切换系统是由一系列的连续或离散的子系统以及协调这些子系统之间的切换规则组成的系统。在实际的生产活动中,许多控制系统常常同时含有连续时间动态和离散时间动态,而切换系统作为一种典型的混杂系统解决了许多相应的实际问题,如无人机[1]、互联网流量分类[2]、永磁磁通切换电机[3]等。并且,与非切换系统的稳定性不同,切换系统不能直接继承子系统的稳定性。由于切换系统独特的稳定性特性,切换系统的稳定性问题一直是广受关注的重点内容。研究人员在对切换系统进行控制研究时,系统稳定性是亟需攻克的一大难关。目前,有关于切换系统的稳定性问题可以大致分为如下几种:切换系统在任意切换下的稳定性条件[4-6]、切换系统在受限条件下的稳定性问题[7-8]以及构造切换信号使得切换系统达到稳定[9-10]。除此之外,对切换系统进行稳定性分析的方法主要有:共同Lyapunov函数方法、单Lyapunov函数方法以及多Lyapunov函数方法。值得注意的是,关于非线性切换系统的研究尚处于起步阶段。虽然近几年涌现了很多优秀的研究成果[11-12],但是由于实际生产活动中存在各种限制以及非线性本身固有的复杂性,为了提高控制品质,关于非线性切换系统的约束控制研究面临了很大的挑战性。
随着实际工程的发展,控制系统在工作时会受到各种限制。当系统违反这些限制而强行工作时,可能会给实际的生产活动带来巨大的财产损失,甚至威胁到生命安全。因此,在进行控制问题研究时,必须将系统的约束问题放在首要地位[13]。尤其在非线性切换系统的控制研究中,为了使所设计的控制策略更好地解决实际问题,就必须考虑其约束控制问题。现有的约束控制研究成果主要涉及到两种类型:常数型约束[14]和时变型约束[15-16]。时变型约束条件随着时间的变化发生改变,控制算法的设计比常数型约束要更为复杂,设计出的控制方案更具实用性,为生产活动提供更为坚实的安全保障。在某种意义上来说,常数型约束也可以看成是特殊的时变型约束。目前,障碍Lyapunov函数是解决控制系统约束问题的一个十分有效的工具,常见的形式主要有以下几种:对数型[17]、正切型[18]和积分型[19]。然而,除了约束控制问题外,随机特征也常存在于实际系统中,是影响非线性系统稳定性的一个重要因素。因此,在对非线性切换系统进行研究时,随机特征也是需要考虑的一个重要因素。
20世纪中期,为了提高系统的运行性能,保证系统的稳定性,随机稳定性的定义首次被提出[20]。之后,一些经典的随机稳定性理论,如随机拉萨尔不变性原理[21]和随机输入−状态稳定(Stochastic Input-to-State Stable)[22]等也相继被提出。在过去的几十年中,随机非线性系统的控制得到了突飞猛进的发展[23-24]。在研究过程中,为了补偿随机特征带来的不利影响,引入了ItÔ随机微分方程。与此同时,由于实际系统中常存在不确定性,采用精确的模型描述实际系统具有局限性。为了获得更好的控制效果,神经网络[25-26]和模糊逻辑系统[27-28]成为处理系统不确定性的重要工具,解决了很多控制难题。之后,有学者针对不确定非线性随机切换系统进行研究,涌现了很多成果,如不确定非线性随机切换系统的跟踪控制[11-12],不确定非线性随机切换系统的常数型输出约束控制[29]以及不确定非线性随机切换系统的常数型全状态约束控制[30]等。但是,上述成果未对不确定非线性随机切换系统进行时变型全状态约束控制研究。
基于上述成果的启发,为了消除随机因素对系统控制性能带来的不利影响和增强控制策略的实际应用价值,本文以不确定非线性随机切换系统为研究对象,采用神经网络处理系统中的不确定项,研究了其时变型全状态约束控制问题。基于任意切换规则,通过坐标变换技术,实现了对系统所有状态的时变型约束控制。最后,借助随机李雅普诺夫稳定性理论,实现系统稳定性分析。本文所做的主要贡献如下:
(1) 对不确定非线性随机切换系统进行全状态约束控制研究,要求被控系统的所有状态均不违反约束,控制要求更高,控制难度增大。
(2) 对系统状态采用的约束类型为时变型约束。在设计控制策略的过程中,约束条件将随着时间的改变而发生变化,控制算法更难,设计的控制方案更具有实用性。
(3) 与之前采用障碍李雅普诺夫函数解决系统状态约束问题不同,本文采用坐标变换方法,实现对系统状态的时变型约束,设计方法新颖,且能够更好地保证系统的稳定性问题。
1 系统描述和控制目标考虑如下不确定非线性随机切换系统
| $ \left\{ \begin{array}{l} \; {\text{d}}{x_i} = \left( {{x_{i + 1}} + {f_{i,\sigma \left( t \right)}}\left( {{{\bar {\boldsymbol{x}}}_i}} \right)} \right){\rm{d}}t + g_{i,\sigma \left( t \right)}^{\rm{T}}\left( {{{\bar {\boldsymbol{x}}}_i}} \right){{{\rm{d}}}}\omega, \\ \;\;\;\;\;i = 1, \cdots ,n - 1 \\ {\text{d}}{x_n} = \left( {{u_{\sigma \left( t \right)}} + {f_{n,\sigma \left( t \right)}}\left( {{{\bar {\boldsymbol{x}}}_n}} \right)} \right){\rm{d}}t + g_{n,\sigma \left( t \right)}^{\rm{T}}\left( {{{\bar {\boldsymbol{x}}}_n}} \right){{{\rm{d}}}}\omega \\ y = {x_1} \\ \end{array} \right. $ | (1) |
式中:
控制目标:为不确定非线性随机切换系统设计一种自适应神经网络控制策略,使得闭环系统所有信号均依概率有界,系统的所有状态均不违反时变函数约束界,并且误差能够收敛到一个紧集中。
2 系统变换和预备知识为了解决系统(1)的状态约束问题,引入非线性坐标变换
| $ x_i^* = {{{x_i}} \mathord{\left/ {\vphantom {{{x_i}} {{Y_i}}}} \right. } {{Y_i}}} $ | (2) |
式中:
此时系统(1) 可以转换为
| $ \left\{ \begin{array}{l} \mathrm{d} x_{i}^{*}=\Big(H_{i} x_{i+1}^{*}+f_{i, \sigma(t)}^{*}\left(Y_{i} \overline{\boldsymbol{x}}_{i}^{*}\right)-\dfrac{2}{Y_{i}} k_{a i}(t) \dot{k}_{a i}(t) \times\Big.\\ \;\;\;\;\;\;\;\;\;\;\;\Big.x_{i}^{*}\Big) \mathrm{d} t+g_{i, \sigma(t)}^{* \mathrm{~T}}\left(Y_{i} \overline{\boldsymbol{x}}_{i}^{*}\right) \mathrm{d} \omega, \\ \;\;\;\;\;i= 1, \cdots, n-1 \\ \mathrm{~d} x_{n}^{*}=\Big(H_{n} u_{\sigma(t)}+f_{n, \sigma(t)}^{*}\left(Y_{n} \overline{\boldsymbol{x}}_{n}^{*}\right)-\dfrac{2}{Y_{i}} k_{a n}(t) \times\Big.\\ \;\;\;\;\;\;\;\;\;\;\;\Big.\dot{k}_{a n}(t) x_{n}^{*}\Big) \mathrm{d} t+g_{n, \sigma(t)}^{* \mathrm{~T}}\left(Y_{n} \overline{\boldsymbol{x}}_{n}^{*}\right) \mathrm{d} \omega \\ y^{*}= Y_{1} x_{1}^{*} \end{array} \right.$ | (3) |
其中,
为了实现控制目标,本文引入了以下定义、假设和引理。
考虑随机非线性系统
| $ {\rm{d}}x = f\left( {x,t} \right){\rm{d}}t + g\left( {x,t} \right){\rm{d}}\omega $ | (4) |
式中:
定义1[31] 对于随机非线性系统(4) 和函数
| $ L V=\dfrac{\partial V}{\partial t}+\dfrac{\partial V}{\partial x} f+\dfrac{1}{2} \operatorname{Tr}\left\{{{{g}}}^{\mathrm{T}} \dfrac{\partial^{2} V}{\partial x^{2}} {{{g}}}\right\}$ | (5) |
这里C2表示2次可微,且其2次微分依然连续的函数,
假设1[16] 对于
引理1[32] 对于随机非线性系统(4) ,如果存在函数
| $\left\{\begin{array}{l} \psi_{1}(|x|) \leqslant V(x, t) \leqslant \psi_{2}(|x|) \\ L V(x, t) \leqslant-A V(x, t)+B \end{array}\right.$ | (6) |
则随机系统(4) 存在一个奇解
| $ E\left(V\left(x,t\right)\right)\leqslant V\left({x}_{0}\right){{\rm{e}}}^{-At}+\dfrac{B}{A} $ | (7) |
式中:
引理2[33] 如果
| $ xy\leqslant \dfrac{{x}^{d}}{d}+\dfrac{{y}^{h}}{h} $ | (8) |
引理3[25] 对于非线性函数
| $F(\boldsymbol{Z})=\boldsymbol{W}^{\mathrm{T}} {\boldsymbol{S}}(\boldsymbol{Z})+\delta(\boldsymbol{Z}), \delta(\boldsymbol{Z})<\varepsilon$ | (9) |
式中:
| $ s_{i}(\boldsymbol{Z})=\exp \left(-\dfrac{\left\|{\boldsymbol{Z}}-{\boldsymbol{\varUpsilon}}_{i}\right\|^{2}}{\mu_{i}^{2}}\right), i=1, \cdots, N $ | (10) |
式中:
本节借助backstepping控制算法,针对不确定非线性随机切换系统设计一种自适应神经网络控制策略,保证系统的所有状态均不违反时变约束。
首先为了设计控制策略,本文引入如式(11)所示坐标变换。
| $ \begin{aligned} {z}_{1}^{*} &=x_{1}^{*}-y_{d} \\ {{z}}_{i}^{*} &=x_{i}^{*}-\alpha_{i-1} \end{aligned} $ | (11) |
式中:
接下来本文将借助backstepping控制算法设计控制策略。
Step 1:选取李雅普诺夫候选函数为
| $ V_{1}=\dfrac{1}{4} {{z}}_{1}^{* 4}+\dfrac{1}{2 \gamma_{1}} \tilde{{{\varTheta}}}_{1}^{2} $ | (12) |
式中:
根据式(3) 和式(11) ,可得
| $ \begin{aligned} \mathrm{d} {{z}}_{1}^{*}=& \mathrm{d} x_{1}^{*}-\mathrm{d} y_{d} =\\ &\Big(H_{1} x_{2}^{*}+f_{1, q}^{*}\left(Y_{1} x_{1}^{*}\right)-\dfrac{2}{Y_{1}} k_{a 1} \dot{k}_{a 1} x_{1}^{*}-\dot{y}_{d}\Big) \mathrm{d} t +g_{1}^{* \mathrm{~T}} \mathrm{~d} \omega \end{aligned} $ | (13) |
按照定义1以及式(13) ,计算
| $ \begin{split} L V_{1}=& {{z}}_{1}^{* 3}\Big(H_{1} {{z}}_{2}^{*}+H_{1} \alpha_{1}+f_{1, q}^{*}\left(Y_{1} x_{1}^{*}\right)\Big.-\\ &\Big.\dfrac{2}{Y_{1}} k_{a 1} \dot{k}_{a 1} {{z}}_{1}^{*}-\dfrac{2}{Y_{1}} k_{a 1} \dot{k}_{a 1} y_{d}-\dot{y}_{d}\Big) +\\ &\dfrac{3}{2} {{z}}_{1}^{* 2}\left\|g_{1, q}^{*}\right\|^{2}-\dfrac{1}{\gamma_{1}} \tilde{\varTheta}_{1} \dot{\hat{\varTheta}}_{1} \end{split} $ | (14) |
借助引理2,可得
| $ \dfrac{3}{2}{{{z}}}_{1}^{*}{}^{2}{\Vert {g}_{1,q}^{*}\Vert }^{2}\leqslant \dfrac{3}{4{l}_{1,q}^{2}}{z}_{1}^{*}{}^{4}{\Vert {g}_{1,q}^{*}\Vert }^{4}+\dfrac{3}{4}{l}_{1,q}^{2} $ | (15) |
式中:
将式(15) 代入式(14) 可得
| $ \begin{split} L{V}_{1}\leqslant & {{{z}}}_{1}^{*}{}^{3}\Big({H}_{1}{\alpha }_{1}+{F}_{1}\left({{{{\boldsymbol{Z}}}}}_{1}\right)-\dfrac{2}{{Y}_{1}}{k}_{a1}{\dot{k}}_{a1}{{{z}}}_{1}^{*}\Big)+\\ &{H}_{1}{{{z}}}_{1}^{*}{}^{3}{{{z}}}_{2}^{*}+\dfrac{3}{4}{l}_{1,\mathrm{max}}^{2}-\dfrac{1}{{\gamma }_{1}}{\tilde{\varTheta }}_{1}\dot{\hat{\varTheta}}_{1} \end{split} $ | (16) |
式中:
应用RBFNNs对
| $ {F_1}\left( {{{\boldsymbol{Z}}_1}} \right) = {\boldsymbol{W}}_{1,q}^{\rm{T}}{{\boldsymbol{S}}_1}\left( {{{\boldsymbol{Z}}_1}} \right) + {\delta _{1,q}}\left( {{{\boldsymbol{Z}}_1}} \right),{\text{ }}\left| {{\delta _{1,q}}\left( {{{\boldsymbol{Z}}_1}} \right)} \right| < {\varepsilon _{1,q}} $ | (17) |
式中:
将式(17) 代入式(16) 得
| $ \begin{split} L V_{1} \leqslant {{z}}_{1}^{* 3} &\left(H_{1} \alpha_{1}+\boldsymbol{W}_{1, q}^{\mathrm{T}} \boldsymbol{S}_{1}\left(\boldsymbol{Z}_{1}\right)+\delta_{1, q}\left(\boldsymbol{Z}_{1}\right)\right.-\\ &\left.\frac{2}{{{Y_i}}} k_{a 1} \dot{k}_{a 1} {{z}}_{1}^{*}\right)+H_{1} {{z}}_{1}^{* 3} {{z}}_{2}^{*}+\dfrac{3}{4} l_{1, \max }^{2} -\\ &\dfrac{1}{\gamma_{1}} \tilde{\varTheta}_{1} \dot{\hat{\varTheta}}_{1} \end{split} $ | (18) |
在引理2的基础上,对式(18) 中的
首先,针对
| $ {{z}}_{1}^{* 3} {\boldsymbol{W}}_{1, q}^{\mathrm{T}} {\boldsymbol{S}}_{1}\left({\boldsymbol{Z}}_{1}\right) \leqslant \dfrac{1}{2 a_{1}^{2}} z_{1}^{* 6} \varTheta_{1} {\boldsymbol{S}}_{1}^{\mathrm{T}} {\boldsymbol{S}}_{1}+\dfrac{1}{2} a_{1}^{2} $ | (19) |
式中:
其次,对于
| $ {{{z}}}_{1}^{*}{}^{3}{\delta }_{1,q}\left({{\boldsymbol{Z}}}_{1}\right)\leqslant \dfrac{1}{2}{{{z}}}_{1}^{*}{}^{6}+\dfrac{1}{2}{\varepsilon }_{1,\mathrm{max}}^{2} $ | (20) |
式中:
最后,关于
| $ {H}_{1}{{{z}}}_{1}^{*}{}^{3}{{{z}}}_{2}^{*}\leqslant \dfrac{3}{4}{H}_{1}^{\frac{4}{3}}{{{z}}}_{1}^{*}{}^{4}+\dfrac{1}{4}{{{z}}}_{2}^{*}{}^{4} $ | (21) |
将式(19) ~式(21) 代入式(18) 中可得
| $ \begin{split} L{V}_{1}\leqslant & {{z}}_{1}^{*}{}^{3}\Big({H}_{1}{\alpha }_{1}+\dfrac{1}{2{a}_{1}^{2}}{{z}}_{1}^{*}{}^{3}{\varTheta }_{1}{{\boldsymbol{S}}}_{1}^{{\rm{T}}}{{\boldsymbol{S}}}_{1}+\dfrac{1}{2}{{z}}_{1}^{*}{}^{3}+\Big.\\& \Big.\dfrac{3}{4}{H}_{1}^{\frac{4}{3}}{{z}}_{1}^{*}{}^{4}-\dfrac{2}{{Y}_{1}}{k}_{a1}{\dot{k}}_{a1}{{z}}_{1}^{*}\Big)+\dfrac{1}{4}{{{z}}}_{2}^{*}{}^{4}+\\ & \dfrac{3}{4}{l}_{1,\mathrm{max}}^{2}-\dfrac{1}{{\gamma }_{1}}{\tilde{\varTheta }}_{1}\dot{\hat{\varTheta}}_{1}+\dfrac{1}{2}{a}_{1}^{2}+\dfrac{1}{2}{\varepsilon }_{1,\mathrm{max}}^{2} \end{split} $ | (22) |
设计虚拟控制器
| $ \begin{split} {\alpha _1} = & \dfrac{1}{{{H_1}}}\left[ { - {\tau _1}{{z}}_1^* + \dfrac{2}{{{Y_1}}}{k_{a1}}{{\dot k}_{a1}}{{z}}_1^* - \dfrac{1}{2}{{z}}{{_1^*}^3}} \right. - \hfill \\ &\left. {\dfrac{3}{4}H_1^{\frac{4}{3}}{{z}}{{_1^*}^4} - \dfrac{1}{{2a_1^2}}{{z}}{{_1^*}^3}{{\hat \varTheta }_1}{\boldsymbol{S}}_1^{\rm{T}}{{\boldsymbol{S}}_1}} \right] \end{split} $ | (23) |
式中:
设计自适应律
| $ \dot{\hat{\varTheta}}_{1}=-\sigma_{1} \hat{\varTheta}_{1}+\dfrac{\gamma_{1}}{2 a_{1}^{2}} {{z}}_{1}^{* 2} \boldsymbol{S}_{1}^{\mathrm{T}} \boldsymbol{S}_{1} $ | (24) |
式中:
将虚拟控制器(23) 和自适应律(24) 代入式(22) 中得
| $ \begin{split} L{V}_{1}\leqslant & -{\tau }_{1}{{{z}}}_{1}^{*}{}^{4}+\dfrac{1}{2}{a}_{1}^{2}+\dfrac{1}{2}{\varepsilon }_{1,\mathrm{max}}^{2}+\dfrac{3}{4}{l}_{1,\mathrm{max}}^{2}+\\ &\dfrac{{\sigma }_{1}}{{\gamma }_{1}}{\tilde{\varTheta }}_{1}\hat{\varTheta}_{1}+\dfrac{1}{4}{{{z}}}_{2}^{*}{}^{4} \end{split} $ | (25) |
Step
| $ V_{i}=V_{i-1}+\dfrac{1}{4} {{z}}_{i}^{*4}+\dfrac{1}{2 \gamma_{i}} \tilde{\varTheta}_{i}^{2} $ | (26) |
式中:
根据式(3)和式(11) ,可得
| $ \begin{split} L \alpha_{i-1}=& \dfrac{1}{2} \sum\limits_{j, m=1}^{i-1} \dfrac{\partial^{2} \alpha_{i-1}}{\partial x_{j}^{*} x_{m}^{*}} g_{j}^{* \mathrm{~T}} g_{m}^{*}+\\ & \sum\limits_{j=1}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial x_{j}^{*}} \dot{x}_{j}^{*}+\sum\limits_{j=1}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial \hat{\varTheta}_{j}} \dot{\hat{\varTheta}}_{j}+\\ & \sum\limits_{j=0}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial y_{d}^{(j)}} y_{d}^{(j+1)}+\sum\limits_{j=0}^{i-1} \sum\limits_{m=1}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial k_{a m}^{(j)}} k_{a m}^{(j+1)} \end{split} $ | (27) |
| $ \begin{split} \mathrm{d} {{z}}_{i}^{*}=& \mathrm{d} x_{i}^{*}-\mathrm{d} \alpha_{i-1} =\\ &\Big(H_{i} x_{i+1}^{*}+f_{i, q}^{*}\left(Y_{i} \bar{{\boldsymbol{x}}}_{i}^{*}\right)-\frac{2}{{{Y_i}}} k_{a i} \dot{k}_{a i} x_{i}^{*}-\Big.\\ &\Big.L \alpha_{i-1}\Big) \mathrm{d} t+\Bigg(g_{i, q}^{*}-\sum\limits_{j=1}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\Bigg)^{\mathrm{T}} \mathrm{d} \omega \end{split} $ | (28) |
按照定义1,基于式(27) 和式(28) ,计算
| $ \begin{split} L V_{i}=& L V_{i-1}+{{z}}_{i}^{* 3}\Big(H_{i} {{z}}_{i+1}^{*}+H_{i} \alpha_{i}+f_{i, q}^{*}\left(Y_{i} \overline{\boldsymbol{x}}_{i}^{*}\right)-\Big.\\ &\Big.\dfrac{2}{Y_{i}} k_{a i} \dot{k}_{a i} {{z}}_{i}^{*}-\dfrac{2}{Y_{i}} k_{a i} \dot{k}_{a i} \alpha_{i-1}-L \alpha_{i-1}\Big)+\\ & \dfrac{3}{2} {{z}}_{i}^{* 2}\left\|g_{i, q}^{*}-\sum\limits_{j=1}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\right\|^{2}-\dfrac{1}{\gamma_{i}} \tilde{\varTheta}_{i} \dot{\hat{\varTheta}}_{i} \end{split} $ | (29) |
基于引理2,可得
| $ \begin{split} &\dfrac{3}{2} {{z}}_{i}^{* 2}\left\|g_{i, q}^{*}-\sum\limits_{j=1}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial x_{j}^{*}} g_{j}^{*}\right\|^{2}\leqslant \\ &\dfrac{3}{4 l_{i, q}^{2}} {{z}}_{i}^{* 4}\left\|g_{i, q}^{*}-\sum\limits_{j=1}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\right\|^{4}+\dfrac{3}{4} l_{i, q}^{2} \end{split} $ | (30) |
式中:
将式(30) 代入式(29) 可得
| $ \begin{split} L{V}_{i}\leqslant & L{V}_{i-1}+{{{z}}}_{i}^{*}{}^{3}\Big({H}_{i}{\alpha }_{i}+{F}_{i}\left({{{{\boldsymbol{Z}}}}}_{i}\right)-\dfrac{2}{{Y}_{i}}{k}_{ai}{\dot{k}}_{ai}{{{z}}}_{i}^{*}\Big)+\\ & {H}_{i}{{{z}}}_{i}^{*}{}^{3}{{{z}}}_{i+1}^{*}+\dfrac{3}{4}{l}_{1,\mathrm{max}}^{2}-\dfrac{1}{{\gamma }_{i}}{\tilde{\varTheta }}_{i}\dot{\hat{\varTheta}}_{i} \end{split} $ | (31) |
式中:
| $ \begin{aligned} F_{i}\left(\boldsymbol{{\boldsymbol{Z}}}_{i}\right)=& f_{i, q}^{*}\left(Y_{i} \overline{\boldsymbol{x}}_{i}^{*}\right)-\dfrac{2}{Y_{i}} k_{a i} \dot{k}_{a i} \alpha_{i-1}-L \alpha_{i-1}+\\ &\dfrac{3}{4 l_{i, q}^{2}} {{z}}_{i}^{*} \left\|g_{i, q}^{*}-\sum\limits_{j=1}^{i-1} \dfrac{\partial \alpha_{i-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\right\|^{4} \\ l_{i, \max }=& \max \left\{l_{i, q}, q \in \varGamma\right\} \end{aligned} $ |
应用RBFNNs对
| $ {F_i}\left( {{{\boldsymbol{Z}}_i}} \right) = {\boldsymbol{W}}_{i,q}^{\rm{T}}{{\boldsymbol{S}}_i}\left( {{{\boldsymbol{Z}}_i}} \right) + {\delta _{i,q}}\left( {{{\boldsymbol{Z}}_i}} \right),\left| {{\delta _{i,q}}\left( {{{\boldsymbol{Z}}_i}} \right)} \right| < {\varepsilon _{i,q}} $ | (32) |
式中:
将式(32) 代入式(31) 得
| $ \begin{split} L{V}_{i}\leqslant & L{V}_{i-1}+{{{z}}}_{i}^{*}{}^{3}({H}_{i}{\alpha }_{i}+{{\boldsymbol{W}}}_{i,q}^{{\rm{T}}}{{\boldsymbol{S}}}_{i}\left({{\boldsymbol{Z}}}_{i}\right) +\\ &{\delta }_{i,q}\left({{\boldsymbol{Z}}}_{i}\right)-2/{Y}_{i}{k}_{ai}{\dot{k}}_{ai}{{{z}}}_{i}^{*}) +\\ &{H}_{i}{{{z}}}_{i}^{*}{}^{3}{{{z}}}_{i+1}^{*}+\dfrac{3}{4}{l}_{i,\mathrm{max}}^{2}-\dfrac{1}{{\gamma }_{i}}{\tilde{\varTheta }}_{i}\dot{\hat{\varTheta}}_{i} \end{split} $ | (33) |
采用和Step 1中相同的方法化简式(33) 。
首先,可以得到
| $ {{{z}}}_{i}^{*}{}^{3}{{\boldsymbol{W}}}_{i,q}^{{\rm{T}}}{{\boldsymbol{S}}}_{i}\left({{{{\boldsymbol{Z}}}}}_{i}\right)\leqslant \dfrac{1}{2{a}_{i}^{2}}{{{z}}}_{i}^{*}{}^{6}{\varTheta }_{i}{{\boldsymbol{S}}}_{i}^{{\rm{T}}}{{\boldsymbol{S}}}_{i}+\dfrac{1}{2}{a}_{i}^{2} $ | (34) |
式中:
其次,计算出下面结果
| $ {{{z}}}_{i}^{*}{}^{3}{\delta }_{i,q}\left({{\boldsymbol{Z}}}_{i}\right)\leqslant \dfrac{1}{2}{{{z}}}_{i}^{*}{}^{6}+\dfrac{1}{2}{\varepsilon }_{i,\mathrm{max}}^{2} $ | (35) |
式中:
最后,同样可以得到如下结果
| $ {H}_{i}{{{z}}}_{i}^{*}{}^{3}{{{z}}}_{i+1}^{*}\leqslant \dfrac{3}{4}{H}_{i}^{\frac{4}{3}}{{{z}}}_{i}^{*}{}^{4}+\dfrac{1}{4}{{{z}}}_{i+1}^{*}{}^{4} $ | (36) |
将处理结果式(34) ~式(36) 代入式(33) 中可得
| $ \begin{split} L V_{i} \leqslant &L V_{i-1}+{{z}}_{i}^{* 3}\Big(H_{i} \alpha_{i}+\dfrac{1}{2 a_{i}^{2}} {{z}}_{i}^{* 3} \varTheta_{i} \boldsymbol{S}_{i}^{\mathrm{T}} \boldsymbol{S}_{i}+\dfrac{1}{2} {{z}}_{i}^{*_{3}}+\Big. \\ \qquad\quad &\Big.\dfrac{3}{4} H_{i}^{\frac{4}{3}} {{z}}_{i}^{* 4}-\dfrac{2}{Y_{i}} k_{a i} \dot{k}_{c i} {{z}}_{i}^{*}\Big)+\dfrac{1}{4} {{z}}_{i+1}^{*4}+\dfrac{3}{4} l_{i, \max }^{2}- \\ \qquad\quad &\dfrac{1}{\gamma_{i}} \tilde{\varTheta}_{i} \dot{\hat{\varTheta}}_{i}+\dfrac{1}{2} a_{i}^{2}+\dfrac{1}{2} \varepsilon_{i, \max }^{2} \end{split} $ | (37) |
设计虚拟控制器
| $ \begin{split} \alpha_{i}=& \dfrac{1}{H_{i}}\left[-\tau_{i} {{z}}_{i}^{*}+\dfrac{2}{Y_{i}} k_{a i} \dot{k}_{a i} {{z}}_{i}^{*}-\dfrac{1}{2} {{z}}_{i}^{*_{3}}-\right.\\ &\left.\dfrac{3}{4} H_{i}^{\frac{4}{3}} {{z}}_{i}^{* 4}-\dfrac{1}{2 a_{i}^{2}} {{z}}_{i}^{* 3} \hat{\varTheta}_{i} {\boldsymbol{S}}_{i}^{\mathrm{T}} {\boldsymbol{S}}_{i}-\dfrac{1}{4} {{z}}_{i}^{*}\right] \end{split} $ | (38) |
其中,
设计自适应律
| $ \dot{\hat{\varTheta}}_{i}=-\sigma_{i} \hat{\varTheta}_{i}+\dfrac{\gamma_{i}}{2 a_{i}^{2}} {{z}}_{i}^{* 2} \boldsymbol{S}_{i}^{\mathrm{T}} \boldsymbol{S}_{i} $ | (39) |
其中,
将虚拟控制器(38) 和自适应律(39) 代入式(37) 中得
| $ \begin{split} L{V}_{i}\leqslant & -{\displaystyle \sum\limits _{m=1}^{i}{\tau }_{m}{{{z}}}_{m}^{*}{}^{4}}+\dfrac{1}{2}{\displaystyle \sum\limits _{m=1}^{i}{a}_{m}^{2}}+\dfrac{1}{2}{\displaystyle \sum\limits _{m=1}^{i}{\varepsilon }_{m,\mathrm{max}}^{2}}+\\ &\dfrac{3}{4}{\displaystyle \sum\limits _{m=1}^{i}{l}_{m,\mathrm{max}}^{2}}+{\displaystyle \sum\limits _{m=1}^{i}\dfrac{{\sigma }_{m}}{{\gamma }_{m}}{\tilde{\varTheta }}_{m}\hat{\varTheta}_{m}}+\dfrac{1}{4}{{{z}}}_{i+1}^{*}{}^{4} \end{split} $ | (40) |
Step
| $ V_{n}=V_{n-1}+\dfrac{1}{4} {{z}}_{n}^{* 4}+\dfrac{1}{2 \gamma_{n}} \tilde{\varTheta}_{n}^{2} $ | (41) |
式中:
根据式(3) 和式(11) ,可得
| $ \begin{split} L \alpha_{n-1}=& \sum\limits_{j=0}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial y_{d}^{(j)}} y_{d}^{(j+1)}+\sum\limits_{j=0}^{n-1} \sum\limits_{m=1}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial k_{a m}^{(j)}} k_{a m}^{(j+1)}+\\ & \sum\limits_{j=1}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial x_{j}^{*}} \dot{x}_{j}^{*}+\sum\limits_{j=1}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial \hat{\varTheta}_{j}} \dot{\hat{\varTheta}}_{j}+\\ & \dfrac{1}{2} \sum\limits_{j, m=1}^{n-1} \dfrac{\partial^{2} \alpha_{n-1}}{\partial x_{j}^{*} x_{m}^{*}} g_{j}^{* \mathrm{~T}} g_{m}^{*} \end{split} $ | (42) |
| $ \begin{split} \mathrm{d} {{z}}_{n}^{*}=& \mathrm{d} x_{n}^{*}-\mathrm{d} \alpha_{n-1}=\\ &\Big(H_{n} u_{q}+f_{n, q}^{*}\left(Y_{n} \bar{{\boldsymbol{x}}}_{n}^{*}\right)-2 / Y_{n} k_{a n} \dot{k}_{a n} x_{n}^{*}-\Big.\\ &\Big.L \alpha_{n-1}\Big) \mathrm{d} t+\Bigg(g_{n, q}^{*}-\sum\limits_{j=1}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\Bigg)^{\mathrm{T}} \mathrm{d} \omega \end{split} $ | (43) |
按照定义1,基于式(42)和式(43) ,计算
| $ \begin{split} L V_{n}=& L V_{n-1}+{{z}}_{n}^{* 3}\Big(H_{n} u_{q}+f_{n, q}^{*}\left(Y_{n} \bar{{\boldsymbol{x}}}_{n}^{*}\right)-\Big.\\ &\Big.\dfrac{2}{Y_{n}} k_{a n} \dot{k}_{a n} {{z}}_{n}^{*}-\dfrac{2}{Y_{n}} k_{a n} \dot{k}_{a n} \alpha_{n-1}-L \alpha_{n-1}\Big)+\\ & \dfrac{3}{2} {{z}}_{n}^{* 2}\left\|g_{n, q}^{*}-\sum\limits_{j=1}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\right\|^{2}-\dfrac{1}{\gamma_{n}} \tilde{\varTheta}_{n} \dot{\hat{\varTheta}}_{n} \end{split} $ | (44) |
根据引理2,可得
| $ \begin{split} \dfrac{3}{2} {{z}}_{n}^{* 2}&\left\|{g_{n, q}^{*}}-\sum\limits_{j=1}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\right\|^{2} \leqslant \qquad\qquad\quad\\ &\dfrac{3}{4 l_{n, q}^{2}} {{z}}_{n}^{* 4}\left\|g_{n, q}^{*}-\sum\limits_{j=1}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\right\|^{4}+\dfrac{3}{4} l_{n, q}^{2} \end{split}$ | (45) |
式中:
将式(45) 代入式(44) 可得
| $ \begin{split} &L{V}_{n}\leqslant L{V}_{n-1}+{{{z}}}_{n}^{*}{}^{3}\Big({H}_{n}{u}_{q}+{F}_{n}\left({{\boldsymbol{Z}}}_{n}\right)-\Big.\\ &\Big.\dfrac{2}{{Y}_{n}}{k}_{an}{\dot{k}}_{an}{{{z}}}_{n}^{*}\Big)+\dfrac{3}{4}{l}_{n,\mathrm{max}}^{2}-\dfrac{1}{{\gamma }_{n}}{\tilde{\varTheta }}_{n}\dot{\hat{\varTheta}}_{n} \end{split} $ | (46) |
式中
| $ \begin{aligned} F_{n}\left({\boldsymbol{Z}}_{n}\right)=& f_{n, q}^{*}\left(Y_{n} \bar{{\boldsymbol{x}}}_{n}^{*}\right)-\dfrac{2}{Y_{n}} k_{a n} \dot{k}_{a n} \alpha_{n-1}-L \alpha_{n-1}+\\ & \dfrac{3}{4 l_{n, q}^{2}} {{z}}_{n}^{*}\left\|g_{n, q}^{*}-\sum\limits_{j=1}^{n-1} \dfrac{\partial \alpha_{n-1}}{\partial x_{j}^{*}} g_{j, q}^{*}\right\|^{4} \end{aligned} $ |
应用RBFNNs对
| $ {F_n}\left( {{{\boldsymbol{Z}}_n}} \right) = {\boldsymbol{W}}_{n,q}^{\rm{T}}{{\boldsymbol{S}}_n}\left( {{{\boldsymbol{Z}}_n}} \right) + {\delta _{n,q}}\left( {{{\boldsymbol{Z}}_n}} \right) $ | (47) |
| $ \left| {{\delta _{n,q}}\left( {{{{{\boldsymbol{Z}}}}_n}} \right)} \right| < {\varepsilon _{n,q}} $ |
式中:
将式(47) 代入式(46) 得
| $ \begin{split} L V_{n} \leqslant & L V_{n-1}+{{z}}_{n}^{* 3}\Big (H_{n} u_{q}+\boldsymbol{W}_{n, q}^{\mathrm{T}} \boldsymbol{S}_{n}\left(\boldsymbol{Z}_{n}\right)\Big.+\\ &\Big. \delta_{n, q}\left(\boldsymbol{Z}_{n}\right)-\dfrac{2}{Y_{n}} k_{a n} \dot{k}_{a n} {{z}}_{n}^{*} \Big) +\\ &\dfrac{3}{4} l_{n, \max }^{2}-\dfrac{1}{\gamma_{n}} \tilde{\varTheta}_{n} \dot{\hat{\varTheta}}_{n} \end{split} $ | (48) |
按照Step 1和Step
首先,对于
| $ {{{z}}}_{n}^{*}{}^{3}{{\boldsymbol{W}}}_{n,q}^{{\rm{T}}}{{\boldsymbol{S}}}_{n}\left({{{{\boldsymbol{Z}}}}}_{n}\right)\leqslant \dfrac{1}{2{a}_{n}^{2}}{{{z}}}_{n}^{*}{}^{6}{\varTheta }_{n}{{\boldsymbol{S}}}_{n}^{{\rm{T}}}{{\boldsymbol{S}}}_{n}+\dfrac{1}{2}{a}_{n}^{2} $ | (49) |
式中:
其次,关于
| $ {{{z}}}_{n}^{*}{}^{3}{\delta }_{n,q}\left({{\boldsymbol{Z}}}_{n}\right)\leqslant \dfrac{1}{2}{{{z}}}_{n}^{*}{}^{6}+\dfrac{1}{2}{\varepsilon }_{n,\mathrm{max}}^{2} $ | (50) |
式中:
最后,将处理结果式(49) 和式(50) 代入式(48) 中可得
| $ \begin{split} L V_{n} \leqslant & L V_{n-1}+{{z}}_{n}^{* 3}\Big(H_{n} u_{q}+\dfrac{1}{2 a_{n}^{2}} {{z}}_{n}^{* 3} \varTheta_{n} {\boldsymbol{S}}_{n}^{\mathrm{T}} \boldsymbol{S}_{n}+\Big. \\ & \Big.\dfrac{1}{2} {{z}}_{n}^{* 3}-\dfrac{2}{Y_{n}} k_{a n} \dot{k}_{a n} {{z}}_{n}^{*}\Big)+\dfrac{3}{4} l_{n, \max }^{2}- \\ & \dfrac{1}{\gamma_{n}} \tilde{\varTheta}_{n} \dot{\hat{\varTheta}}_{n}+\dfrac{1}{2} a_{n}^{2}+\dfrac{1}{2} \varepsilon_{n, \max }^{2} \end{split} $ | (51) |
设计实际控制器
| $ \begin{split} {u_q} = & \dfrac{1}{{{H_n}}}\left[ { - {\tau _n}{{z}}_n^* + \dfrac{2}{{{Y_n}}}{k_{an}}{{\dot k}_{an}}{{z}}_n^* - \dfrac{1}{2}{{z}}{{_n^*}^3}} \right. - \hfill \\ &\left. {\dfrac{1}{{2a_n^2}}{{z}}{{_n^*}^3}{{\hat \varTheta }_n}{\boldsymbol{S}}_n^{\rm{T}}{{\boldsymbol{S}}_n} - \dfrac{1}{4}{{z}}_n^*} \right] \end{split} $ | (52) |
其中,
设计自适应律
| $ \dot{\hat{\varTheta}}_{n}=-\sigma_{n} \hat{\varTheta}_{n}+\dfrac{\gamma_{n}}{2 a_{n}^{2}} {{z}}_{n}^{* 2} \boldsymbol{S}_{n}^{\mathrm{T}} \boldsymbol{S}_{n} $ | (53) |
式中:
将实际控制器(52) 和自适应律(53) 代入(51) 中得
| $ \begin{split} L{V}_{n}\leqslant & -{\displaystyle \sum\limits _{m=1}^{n}{\tau }_{m}{{{z}}}_{m}^{*}{}^{4}}+\dfrac{1}{2}{\displaystyle \sum\limits _{m=1}^{n}{a}_{m}^{2}}+\dfrac{1}{2}{\displaystyle \sum\limits _{m=1}^{n}{\varepsilon }_{m,\mathrm{max}}^{2}}+\\ & \dfrac{3}{4}{\displaystyle \sum\limits _{m=1}^{n}{l}_{m,\mathrm{max}}^{2}}+{\displaystyle \sum\limits _{m=1}^{n}\dfrac{{\sigma }_{m}}{{\gamma }_{m}}{\tilde{\varTheta }}_{m}\hat{\varTheta}_{m}} \end{split} $ | (54) |
利用引理2可得
| $ {\tilde{\varTheta }}_{m}\hat{\varTheta}_{m}\leqslant -\dfrac{1}{2}{\tilde{\varTheta }}_{m}^{2}+\dfrac{1}{2}{\varTheta }_{m}^{2} $ | (55) |
将式(55)代入式(54)中可得
| $ \begin{split} L{V}_{n}\leqslant & -{\displaystyle \sum\limits _{m=1}^{n}{\tau }_{m}{{{z}}}_{m}^{*}{}^{4}}+\dfrac{1}{2}{\displaystyle \sum\limits _{m=1}^{n}{a}_{m}^{2}}+\dfrac{1}{2}{\displaystyle \sum\limits _{m=1}^{n}{\varepsilon }_{m,\mathrm{max}}^{2}}+\\ & \dfrac{3}{4}{\displaystyle \sum\limits _{m=1}^{n}{l}_{m,\mathrm{max}}^{2}}-{\displaystyle \sum\limits _{m=1}^{n}\dfrac{{\sigma }_{m}}{2{\gamma }_{m}}{\tilde{\varTheta }}_{m}^{2}}\text+{\displaystyle \sum\limits _{m=1}^{n}\dfrac{{\sigma }_{m}}{2{\gamma }_{m}}{\varTheta }_{m}^{2}} \end{split} $ | (56) |
按照上述分析,选取如下共同李雅普诺夫函数
| $ V = \dfrac{1}{4}\sum\limits_{i = 1}^n {{{z}}{{_i^*}^4}} + \sum\limits_{i = 1}^n {\dfrac{1}{{2{\gamma _i}}}\tilde \varTheta _i^2} $ | (57) |
选取参数
| $ \begin{aligned} &A=\min \left\{4 \tau_{i}, \sigma_{i}: i=1, \cdots, n\right\} \\ &B=\left\{\sum_{i=1}^{n}\left[\dfrac{1}{2}\left(a_{i}^{2}+\varepsilon_{i, \max }^{2}+\dfrac{\sigma_{i}}{\gamma_{i}} \varTheta_{i}^{2}\right)+\dfrac{3}{4} l_{i, \max }^{2}\right]\right\} \end{aligned} $ |
根据选取的共同李雅普诺夫函数以及参数
| $ LV\leqslant -AV+B $ | (58) |
定理1 对于不确定非线性随机切换系统(1),通过利用非线性坐标变换技术,设计虚拟控制器(23)、(38)、实际控制器(52)和自适应律(24) (39) (53),能够保证下面的结论成立。
(1) 闭环系统中所有的信号都有界。
(2) 系统中的所有状态均不违反相应的约束。
(3) 所有误差均收敛到相应的紧集中。
证明 以引理1为依据,可以得到
| $ 0\leqslant E\left[V\left(t\right)\right]\leqslant V\left(0\right){{\rm{e}}}^{-At}+B/A $ |
并且,当
根据上述分析同样可以得到
| $ \dfrac{1}{4}{{{z}}}_{i}^{*}{}^{4}\leqslant V\left(0\right){{\rm{e}}}^{-At}+B/A $ |
| $ \dfrac{1}{2{\gamma }_{i}}{\tilde{\varTheta }}_{i}{}^{4}\leqslant V\left(0\right){{\rm{e}}}^{-At}+B/A $ |
又通过计算上述两个不等式可得
| $ 0 \leqslant E\left[\left|z_{i}^{*}\right|\right] \leqslant \sqrt[4]{4 V(0) \mathrm{e}^{-A t}+4 B / A} $ |
| $ 0\leqslant E\left[\left|{\tilde{\varTheta }}_{i}\right|\right]\leqslant \sqrt{2{\gamma }_{i}\left[V\left(0\right){{\rm{e}}}^{-At}+B/A\right]} $ |
定义如下集合
| $ \begin{array}{r} \varOmega_{{{z}}_{i}^{*}}=\left\{{{z}}_{i}^{*} \mid E\left[\left|{{z}}_{i}^{*}\right|\right] \leqslant \sqrt[4]{4 V(0) \mathrm{e}^{-A t}+4 B / A}, i=1, \cdots, n\right\} \\ \varOmega_{\tilde{\varTheta}_{i}}=\left\{\tilde{\varTheta}_{i} \mid E\left[\left|\tilde{\varTheta}_{i}\right|\right] \leqslant \sqrt{2 \gamma_{i}\left[V(0) \mathrm{e}^{-A t}+B / A\right]}, i=1, \cdots, n\right\} \end{array} $ |
所以,
假设
| $ -k_{b 1}(t)-T_{0}(t)<x_{1}^{*}<k_{b 1}(t)+T_{0}(t) $ |
假设
| $ -k_{b i}(t)-k_{c, i-1}(t)< x_{i}^{*}< k_{b i}(t)+k_{c, i-1}(t) $ |
同样,根据
| $ \begin{gathered} - {F_i}\left( t \right) = - {Y_i}\left( {{k_{bi}}\left( t \right) + {k_{c,i - 1}}\left( t \right)} \right) \hfill < {x_1} <\\ \qquad\quad{\text{ }} {Y_i}\left( {{k_{bi}}\left( t \right) + {k_{c,i - 1}}\left( t \right)} \right) = {F_i}\left( t \right) \hfill \\ \end{gathered} $ |
通过上述分析得出,通过调节
综上所述,定理1证明完毕。
4 仿真研究在这一部分,将提供一个数值仿真,验证设计的控制策略对具有全状态时变约束的不确定非线性随机切换系统的有效性。
例1 考虑如下不确定非线性随机切换系统:
| $\left\{\begin{array}{l} \mathrm{d} x_{1}=\left(x_{2}+f_{1, \sigma(t)}\left(\bar{{\boldsymbol{x}}}_{1}\right)\right) \mathrm{d} t+g_{1, \sigma(t)}\left(\bar{{\boldsymbol{x}}}_{1}\right) \mathrm{d} \omega \\ \mathrm{d} x_{2}=\left(u_{\sigma(t)}+f_{2, \sigma(t)}\left(\bar{{\boldsymbol{x}}}_{2}\right)\right) \mathrm{d} t+g_{2, \sigma(t)}\left(\bar{{\boldsymbol{x}}}_{2}\right) \mathrm{d} \omega \\ y=x_{1} \end{array}\right. $ | (59) |
式中:当
| 表 1 系统(59)中的部分函数 Table 1 Partial functions in system (59) |
通过引入非线性坐标变换
| $ \left\{ \begin{array}{l} \mathrm{d} x_{1}^{*}=\Big(H_{1} x_{2}^{*}+f_{2, \sigma(t)}^{*}\left(Y_{1} \bar{{\boldsymbol{x}}}_{1}^{*}\right)-\dfrac{2}{Y_{1}} k_{a 1}(t)\times \Big.\\ \qquad\quad \Big. \dot{k}_{a 1}(t) x_{1}^{*}\Big) \mathrm{d} t+g_{1, \sigma(t)}^{*}\left(Y_{1} \bar{{\boldsymbol{x}}}_{1}^{*}\right) \mathrm{d} \omega \\ \mathrm{d} x_{2}^{*} =\Big(H_{2} u_{\sigma(t)}+f_{2, \sigma(t)}^{*}\left(Y_{2} \bar{{\boldsymbol{x}}}_{2}^{*}\right)-\dfrac{2}{Y_{2}} k_{a 2}(t)\times \Big.\\ \qquad\quad \Big. \dot{k}_{a 2}(t) x_{2}^{*}\Big) \mathrm{d} t+g_{2, \sigma(t)}^{*}\left(Y_{2} \bar{{\boldsymbol{x}}}_{2}^{*}\right) \mathrm{d} \omega \\ y^{*}= Y_{1} x_{1}^{*} \end{array} \right. $ | (60) |
式中:
| 表 2 系统(60)中的部分函数 Table 2 Partial functions in system (60) |
仿真中,选取的初始条件为
图1~5为仿真结果。图1展示了切换信号的轨迹。图2给出了控制系统的跟踪性能,从图中可以看出系统输出跟踪效果非常好,并且不违反相应的约束条件。图3说明系统的状态
|
图 1 切换信号 Figure 1 Switching signal |
|
图 2 系统输出、跟踪信号和约束条件 Figure 2 System output, tracking signal and constraints |
|
图 3 系统状态和约束条件 Figure 3 System state and constraints |
|
图 4 自适应律轨迹 Figure 4 The trajectories of adaptive laws |
|
图 5 控制器轨迹 Figure 5 The trajectory of controller |
以例1中的系统为背景,将本文设计的控制策略与文献[29]中的做了比较,结果如图6所示。其中,
|
图 6 本文输出,[29]中的输出,跟踪信号和约束条件 Figure 6 System output in this paper, system output in [29], tracking signal and constraints |
本文针对一类不确定非线性随机切换系统进行了全状态约束控制研究,基于任意切换规则,设计了一种自适应神经网络控制策略。所针对的约束类型为时变型约束,约束条件将随着时间而发生改变,在设计控制方案的过程中涉及到的控制算法较复杂。除此之外,本文采用了坐标变换技术来解决系统的状态约束问题,方法新颖且更好地解决了系统状态约束问题。最后,通过数值仿真实验可知本文所设计的控制策略能够达到较好的控制效果。
| [1] |
ENRIQUEA S G J, MATILDEB S. Switched learning adaptive neuro-control strategy[J].
Neurocomputing, 2020, 452: 450-464.
|
| [2] |
ILVESMAKI M, LUOMA M, KANTOLA R. Flow classification schemes in traffic-based multilayer IP switching-comparison between conventional and neural approach[J].
Computer Communications, 1998, 21(3): 1184-1194.
|
| [3] |
张源, 王宇, 肖文妍, 等. 永磁磁通切换电机转矩冲量平衡控制优化切换控制策略[J].
电工技术学报, 2019, 37(4): 1404-1412.
ZHANG Y, WANG Y, XIAO W Y, et al. Optimal switching control strategy for torque impulse balance control of flux switching permanent magnet motor[J]. Transactions of China Electrotechnical Society, 2019, 37(4): 1404-1412. |
| [4] |
YIN Q T, WANG M, LI X L, et al. Neural network adaptive tracking control for a class of uncertain switched nonlinear systems[J].
Neurocomputing, 2018, 301: 1-10.
DOI: 10.1016/j.neucom.2018.01.047. |
| [5] |
NIU B, WANG D, LI H, et al. A novel neural-network-based adaptive control scheme for output constrained stochastic switched nonlinear systems[J].
IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2019, 49(2): 418-432.
DOI: 10.1109/TSMC.2017.2777472. |
| [6] |
王春艳, 张梦琪, 李焕. 一类非线性切换系统任意切换采样控制设计[J].
控制理论与应用, 2021, 38(8): 1275-1286.
WANG C Y, ZHANG M Q, LI H. Arbitrarily switching sampling-data control design for a class of switched nonlinear systems[J]. Control Theory and Applications, 2021, 38(8): 1275-1286. DOI: 10.7641/CTA.2021.00563. |
| [7] |
LONG L J, ZHAO J. Adaptive output-feedback neural control of switched uncertain nonlinear systems with average dwell time[J].
IEEE Transactions on Neural Networks and Learning Systems, 2015, 25(7): 1350-1362.
|
| [8] |
LIU L, CUI Y J, LIU Y J, et al. Observer-based adaptive neural output feedback constraint controller design for switched systems under average dwell time[J].
IEEE Transactions on Circuits and Systems I:Regular Papers, 2021, 68(9): 3901-3912.
DOI: 10.1109/TCSI.2021.3093326. |
| [9] |
ZHAO X D, WANG X Y, LI M, et al. Fuzzy approximation based asymptotic tracking control for a class of uncertain switched nonlinear systems[J].
IEEE Transactions on Fuzzy Systems, 2020, 28(4): 632-644.
DOI: 10.1109/TFUZZ.2019.2912138. |
| [10] |
XIE K, LYU Z L, LIU L, et al. Adaptive neural quantized control for a class of MIMO switched nonlinear systems with asymmetric actuator dead-zone[J].
IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(6): 1927-1941.
DOI: 10.1109/TNNLS.2019.2927507. |
| [11] |
NIU B, DUAN P Y, LI J Q, et al. Adaptive neural tracking control scheme of switched stochastic nonlinear pure-feedback nonlower triangular systems[J].
IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(2): 975-986.
DOI: 10.1109/TSMC.2019.2894745. |
| [12] |
NIU B, LIU J D, DUAN P Y, et al. Reduced-order observer-based adaptive fuzzy tracking control scheme of stochastic switched nonlinear systems[J].
IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(7): 4566-4578.
DOI: 10.1109/TSMC.2019.2943882. |
| [13] |
杨彬, 周琪, 曹亮, 等. 具有指定性能和全状态约束的多智能体系统事件触发控制[J].
自动化学报, 2019, 45(8): 1527-1535.
YANG B, ZHOU Q, CAO L, et al. Event-triggered control for multi-agent systems with prescribed performance and full state constraints[J]. Acta Automatica Sinica, 2019, 45(8): 1527-1535. |
| [14] |
LI H Y, ZHAO S Y, HE W, et al. Adaptive finite-time tracking control of full state constrained nonlinear systems with dead-zone[J].
Automatica, 2019, 100: 99-107.
DOI: 10.1016/j.automatica.2018.10.030. |
| [15] |
YANG X L, LI J, ZHANG Z H. Adaptive NN tracking control with prespecified accuracy for a class of uncertain periodically time-varying and nonlinearly parameterized switching systems[J].
Neurocomputing, 2021, 435: 273-282.
DOI: 10.1016/j.neucom.2021.01.017. |
| [16] |
TANG L, CHEN A Q, LI D J. Time-varying tan-type barrier Lyapunov function based adaptive fuzzy control for switched systems with unknown dead zone[J].
IEEE Access, 2019, 7: 110928-110935.
DOI: 10.1109/ACCESS.2019.2934117. |
| [17] |
BOLDUC A P, GUO L, JIA Y. Multimodel approach to personalized autonomous adaptive cruise control[J].
IEEE Transactions on Intelligent Vehicles, 2019, 4(2): 321-330.
DOI: 10.1109/TIV.2019.2904419. |
| [18] |
HE W, YAN Z, SUN Y, et al. Neural-learning-based control for a constrained robotic manipulator with flexible joints[J].
IEEE Transactions on Neural Networks and Learning Systems, 2018, 29(12): 5993-6003.
DOI: 10.1109/TNNLS.2018.2803167. |
| [19] |
LI D P, LI D J. Adaptive neural tracking control for an uncertain state constrained robotic manipulator with unknown time-varying delays[J].
IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2018, 48(12): 2219-2228.
DOI: 10.1109/TSMC.2017.2703921. |
| [20] |
KUSHNER H J. Stochastic stability and control [M]. New York: Academic, 1967.
|
| [21] |
MAO X R. Stochastic versions of the LaSalle theorem[J].
Journal of Differential Equations, 1999, 153(1): 175-195.
DOI: 10.1006/jdeq.1998.3552. |
| [22] |
LIU S J, ZHANG J F, JIANG Z P. Decentralized adaptive output-feedback stabilization for large-scale stochastic nonlinear systems[J].
Automatica, 2007, 43(2): 238-251.
DOI: 10.1016/j.automatica.2006.08.028. |
| [23] |
SUI S, CHEN C L P, TONG S C. A novel adaptive NN prescribed performance control for stochastic nonlinear systems[J].
IEEE Transactions on Neural Networks and Learning Systems, 2021, 32(7): 3196-3205.
DOI: 10.1109/TNNLS.2020.3010333. |
| [24] |
SUN W, SU S F, DONG G W, et al. Reduced adaptive fuzzy tracking control for high-order stochastic nonstrict feedback nonlinear system with full-state constraints[J].
IEEE Transactions on Systems, Man, and Cybernetics:Systems, 2021, 51(7): 1496-1506.
|
| [25] |
LIU Y C, ZHU Q D. Adaptive neural network asymptotic tracking control for nonstrict feedback stochastic nonlinear systems[J].
Neural Networks, 2021, 143: 283-290.
DOI: 10.1016/j.neunet.2021.06.011. |
| [26] |
周琪, 林国怀, 马慧, 等. 输入死区下的多输入多输出系统自适应神经网络容错控制[J].
中国科学: 信息科学, 2021, 51(4): 618-632.
ZHOU Q, LIN G H, MA H, et al. Adaptive neural network fault-tolerant control for MIMO systems with dead zone input[J]. Scientia Sinica Informationis, 2021, 51(4): 618-632. DOI: 10.1360/SSI-2019-0198. |
| [27] |
LI H Y, WANG L J, DU H P, et al. Adaptive fuzzy backstepping tracking control for strict-feedback systems with input delay[J].
IEEE Transactions on Fuzzy Systems, 2017, 25(3): 642-652.
DOI: 10.1109/TFUZZ.2016.2567457. |
| [28] |
李鸿一, 高亚斌, 周琪. 模糊系统分析与综合Delta算子方法[M]. 北京: 科学出版社, 2015.
|
| [29] |
SHEN F, WANG X J, Yin X H. Adaptive neural output-feedback control for a class of output-constrained switched stochastic nonlinear systems[J].
International Journal of Systems Science, 2021, 52(16): 3526-3538.
DOI: 10.1080/00207721.2021.1931728. |
| [30] |
WANG Z, YUAN J P. Full sate constrained adaptive fuzzy control for stochastic nonlinear switched systems with input quantization[J].
IEEE Transactions on Fuzzy Systems, 2019, 28(4): 645-657.
|
| [31] |
李洁茗, 朱怀念. 噪声依赖状态和控制的时滞非线性随机系统Nash微分博弈[J].
广东工业大学学报, 2018, 35(1): 41-45,60.
LI J M, ZHU H N. Nash differential games for delayed nonlinear stochastic systems with state-and control-dependent noise[J]. Journal of Guangdong University of Technology, 2018, 35(1): 41-45,60. DOI: 10.12052/gdutxb.170142. |
| [32] |
LI H Y, BAI L, WANG L J, et al. Adaptive neural control of uncertain nonstrict-feedback stochastic nonlinear systems with output constraint and unknown dead zone[J].
IEEE Transactions on Systems, Man & Cybernetics. Systems, 2017, 47(8): 2048-2059.
|
| [33] |
周琪, 陈广登, 鲁仁全, 等. 基于干扰观测器的输入饱和多智能体系统事件触发控制[J].
中国科学: 信息科学, 2019, 49(11): 1502-1516.
ZHOU Q, CHEN G D, LU R Q, et al. Disturbance-observer-based event-triggered control for multi-agent systems with input saturation[J]. Scientia Sinica Informationis, 2019, 49(11): 1502-1516. DOI: 10.1360/SSI-2019-0105. |
2022, Vol. 39

