收稿日期:2021-01-28;接受日期:2021-12-14
基金项目:广东省高等教育教学改革资助项目(2016236);广东教育教学成果奖(高等教育)培育资助项目(2014172);广东工业大学华立学院2018年校级科研资助项目(HLKY-2018-ZK-08)
Guangzhou Huali College, Guangzhou 511325, China
Pexider方程是Pexider J V在文献[1]中提出的一组方程,形式如下:
$ f\left( x \right) + g\left( y \right) = h\left( {x + y} \right) $
|
$ f\left( x \right)g\left( y \right) = h\left( {x + y} \right) $
|
$ f\left( x \right) + g\left( y \right) = h\left( {xy} \right) $
|
$ f\left( x \right)g\left( y \right) = h\left( {xy} \right) $
|
并给出了方程在实数域
$ {\mathbf{R}} $
上的连续解。一直以来,很多人致力于这组方程的研究,得到了许多有意义的成果,文献[2-7]研究了Pexider方程在不同区域上解的情况,文献[8-9]讨论了可加Pexider方程在集值函数空间的稳定性,文献[10-14]讨论了几类Pexider方程和时滞方程在不同赋范空间上的解及稳定性。本文研究如下形式的广义Pexider方程:
$ \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( {{\beta _k}{x_k}} \right)} = {f_{n + 1}}\left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}} $
|
(1) |
$ \prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( {{\beta _k}{x_k}} \right)} = {f_{n + 1}}\left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}} $
|
(2) |
$ \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( {x_k^{{\beta _k}}} \right)} = {f_{n + 1}}\left( {\prod\limits_{k = 1}^n {x_k^{{\gamma _k}}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}^ + } $
|
(3) |
$ \prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( {x_k^{{\beta _k}}} \right)} = {f_{n + 1}}\left( {\prod\limits_{k = 1}^n {x_k^{{\gamma _k}}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}^ + } $
|
(4) |
其中
$ {\alpha _k},{\beta _k},{\gamma _k} $
为常数,且
$ \prod\limits_{k = 1}^n {{\alpha _k}{\beta _k}{\gamma _k} \ne 0,\left( {n \geqslant 2} \right)} $
。通过赋值转化方法,得到了上述方程的通解。
1 引理及基本准备
首先,本文给出下面的引理[15-16]:
引理1 设
$ f $
是定义在
${\mathbf{R}} $
上的连续函数,如下几个方程
$ f\left( x \right) + f\left( y \right) = f\left( {x + y} \right) \text{,} \forall x,y \in {\mathbf{R}} $
|
$ f\left( x \right)f\left( y \right) = f\left( {x + y} \right) \text{,} \forall x,y \in {\mathbf{R}} $
|
$ f\left( x \right) + f\left( y \right) = f\left( {xy} \right) \text{,} \forall x,y \in {{\mathbf{R}}^ + } $
|
$ f\left( x \right)f\left( y \right) = f\left( {xy} \right) \text{,} \forall x,y \in {{\mathbf{R}}^ + } $
|
在不考虑平凡解
$ f \equiv 0 $
的情况下,分别有解为
$ f\left( x \right) = f\left( 1 \right)x \text{,}( x \in {\mathbf{R}} ) $
|
$ f\left( x \right) = {{\text{e}}^{cx}} = {a^x} \text{,}( c 为任意常数\text{,} x \in {\mathbf{R}} ) $
|
$ f\left( x \right) = c\ln x \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } ) $
|
$ f\left( x \right) = {x^c} \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } ) $
|
下面,将引理1推广为一般的形式,有
引理2 设
$ f $
是定义在
$ {{{\bf{R}}}} $
上的连续函数,如下几个方程
$ \sum\limits_{k = 1}^n {f\left( {{x_k}} \right)} = f\left( {\sum\limits_{k = 1}^n {{x_k}} } \right) \text{,} \forall {x_k} \in {\mathbf{R}} $
|
$ \prod\limits_{k = 1}^n {f\left( {{x_k}} \right)} = f\left( {\sum\limits_{k = 1}^n {{x_k}} } \right) \text{,} \forall {x_k} \in {\mathbf{R}} $
|
$ \sum\limits_{k = 1}^n {f\left( {{x_k}} \right)} = f\left( {\prod\limits_{k = 1}^n {{x_k}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}^ + } $
|
$ \prod\limits_{k = 1}^n {f\left( {{x_k}} \right)} = f\left( {\prod\limits_{k = 1}^n {{x_k}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}^ + } $
|
在不考虑平凡解
$ f \equiv 0 $
的情况下,分别有解为
$ f\left( x \right) = f\left( 1 \right)x \text{,}( x \in {\mathbf{R}} ) $
|
$ f\left( x \right) = {{\text{e}}^{cx}} = {a^x} \text{,}( c 为任意常数\text{,} x \in {\mathbf{R}} ) $
|
$ f\left( x \right) = c\ln x \text{,}( c 为任意常数\text{,} x \in {\mathbf{R}^ + } ) $
|
$ f\left( x \right) = {x^c} \text{,}( c 为任意常数\text{,} x \in {\mathbf{R}^ + } ) $
|
证明 由引理1可得结论成立。
2 主要结论及证明
定理1 设
$ {f_k}\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $
是定义在
${\mathbf{R}}$
上的连续函数,广义Pexider可加方程(1)在不考虑平凡解
$ {f_k} \equiv 0\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $
的情况下,有解为
$ {f_k}\left( x \right) = \left[ {{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}} \right) - {f_k}\left( 0 \right)} \right]\frac{{{\gamma _k}}}{{{\beta _k}}}x + {f_k}\left( 0 \right) \text{,}( x \in {\mathbf{R}} , 1 \leqslant k \leqslant n ) $
|
$ {f_{n + 1}}\left( x \right) = \left[ {{f_{n + 1}}\left( 1 \right) - \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} } \right]x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} \text{,}( x \in {\mathbf{R}} ) $
|
证明 在方程(1)中,固定某个
$ {x_k} = \dfrac{1}{{{\gamma _k}}}x $
,令其他
$ n - 1 $
个
$ {x_k} = 0 $
,有
$ \begin{aligned}[b] &{\alpha _1}{f_1}\left( 0 \right) + \cdots + {\alpha _{k - 1}}{f_{k - 1}}\left( 0 \right) + {\alpha _k}{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) +\\ &{\alpha _{k + 1}}{f_{k + 1}}\left( 0 \right) + \cdots + {\alpha _n}{f_n}\left( 0 \right) = {f_{n + 1}}\left( x \right) \text{,}\\ &1 \leqslant k \leqslant n \end{aligned} $
|
将上面等式两端同时减去
$ \displaystyle\sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} $
,有
$ \begin{aligned}[b] &{\alpha _k}{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) - {\alpha _k}{f_k}\left( 0 \right) = \\ &{f_{n + 1}}\left( x \right) - \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} : = \varphi \left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $
|
从而有
$ {\alpha _k}{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) = \varphi \left( x \right) + {\alpha _k}{f_k}\left( 0 \right) \text{,} 1 \leqslant k \leqslant n $
|
(5) |
$ {f_{n + 1}}\left( x \right) = \varphi \left( x \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} $
|
(6) |
于是,有
$ {\alpha _k}{f_k}\left( {{\beta _k}{x_k}} \right) = \varphi \left( {{\gamma _k}{x_k}} \right) + {\alpha _k}{f_k}\left( 0 \right) \text{,} 1 \leqslant k \leqslant n $
|
(7) |
$ {f_{n + 1}}\left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) = \varphi \left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} $
|
(8) |
将式(7)、(8)代入方程(1),整理可得
$ \sum\limits_{k = 1}^n {\varphi \left( {{\gamma _k}{x_k}} \right)} = \varphi \left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) $
|
由引理2可得
$ \varphi \left( x \right) = \varphi \left( 1 \right)x $
|
由式(5)、(6)可得
$\begin{aligned}[b] &{f_k}\left( x \right) = \frac{1}{{{\alpha _k}}}\varphi \left( {\frac{{{\gamma _k}}}{{{\beta _k}}}x} \right) + {f_k}\left( 0 \right) = \varphi \left( 1 \right)\frac{{{\gamma _k}}}{{{\alpha _k}{\beta _k}}}x + \\ &{f_k}\left( 0 \right) = \left[ {{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}} \right) - {f_k}\left( 0 \right)} \right]\frac{{{\gamma _k}}}{{{\beta _k}}}x + {f_k}\left( 0 \right) \text{,} \\ &1 \leqslant k \leqslant n \end{aligned} $
|
$ \begin{aligned}[b] &{f_{n + 1}}\left( x \right) = \varphi \left( 1 \right)x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} = \\ &\left[ {{f_{n + 1}}\left( 1 \right) - \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} } \right]x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} \end{aligned} $
|
定理2 设
$ {f_k}\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $
是定义在
$ {\mathbf{R}} $
上的连续函数,广义Pexider指数方程(2)在不考虑平凡解
$ {f_k} \equiv 0\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $
的情况下,有解为
$ {f_k}\left( x \right) = {f_k}\left( 0 \right){a^{\frac{{{\gamma _k}}}{{{\alpha _k}{\beta _k}}}x}} ,( a \gt 0 , x \in {\mathbf{R}} , 1 \leqslant k \leqslant n ) $
|
$ {f_{k + 1}}\left( x \right) = {a^x}\prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( 0 \right)} \text{,} ( a \gt 0 , x \in {\mathbf{R}} ) $
|
证明 由于不考虑平凡解,在方程(2)中固定某个
$ {x_k} = \dfrac{1}{{{\gamma _k}}}x $
,令其他
$ n - 1 $
个
$ {x_k} = 0 $
,有
$ \begin{aligned}[b] &f_1^{{\alpha _1}}\left( 0 \right) \times \cdots \times f_{_{k - 1}}^{{\alpha _{k - 1}}}\left( 0 \right) \times f_{_k}^{{\alpha _k}}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) \times \\ &f_{_{k + 1}}^{{\alpha _{k + 1}}}\left( 0 \right) \times \cdots \times f_{_n}^{{\alpha _n}}\left( 0 \right) = {f_{n + 1}}\left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $
|
将上面
$ n $
个等式两端同时除
$ \displaystyle\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 0 \right)} $
,有
$ \frac{{f_{_k}^{{\alpha _k}}\left( {\dfrac{{{\beta _k}}}{{{\gamma _k}}}x} \right)}}{{f_{_k}^{{\alpha _k}}\left( 0 \right)}} = \frac{{{f_{k + 1}}\left( x \right)}}{{\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 0 \right)} }} = :\varphi \left( x \right) \text{,} 1 \leqslant k \leqslant n $
|
从而
$ f_{_k}^{{\alpha _k}}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) = \varphi \left( x \right)f_{_k}^{{\alpha _k}}\left( 0 \right) \text{,} 1 \leqslant k \leqslant n $
|
(9) |
$ {f_{k + 1}}\left( x \right) = \varphi \left( x \right)\prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( 0 \right)} $
|
(10) |
于是
$ f_{_k}^{{\alpha _k}}\left( {{\beta _k}{x_k}} \right) = \varphi \left( {{\gamma _k}{x_k}} \right)f_{_k}^{{\alpha _k}}\left( 0 \right) \text{,} 1 \leqslant k \leqslant n $
|
(11) |
$ {f_{k + 1}}\left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) = \varphi \left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right)\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 0 \right)} $
|
(12) |
将式(11)、(12)代入方程(2),整理可得
$ \prod\limits_{k = 1}^n {\varphi \left( {{\gamma _k}{x_k}} \right)} = \varphi \left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) $
|
由引理2可得,上式有解
$ \varphi \left( x \right) = {{\text{e}}^{cx}} = {a^x} \text{,} \left( {a \gt 0} \right) $
|
由式(9)、(10)可得
$ {f_k}\left( x \right) = {f_k}\left( 0 \right){a^{\frac{{{\gamma _k}}}{{{\alpha _k}{\beta _k}}}x}} \text{,} 1 \leqslant k \leqslant n \text{,} \left( {a \gt 0} \right) $
|
$ {f_{k + 1}}\left( x \right) = {a^x}\prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( 0 \right)} \text{,} \left( {a \gt 0} \right) $
|
定理3 设
$ {f_k}\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $
是定义
${{\mathbf{R}}^ + }$
上的连续函数,广义Pexider对数方程(3)在不考虑平凡解
$ {f_k} \equiv 0\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $
的情况下,有解为
$ {f_k}\left( x \right) = \dfrac{{c{\gamma _k}}}{{{\alpha _k}{\beta _k}}}\ln x + {f_k}\left( 1 \right) $
,( c 为任意常数,
$ x \in {{\mathbf{R}}^ + } , 1 \leqslant $
$ k \leqslant n $
)
$ {f_{n + 1}}\left( x \right) = c\ln x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } ) $
|
证明 在方程(3)中固定某个
$ {x_k} = {x^{\frac{1}{{{\gamma _k}}}}} $
,令其他
$ n - 1 $
个
$ {x_k} = 1 $
,有
$ \begin{aligned}[b] &{\alpha _1}{f_1}\left( 1 \right) + \cdots + {\alpha _{k - 1}}{f_{k - 1}}\left( 1 \right) + {\alpha _k}{f_k}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) + \\ &{\alpha _{k + 1}}{f_{k + 1}}\left( 1 \right) + \cdots + {\alpha _n}{f_n}\left( 1 \right) = {f_{n + 1}}\left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $
|
将上面
$ n $
个等式两端同时减去
$ \displaystyle\sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} $
,有
$\begin{aligned}[b] &{\alpha _k}{f_k}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) - {\alpha _k}{f_k}\left( 1 \right) = \\ &{f_{n + 1}}\left( x \right) - \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} : = \varphi \left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $
|
从而有
$ {\alpha _k}{f_k}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) = \varphi \left( x \right) + {\alpha _k}{f_k}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n $
|
(13) |
$ {f_{n + 1}}\left( x \right) = \varphi \left( x \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} $
|
(14) |
于是,有
$ {\alpha _k}{f_k}\left( {x_k^{{\beta _k}}} \right) = \varphi \left( {x_{_k}^{{\gamma _k}}} \right) + {\alpha _k}{f_k}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n $
|
(15) |
$ {f_{n + 1}}\left( {\prod\limits_{k = 1}^n {x_{_k}^{{\beta _k}}} } \right) = \varphi \left( {\prod\limits_{k = 1}^n {x_{_k}^{{\beta _k}}} } \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} $
|
(16) |
将式(15)、(16)代入方程(3),整理可得
$ \sum\limits_{k = 1}^n {\varphi \left( {x_{_k}^{{\beta _k}}} \right)} = \varphi \left( {\prod\limits_{k = 1}^n {x_{_k}^{{\beta _k}}} } \right) $
|
由引理2可得
$ \varphi \left( x \right) = c\ln x $
|
由式(13)、(14)可得
$ \begin{aligned}[b] &{f_k}\left( x \right) = \frac{1}{{{\alpha _k}}}\varphi \left( {{x^{\frac{{{\gamma _k}}}{{{\beta _k}}}}}} \right) + {f_k}\left( 1 \right) =\\ &\frac{c}{{{\alpha _k}}}\ln {x^{\frac{{{\gamma _k}}}{{{\beta _k}}}}} + {f_k}\left( 1 \right) = \frac{{c{\gamma _k}}}{{{\alpha _k}{\beta _k}}}\ln x + {f_k}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $
|
$ {f_{n + 1}}\left( x \right) = \varphi \left( x \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} = c\ln x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} $
|
定理4 设
$ {f_k}\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $
是定义在
${{\mathbf{R}}^ + }$
上的连续函数,广义Pexider幂函数方程(4)在不考虑平凡解
$ {f_k} \equiv 0\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $
的情况下,有解为
$ {f_k}\left( x \right) = {f_k}\left( 1 \right){x^{\frac{{c{\gamma _k}}}{{{\alpha _k}{\beta _k}}}}} \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } \text{,} 1 \leqslant k \leqslant n ) $
|
$ {f_{k + 1}}\left( x \right) = {x^c}\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } ) $
|
证明 由于不考虑平凡解,在方程(4)中固定某个
$ {x_k} = {x^{\frac{1}{{{\gamma _k}}}}} $
,令其他
$ n - 1 $
个
$ {x_k} = 1 $
,有
$ \begin{aligned}[b] &f_{_1}^{{\alpha _1}}\left( 1 \right) \times \cdots \times f_{_{k - 1}}^{{\alpha _{k - 1}}}\left( 1 \right) \times f_{_k}^{{\alpha _k}}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) \times \\ &f_{_{k + 1}}^{{\alpha _{k + 1}}}\left( 1 \right) \times \cdots \times f_{_n}^{{\alpha _n}}\left( 1 \right) = {f_{n + 1}}\left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $
|
将上面等式两端同时除
$ \displaystyle\prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( 1 \right)} $
,有
$ \frac{{f_{_k}^{{\alpha _k}}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right)}}{{f_{_k}^{{\alpha _k}}\left( 1 \right)}} = \frac{{{f_{k + 1}}\left( x \right)}}{{\displaystyle\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} }} = :\varphi \left( x \right) \text{,} 1 \leqslant k \leqslant n $
|
从而
$ f_{_k}^{{\alpha _k}}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) = \varphi \left( x \right)f_{_k}^{{\alpha _k}}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n $
|
(17) |
$ {f_{k + 1}}\left( x \right) = \varphi \left( x \right)\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} $
|
(18) |
于是
$ f_{_k}^{{\alpha _k}}\left( {x_{_k}^{{\beta _k}}} \right) = \varphi \left( {x_{_k}^{{\gamma _k}}} \right)f_{_k}^{{\alpha _k}}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n $
|
(19) |
$ {f_{k + 1}}\left( {\prod\limits_{k = 1}^n {x_{_k}^{{\gamma _k}}} } \right) = \varphi \left( {\prod\limits_{k = 1}^n {x_{_k}^{{\gamma _k}}} } \right)\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} $
|
(20) |
将式(19)、(20)代入方程(4),整理可得
$ \prod\limits_{k = 1}^n {\varphi \left( {x_{_k}^{{\gamma _k}}} \right)} = \varphi \left( {\prod\limits_{k = 1}^n {x_{_k}^{{\gamma _k}}} } \right) $
|
由引理2可得,上式有解
$ \varphi \left( x \right) = {x^c} \text{,} \left( {c \in {\mathbf{R}}} \right) $
|
由式(17)、(18)可得
$ {f_k}\left( x \right) = {\varphi ^{\frac{1}{{{\alpha _k}}}}}\left( {{x^{\frac{{{\gamma _k}}}{{{\beta _k}}}}}} \right){f_k}\left( 1 \right) = {f_k}\left( 1 \right){x^{\frac{{c{\gamma _k}}}{{{\alpha _k}{\beta _k}}}}} \text{,} 1 \leqslant k \leqslant n $
|
$ {f_{k + 1}}\left( x \right) = \varphi \left( x \right)\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} = {x^c}\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} $
|