\sigma ^k}EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_0}} \right)\\[-12pt] \end{split} $ (18)

$ N\left( {{t_0},t} \right) $ 表示时间区间 $ \left( {{t_0},t} \right) $ 内事件触发的次数,则有

$ \frac{{t - {t_0}}}{{{\tau _{\max }}}} - 1 \leqslant N\left( {t,{t_0}} \right) \leqslant \frac{{t - {t_0}}}{{{\tau _{\min }}}} + 1 $ (19)

式中: $ {\tau _{\max }} = \max \left\{ {{t_{k + 1}} - {t_k}} \right\} $ $ {\tau _{\min }} = \min \left\{ {{t_{k + 1}} - {t_k}} \right\} $ 分别为触发间隔的最大值和最小值。

由式(18) 、式(19) 可知

$ \begin{split} & EV\left( {{\boldsymbol{e}}\left( t \right) } \right)\leqslant \\ & {\sigma ^{\tfrac{{t - {t_0}}}{{{\tau _{\max }}}} - 1}}EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_0}} \right) = \\& {\sigma ^{ - 1}}EV\left( {{\boldsymbol{e}}\left( {t_0^ + } \right) } \right) \exp \left( {\frac{{\ln \sigma }}{{{\tau _{\max }}}} + \tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} \right) \left( {t - {t_0}} \right) \end{split} $ (20)

由于 $ {\sigma ^{ - 1}} > 0 $ ,如果在相关参数条件下式(8) 成立,则意味着误差系统(6) 在均方意义下是全局指数稳定的,即原系统(5) 在脉冲控制协议作用下可以实现领导跟随一致性。

下面证明系统可以排除Zeno行为。

证明  当 $ k = 1 $ 时,由事件触发机制(4)及式(16)可得

$ \begin{split} & V\left( {{\boldsymbol{e}}\left( {{t_1}} \right) } \right) = {\theta _1}V\left( {{\boldsymbol{e}}\left( {{t_0}} \right) } \right)\leqslant \\& V\left( {{\boldsymbol{e}}\left( {{t_0}} \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {{t_1} - {t_0}} \right) \end{split} $

进一步得到

$ {t_1} - {t_0} \geqslant \frac{{\ln {\theta _1}}}{{\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|}} > 0 $

一般来说,在触发时刻存在

$ \begin{split} & V\left( {{\boldsymbol{e}}\left( {{t_k}} \right) } \right) = {\theta _k}V\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right)\leqslant \\& V\left( {{\boldsymbol{e}}\left( {t_{k - 1}^ + } \right) } \right) \exp ( {\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|} ) \left( {t - {t_{k - 1}}} \right) \end{split} $

$ {t_k} - {t_{k - 1}} \geqslant \frac{{\ln {\theta _k}}}{{\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|}} > 0 $ (21)

由式(21) 通过迭代与求和可得到

$ {t_k} - {t_0} \geqslant \sum\limits_{m = 1}^k {\frac{{\ln {\theta _m}}}{{\tilde \alpha {\lambda _{\max }}\left( {\boldsymbol{\varLambda }} \right) + 2\tilde \beta \left\| {\boldsymbol{J}} \right\|}}} $ (22)

由式(9) 、式(22) 可知,当 $ k \to \infty $ 时, $ {t_k} \to \infty $ 。由式(21) 可以看出触发时间间隔是明确存在的,故Zeno行为被排除。证毕。

3 数值仿真

考虑由4个跟随者及一个领导者组成的非线性多智能体系统,其拓扑图如图1所示。

图 1 系统拓扑图 Figure 1 Topology of system

图1可知,Laplacian矩阵 $ {\boldsymbol{L}} $ 及连接矩阵 $ {\boldsymbol{B}} $

$ {\boldsymbol{L}} = \left[ \begin{gathered} \,2\quad - 1\quad - 1\quad {\kern 1pt} 0 \\ - 1\;\,\,\,\,\,2\quad \;\,0\quad - 1 \\ - 1\;\,\,\,\,\,0\quad \;\,{\kern 1pt} 1\quad \;{\kern 1pt} 0 \\ \,0\;\,\,\,\, - 1\quad \,\,0\quad \;\,1 \\ \end{gathered} \right],{\boldsymbol{B}} = \left[ \begin{gathered} 1 \\ \quad 0 \\ \quad \quad 1 \\ \quad \quad \quad 0 \\ \end{gathered} \right] $
${\boldsymbol{H}} = {\boldsymbol{L}} + {\boldsymbol{B}} = \left[ \begin{gathered} \,3\quad - 1\quad - 1\quad {\kern 1pt} 0 \\ - 1\;\,\,\,\,\,2\quad \;\,0\quad - 1 \\ - 1\;\,\,\,\,\,0\quad \;2\quad \;{\kern 1pt} 0 \\ \,0\;\,\,\,\, - 1\quad \,\,0\quad \;\,1 \\ \end{gathered} \right] $

假设多智能体系统模型( $ i = 1,2,3,4 $ )为

$ \left\{ \begin{gathered} {{{\boldsymbol{\dot x}}}_i}\left( t \right) = {\boldsymbol{A}}\left( t \right) {{\boldsymbol{x}}_i}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_i}\left( t \right) } \right) + {{\boldsymbol{u}}_i}\left( t \right) \\ {{{\boldsymbol{\dot x}}}_0}\left( t \right) = {\boldsymbol{A}}\left( t \right) {{\boldsymbol{x}}_0}\left( t \right) + \beta \left( t \right) f\left( {t,{{\boldsymbol{x}}_0}\left( t \right) } \right) \\ \end{gathered} \right. $

式中:控制器 $ {{\boldsymbol{u}}_i}\left( t \right) $ 如式(3) 所示, $f\left( {t,x\left( t \right) } \right) = \dfrac{1}{4}\sqrt {\left| {\cos \left( t \right) } \right|} \times \left( | x\left( t \right) + 1 \right| - \left| {x\left( t \right) - 1} | \right)$ ,易知 $ \left\| {\boldsymbol{J}} \right\| = 0.5 $ ${\boldsymbol{A}} \left( t \right) = {\boldsymbol{A}} + \alpha \left( t \right) \times {\boldsymbol{M P}} \left( t \right) {\boldsymbol{Q}}$ ,其中参数分别为 ${\boldsymbol{P}}\left( t \right) = {\text{diag}}\left( 0.2\cos (t) , -0.5 \sin (t) , 0.4 \sin (t) \right)$ ${\boldsymbol{M}} = {\text{diag}} \left( {0.4, - 0.5,0.3} \right) ,{\boldsymbol{Q}} = {\text{diag}} \left( 0.6, 0.6, - 0.5 \right)$ $ E\left( {\alpha \left( t \right) } \right) = 0.5,\;E\left( {\beta \left( t \right) } \right) = 0.5 $ ,以及

$ {\boldsymbol{A}} = \left[\begin{array}{ccc} -1.87 & 2.18 & 0 \\ 1 & -1 & 1 \\ 0 & -0.82 & 0 \end{array}\right] $

令领导者的初值为 $ {{\boldsymbol{x}}_0}\left( {{t_0}} \right) = {\left[ {1.5\quad - 1\quad 2} \right]^{\rm T}} $ ,跟随者的初值分别为 $ {{\boldsymbol{x}}_1}\left( {{t_0}} \right) = {\left[ {0.5\quad \;2\quad - 2.5} \right]^{\rm T}} $ ${{\boldsymbol{x}}}_{2}\left({t}_{0}\right) = {\left[-0.5\quad -1\quad 2.5\right]}^{{\rm T}}$ ${{\boldsymbol{x}}}_{3}\left({t}_{0}\right) ={\left[-1\quad -2\quad 2\right]}^{{\rm T}}$ ${{\boldsymbol{x}}_4}\left( {{t_0}} \right) = {\left[ {1\quad - 1.5\quad 1} \right]^{\rm T}}$ 。在不受事件触发脉冲控制时系统的误差图如图2所示,图中各跟随者与领导者之间的状态误差呈波动增长趋势。

图 2 未受控制时系统误差图 Figure 2 Error of system without control

$ {\mu _k} = - 0.35 $ $ {\theta _k} = 1.1 $ ,分别得到事件触发脉冲控制下系统的误差图及事件触发时刻图如图3图4所示。由图中可看出跟随者与领导者之间的状态误差最终能够趋于0,这表明多智能体系统在控制协议(3) 的作用下可以实现领导跟随一致性。

图 3 $ {\theta _k} = 1.1 $ 时系统在控制后的误差图 Figure 3 Error of system with control when ${{\boldsymbol{\theta}} _{\boldsymbol{k}}} = {\boldsymbol{1.1}}$
图 4 $ {\theta _k} = 1.1 $ 时事件触发时刻图 Figure 4 Event-trigger instants when ${{\boldsymbol{\theta}} _{\boldsymbol{k}}}{\boldsymbol{ = 1.1}}$

$ {\mu _k} = - 0.35 $ $ {\theta _k} = 1.2 $ . 在事件触发脉冲控制下系统的误差图及事件触发脉冲图分别如图5图6所示。相比于图3图4,明显可以看出当 $ {\theta _k} = 1.2 $ 时,系统收敛比较缓慢,在相同时间内触发的脉冲控制次数更少。

图 5 $ {\theta _k} = 1.2 $ 时系统在控制后的误差图 Figure 5 Error of system with control when ${{\boldsymbol{\theta}} _{\boldsymbol{k}}} {\boldsymbol{= 1.2}}$
图 6 $ {\theta _k} = 1.2 $ 时事件触发时刻图 Figure 6 Event-trigger instants when ${{\boldsymbol{\theta}} _{\boldsymbol{k}}} {\boldsymbol{= 1.2}}$

综上,通过仿真实例验证了本文理论结果的有效性。而且,可以根据实际系统的需求通过调节 $ {\theta _k} $ 的取值来控制系统的收敛速度。

4 结语

本文研究了基于事件触发脉冲控制策略的具有ROUs和RONs的非线性多智能体系统的领导跟随一致性问题,设计了一个基于Lyapunov函数的事件触发函数,利用Lyapunov稳定性分析方法并结合不等式技巧给出了多智能体系统的领导跟随一致性准则。此外,事件触发过程中的Zeno行为也被排除。最后,通过Matlab实例仿真验证了本文理论结果的有效性。

参考文献
[1]
OLFATI-SABER R, FAX J A, MURRAY R M. Consensus and cooperation in networked multi-agent systems[J]. Proceedings of the IEEE, 2007, 95(1): 215-233. DOI: 10.1109/JPROC.2006.887293.
[2]
YU W, ZHENG W X, CHEN G, et al. Second-order consensus in multi-agent dynamical systems with sampled position data[J]. Automatica, 2011, 47(7): 1496-1503. DOI: 10.1016/j.automatica.2011.02.027.
[3]
ZHENG Y, ZHAO Q, MA J, et al. Second-order consensus of hybrid multi-agent systems[J]. Systems & Control Letters, 2019, 125: 51-58.
[4]
张弘烨, 彭世国. 基于模型简化法的含有随机时延的多智能体系统一致性研究[J]. 广东工业大学学报, 2019, 36(2): 86-90.
ZHANG H Y, PENG S G. A research on the consensus problem of multi-agent systems with random time delays based on model reduction[J]. Journal of Guangdong University of Technology, 2019, 36(2): 86-90. DOI: 10.12052/gdutxb.180084.
[5]
WANG T, ZHANG H, ZHAO Y. Average consensus of multi-agent systems under directed topologies and binary-valued communications[J]. IEEE Access, 2018, 6: 55995-56006. DOI: 10.1109/ACCESS.2018.2872755.
[6]
张振华, 彭世国. 二阶多智能体系统拓扑切换下的领导跟随一致性[J]. 广东工业大学学报, 2018, 35(2): 75-80.
ZHANG Z H, PENG S G. Leader-following consensus of second-order multi-agent systems with switching topology[J]. Journal of Guangdong University of Technology, 2018, 35(2): 75-80. DOI: 10.12052/gdutxb.170125.
[7]
WANG X, SU H. Self-triggered leader-following consensus of multi-agent systems with input time delay[J]. Neurocomputing, 2019, 330: 70-77. DOI: 10.1016/j.neucom.2018.10.077.
[8]
DAI J, GUO G. Event-triggered leader-following consensus for multi-agent systems with semi-Markov switching topologies[J]. Information Sciences, 2018, 459: 290-301. DOI: 10.1016/j.ins.2018.04.054.
[9]
DING L, HAN Q L, GUO G. Network-based leader-following consensus for distributed multi-agent systems[J]. Automatica, 2013, 49(7): 2281-2286. DOI: 10.1016/j.automatica.2013.04.021.
[10]
HU J, WANG Z, GAO H, et al. Robust sliding mode control for discrete stochastic systems with mixed time delays, randomly occurring uncertainties, and randomly occurring nonlinearities[J]. IEEE Transactions on Industrial Electronics, 2011, 59(7): 3008-3015.
[11]
HU M, GUO L, HU A, et al. Leader-following consensus of linear multi-agent systems with randomly occurring nonlinearities and uncertainties and stochastic disturbances[J]. Neurocomputing, 2015, 149: 884-890. DOI: 10.1016/j.neucom.2014.07.047.
[12]
LI D, MA J, ZHU H, et al. The consensus of multi-agent systems with uncertainties and randomly occurring nonlinearities via impulsive control[J]. International Journal of Control, Automation and Systems, 2016, 14(4): 1005-1011. DOI: 10.1007/s12555-014-0366-z.
[13]
XU Y J, PENG S G, GUO A Y. Leader-following consensus of nonlinear delayed multi-agent systems with randomly occurring uncertainties and stochastic disturbances under impulsive control input[J]. International Journal of Control, Automation and Systems, 2018, 16(2): 566-576. DOI: 10.1007/s12555-017-0232-x.
[14]
HU G. Robust consensus tracking for an integrator-type multi-agent system with disturbances and unmodelled dynamics[J]. International Journal of Control, 2011, 84(1): 1-8. DOI: 10.1080/00207179.2010.535855.
[15]
HE W, CHEN G, HAN Q L, et al. Network-based leader-following consensus of nonlinear multi-agent systems via distributed impulsive control[J]. Information Sciences, 2017, 380: 145-158. DOI: 10.1016/j.ins.2015.06.005.
[16]
DIMAROGONAS D V, JOHANSSON K H. Event-triggered control for multi-agent systems[C]//Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference. Shanghai : IEEE, 2009: 7131-7136.
[17]
LIU B, LIU D N, DOU C X. Exponential stability via event-triggered impulsive control for continuous-timedynamicalsystems[C]//Proceedings of the 33rd Chinese Control Conference. Nanjing : IEEE, 2014: 4056-4060.
[18]
TAN X, CAO J, LI X. Consensus of leader-following multiagent systems: a distributed event-triggered impulsive control strategy[J]. IEEE Transactions on Cybernetics, 2018, 49(3): 792-801.
[19]
LI X, PENG D, CAO J. Lyapunov stability for impulsive systems via event-triggered impulsive control[J]. IEEE Transactions on Automatic Control, 2020, 65(11): 4908-4913. DOI: 10.1109/TAC.2020.2964558.
[20]
ZHANG Z Z, PENG S G, LIU D R, et al. Leader-following mean-square consensus of stochastic multiagent systems with ROUs and RONs via distributed event-triggered impulsive control[J]. IEEE Transactions on Cybernetics, 2022, 52(3): 1836-1849. DOI: 10.1109/TCYB.2020.2999359.
[21]
CHEN T, PENG S G, ZHANG Z Z. Finite-time consensus of leader-following non-linear multi-agent systems via event-triggered impulsive control[J]. IET Control Theory & Applications, 2021, 15(7): 926-936.
[22]
WANG Z, LAURIA S, LIU X. Exponential stability of uncertain stochastic neural networks with mixed time-delays[J]. Chaos, Solitons & Fractals, 2007, 32(1): 62-72.