广东工业大学学报  2022, Vol. 39Issue (2): 72-75.  DOI: 10.12052/gdutxb.210017.
0

引用本文 

肖志涛. 几类广义Pexider方程的解[J]. 广东工业大学学报, 2022, 39(2): 72-75. DOI: 10.12052/gdutxb.210017.
Xiao Zhi-tao. Solutions of Some Generalized Pexider Equations[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2022, 39(2): 72-75. DOI: 10.12052/gdutxb.210017.

基金项目:

广东省高等教育教学改革资助项目(2016236);广东教育教学成果奖(高等教育)培育资助项目(2014172);广东工业大学华立学院2018年校级科研资助项目(HLKY-2018-ZK-08)

作者简介:

肖志涛(1978–),男,讲师,硕士,主要研究方向为偏微分方程,E-mail:xiaozhitao418@163.cm

文章历史

收稿日期:2021-01-28
几类广义Pexider方程的解
肖志涛    
广州华立学院, 广东 广州 511325
摘要: 讨论了Pexider可加函数方程、Pexider指数函数方程、Pexider对数函数方程、Pexider幂函数方程的一般形式,给出了这些方程的通解。
关键词: Pexider方程    可加函数方程    指数函数方程    对数函数方程    幂函数方程    
Solutions of Some Generalized Pexider Equations
Xiao Zhi-tao    
Guangzhou Huali College, Guangzhou 511325, China
Abstract: The general forms of pexider additive function equation, pexider exponential function equation, pexider logarithmic function equation and pexider power function equation are discussed, and the general solutions of these equations are given.
Key words: pexider equation    additive function equation    exponential function equation    logarithmic function equation    power function equation    

Pexider方程是Pexider J V在文献[1]中提出的一组方程,形式如下:

$ f\left( x \right) + g\left( y \right) = h\left( {x + y} \right) $
$ f\left( x \right)g\left( y \right) = h\left( {x + y} \right) $
$ f\left( x \right) + g\left( y \right) = h\left( {xy} \right) $
$ f\left( x \right)g\left( y \right) = h\left( {xy} \right) $

并给出了方程在实数域 $ {\mathbf{R}} $ 上的连续解。一直以来,很多人致力于这组方程的研究,得到了许多有意义的成果,文献[2-7]研究了Pexider方程在不同区域上解的情况,文献[8-9]讨论了可加Pexider方程在集值函数空间的稳定性,文献[10-14]讨论了几类Pexider方程和时滞方程在不同赋范空间上的解及稳定性。本文研究如下形式的广义Pexider方程:

$ \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( {{\beta _k}{x_k}} \right)} = {f_{n + 1}}\left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}} $ (1)
$ \prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( {{\beta _k}{x_k}} \right)} = {f_{n + 1}}\left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}} $ (2)
$ \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( {x_k^{{\beta _k}}} \right)} = {f_{n + 1}}\left( {\prod\limits_{k = 1}^n {x_k^{{\gamma _k}}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}^ + } $ (3)
$ \prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( {x_k^{{\beta _k}}} \right)} = {f_{n + 1}}\left( {\prod\limits_{k = 1}^n {x_k^{{\gamma _k}}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}^ + } $ (4)

其中 $ {\alpha _k},{\beta _k},{\gamma _k} $ 为常数,且 $ \prod\limits_{k = 1}^n {{\alpha _k}{\beta _k}{\gamma _k} \ne 0,\left( {n \geqslant 2} \right)} $ 。通过赋值转化方法,得到了上述方程的通解。

1 引理及基本准备

首先,本文给出下面的引理[15-16]

引理1 $ f $ 是定义在 ${\mathbf{R}} $ 上的连续函数,如下几个方程

$ f\left( x \right) + f\left( y \right) = f\left( {x + y} \right) \text{,} \forall x,y \in {\mathbf{R}} $
$ f\left( x \right)f\left( y \right) = f\left( {x + y} \right) \text{,} \forall x,y \in {\mathbf{R}} $
$ f\left( x \right) + f\left( y \right) = f\left( {xy} \right) \text{,} \forall x,y \in {{\mathbf{R}}^ + } $
$ f\left( x \right)f\left( y \right) = f\left( {xy} \right) \text{,} \forall x,y \in {{\mathbf{R}}^ + } $

在不考虑平凡解 $ f \equiv 0 $ 的情况下,分别有解为

$ f\left( x \right) = f\left( 1 \right)x \text{,}( x \in {\mathbf{R}} ) $
$ f\left( x \right) = {{\text{e}}^{cx}} = {a^x} \text{,}( c 为任意常数\text{,} x \in {\mathbf{R}} ) $
$ f\left( x \right) = c\ln x \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } ) $
$ f\left( x \right) = {x^c} \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } ) $

下面,将引理1推广为一般的形式,有

引理2 $ f $ 是定义在 $ {{{\bf{R}}}} $ 上的连续函数,如下几个方程

$ \sum\limits_{k = 1}^n {f\left( {{x_k}} \right)} = f\left( {\sum\limits_{k = 1}^n {{x_k}} } \right) \text{,} \forall {x_k} \in {\mathbf{R}} $
$ \prod\limits_{k = 1}^n {f\left( {{x_k}} \right)} = f\left( {\sum\limits_{k = 1}^n {{x_k}} } \right) \text{,} \forall {x_k} \in {\mathbf{R}} $
$ \sum\limits_{k = 1}^n {f\left( {{x_k}} \right)} = f\left( {\prod\limits_{k = 1}^n {{x_k}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}^ + } $
$ \prod\limits_{k = 1}^n {f\left( {{x_k}} \right)} = f\left( {\prod\limits_{k = 1}^n {{x_k}} } \right) \text{,} \forall {x_k} \in {{\mathbf{R}}^ + } $

在不考虑平凡解 $ f \equiv 0 $ 的情况下,分别有解为

$ f\left( x \right) = f\left( 1 \right)x \text{,}( x \in {\mathbf{R}} ) $
$ f\left( x \right) = {{\text{e}}^{cx}} = {a^x} \text{,}( c 为任意常数\text{,} x \in {\mathbf{R}} ) $
$ f\left( x \right) = c\ln x \text{,}( c 为任意常数\text{,} x \in {\mathbf{R}^ + } ) $
$ f\left( x \right) = {x^c} \text{,}( c 为任意常数\text{,} x \in {\mathbf{R}^ + } ) $

证明 由引理1可得结论成立。

2 主要结论及证明

定理1 $ {f_k}\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $ 是定义在 ${\mathbf{R}}$ 上的连续函数,广义Pexider可加方程(1)在不考虑平凡解 $ {f_k} \equiv 0\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $ 的情况下,有解为

$ {f_k}\left( x \right) = \left[ {{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}} \right) - {f_k}\left( 0 \right)} \right]\frac{{{\gamma _k}}}{{{\beta _k}}}x + {f_k}\left( 0 \right) \text{,}( x \in {\mathbf{R}} , 1 \leqslant k \leqslant n ) $
$ {f_{n + 1}}\left( x \right) = \left[ {{f_{n + 1}}\left( 1 \right) - \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} } \right]x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} \text{,}( x \in {\mathbf{R}} ) $

证明 在方程(1)中,固定某个 $ {x_k} = \dfrac{1}{{{\gamma _k}}}x $ ,令其他 $ n - 1 $ $ {x_k} = 0 $ ,有

$ \begin{aligned}[b] &{\alpha _1}{f_1}\left( 0 \right) + \cdots + {\alpha _{k - 1}}{f_{k - 1}}\left( 0 \right) + {\alpha _k}{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) +\\ &{\alpha _{k + 1}}{f_{k + 1}}\left( 0 \right) + \cdots + {\alpha _n}{f_n}\left( 0 \right) = {f_{n + 1}}\left( x \right) \text{,}\\ &1 \leqslant k \leqslant n \end{aligned} $

将上面等式两端同时减去 $ \displaystyle\sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} $ ,有

$ \begin{aligned}[b] &{\alpha _k}{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) - {\alpha _k}{f_k}\left( 0 \right) = \\ &{f_{n + 1}}\left( x \right) - \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} : = \varphi \left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $

从而有

$ {\alpha _k}{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) = \varphi \left( x \right) + {\alpha _k}{f_k}\left( 0 \right) \text{,} 1 \leqslant k \leqslant n $ (5)
$ {f_{n + 1}}\left( x \right) = \varphi \left( x \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} $ (6)

于是,有

$ {\alpha _k}{f_k}\left( {{\beta _k}{x_k}} \right) = \varphi \left( {{\gamma _k}{x_k}} \right) + {\alpha _k}{f_k}\left( 0 \right) \text{,} 1 \leqslant k \leqslant n $ (7)
$ {f_{n + 1}}\left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) = \varphi \left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} $ (8)

将式(7)、(8)代入方程(1),整理可得

$ \sum\limits_{k = 1}^n {\varphi \left( {{\gamma _k}{x_k}} \right)} = \varphi \left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) $

由引理2可得

$ \varphi \left( x \right) = \varphi \left( 1 \right)x $

由式(5)、(6)可得

$\begin{aligned}[b] &{f_k}\left( x \right) = \frac{1}{{{\alpha _k}}}\varphi \left( {\frac{{{\gamma _k}}}{{{\beta _k}}}x} \right) + {f_k}\left( 0 \right) = \varphi \left( 1 \right)\frac{{{\gamma _k}}}{{{\alpha _k}{\beta _k}}}x + \\ &{f_k}\left( 0 \right) = \left[ {{f_k}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}} \right) - {f_k}\left( 0 \right)} \right]\frac{{{\gamma _k}}}{{{\beta _k}}}x + {f_k}\left( 0 \right) \text{,} \\ &1 \leqslant k \leqslant n \end{aligned} $
$ \begin{aligned}[b] &{f_{n + 1}}\left( x \right) = \varphi \left( 1 \right)x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} = \\ &\left[ {{f_{n + 1}}\left( 1 \right) - \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} } \right]x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 0 \right)} \end{aligned} $

定理2 $ {f_k}\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $ 是定义在 $ {\mathbf{R}} $ 上的连续函数,广义Pexider指数方程(2)在不考虑平凡解 $ {f_k} \equiv 0\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $ 的情况下,有解为

$ {f_k}\left( x \right) = {f_k}\left( 0 \right){a^{\frac{{{\gamma _k}}}{{{\alpha _k}{\beta _k}}}x}} ,( a \gt 0 , x \in {\mathbf{R}} , 1 \leqslant k \leqslant n ) $
$ {f_{k + 1}}\left( x \right) = {a^x}\prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( 0 \right)} \text{,} ( a \gt 0 , x \in {\mathbf{R}} ) $

证明 由于不考虑平凡解,在方程(2)中固定某个 $ {x_k} = \dfrac{1}{{{\gamma _k}}}x $ ,令其他 $ n - 1 $ $ {x_k} = 0 $ ,有

$ \begin{aligned}[b] &f_1^{{\alpha _1}}\left( 0 \right) \times \cdots \times f_{_{k - 1}}^{{\alpha _{k - 1}}}\left( 0 \right) \times f_{_k}^{{\alpha _k}}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) \times \\ &f_{_{k + 1}}^{{\alpha _{k + 1}}}\left( 0 \right) \times \cdots \times f_{_n}^{{\alpha _n}}\left( 0 \right) = {f_{n + 1}}\left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $

将上面 $ n $ 个等式两端同时除 $ \displaystyle\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 0 \right)} $ ,有

$ \frac{{f_{_k}^{{\alpha _k}}\left( {\dfrac{{{\beta _k}}}{{{\gamma _k}}}x} \right)}}{{f_{_k}^{{\alpha _k}}\left( 0 \right)}} = \frac{{{f_{k + 1}}\left( x \right)}}{{\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 0 \right)} }} = :\varphi \left( x \right) \text{,} 1 \leqslant k \leqslant n $

从而

$ f_{_k}^{{\alpha _k}}\left( {\frac{{{\beta _k}}}{{{\gamma _k}}}x} \right) = \varphi \left( x \right)f_{_k}^{{\alpha _k}}\left( 0 \right) \text{,} 1 \leqslant k \leqslant n $ (9)
$ {f_{k + 1}}\left( x \right) = \varphi \left( x \right)\prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( 0 \right)} $ (10)

于是

$ f_{_k}^{{\alpha _k}}\left( {{\beta _k}{x_k}} \right) = \varphi \left( {{\gamma _k}{x_k}} \right)f_{_k}^{{\alpha _k}}\left( 0 \right) \text{,} 1 \leqslant k \leqslant n $ (11)
$ {f_{k + 1}}\left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) = \varphi \left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right)\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 0 \right)} $ (12)

将式(11)、(12)代入方程(2),整理可得

$ \prod\limits_{k = 1}^n {\varphi \left( {{\gamma _k}{x_k}} \right)} = \varphi \left( {\sum\limits_{k = 1}^n {{\gamma _k}{x_k}} } \right) $

由引理2可得,上式有解

$ \varphi \left( x \right) = {{\text{e}}^{cx}} = {a^x} \text{,} \left( {a \gt 0} \right) $

由式(9)、(10)可得

$ {f_k}\left( x \right) = {f_k}\left( 0 \right){a^{\frac{{{\gamma _k}}}{{{\alpha _k}{\beta _k}}}x}} \text{,} 1 \leqslant k \leqslant n \text{,} \left( {a \gt 0} \right) $
$ {f_{k + 1}}\left( x \right) = {a^x}\prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( 0 \right)} \text{,} \left( {a \gt 0} \right) $

定理3 $ {f_k}\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $ 是定义 ${{\mathbf{R}}^ + }$ 上的连续函数,广义Pexider对数方程(3)在不考虑平凡解 $ {f_k} \equiv 0\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $ 的情况下,有解为

$ {f_k}\left( x \right) = \dfrac{{c{\gamma _k}}}{{{\alpha _k}{\beta _k}}}\ln x + {f_k}\left( 1 \right) $ ,( c 为任意常数, $ x \in {{\mathbf{R}}^ + } , 1 \leqslant $ $ k \leqslant n $ )

$ {f_{n + 1}}\left( x \right) = c\ln x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } ) $

证明 在方程(3)中固定某个 $ {x_k} = {x^{\frac{1}{{{\gamma _k}}}}} $ ,令其他 $ n - 1 $ $ {x_k} = 1 $ ,有

$ \begin{aligned}[b] &{\alpha _1}{f_1}\left( 1 \right) + \cdots + {\alpha _{k - 1}}{f_{k - 1}}\left( 1 \right) + {\alpha _k}{f_k}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) + \\ &{\alpha _{k + 1}}{f_{k + 1}}\left( 1 \right) + \cdots + {\alpha _n}{f_n}\left( 1 \right) = {f_{n + 1}}\left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $

将上面 $ n $ 个等式两端同时减去 $ \displaystyle\sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} $ ,有

$\begin{aligned}[b] &{\alpha _k}{f_k}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) - {\alpha _k}{f_k}\left( 1 \right) = \\ &{f_{n + 1}}\left( x \right) - \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} : = \varphi \left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $

从而有

$ {\alpha _k}{f_k}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) = \varphi \left( x \right) + {\alpha _k}{f_k}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n $ (13)
$ {f_{n + 1}}\left( x \right) = \varphi \left( x \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} $ (14)

于是,有

$ {\alpha _k}{f_k}\left( {x_k^{{\beta _k}}} \right) = \varphi \left( {x_{_k}^{{\gamma _k}}} \right) + {\alpha _k}{f_k}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n $ (15)
$ {f_{n + 1}}\left( {\prod\limits_{k = 1}^n {x_{_k}^{{\beta _k}}} } \right) = \varphi \left( {\prod\limits_{k = 1}^n {x_{_k}^{{\beta _k}}} } \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} $ (16)

将式(15)、(16)代入方程(3),整理可得

$ \sum\limits_{k = 1}^n {\varphi \left( {x_{_k}^{{\beta _k}}} \right)} = \varphi \left( {\prod\limits_{k = 1}^n {x_{_k}^{{\beta _k}}} } \right) $

由引理2可得

$ \varphi \left( x \right) = c\ln x $

由式(13)、(14)可得

$ \begin{aligned}[b] &{f_k}\left( x \right) = \frac{1}{{{\alpha _k}}}\varphi \left( {{x^{\frac{{{\gamma _k}}}{{{\beta _k}}}}}} \right) + {f_k}\left( 1 \right) =\\ &\frac{c}{{{\alpha _k}}}\ln {x^{\frac{{{\gamma _k}}}{{{\beta _k}}}}} + {f_k}\left( 1 \right) = \frac{{c{\gamma _k}}}{{{\alpha _k}{\beta _k}}}\ln x + {f_k}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $
$ {f_{n + 1}}\left( x \right) = \varphi \left( x \right) + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} = c\ln x + \sum\limits_{k = 1}^n {{\alpha _k}{f_k}\left( 1 \right)} $

定理4 $ {f_k}\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $ 是定义在 ${{\mathbf{R}}^ + }$ 上的连续函数,广义Pexider幂函数方程(4)在不考虑平凡解 $ {f_k} \equiv 0\left( {1 \leqslant k \leqslant n + 1,n \geqslant 2} \right) $ 的情况下,有解为

$ {f_k}\left( x \right) = {f_k}\left( 1 \right){x^{\frac{{c{\gamma _k}}}{{{\alpha _k}{\beta _k}}}}} \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } \text{,} 1 \leqslant k \leqslant n ) $
$ {f_{k + 1}}\left( x \right) = {x^c}\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} \text{,}( c 为任意常数\text{,} x \in {{\mathbf{R}}^ + } ) $

证明 由于不考虑平凡解,在方程(4)中固定某个 $ {x_k} = {x^{\frac{1}{{{\gamma _k}}}}} $ ,令其他 $ n - 1 $ $ {x_k} = 1 $ ,有

$ \begin{aligned}[b] &f_{_1}^{{\alpha _1}}\left( 1 \right) \times \cdots \times f_{_{k - 1}}^{{\alpha _{k - 1}}}\left( 1 \right) \times f_{_k}^{{\alpha _k}}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) \times \\ &f_{_{k + 1}}^{{\alpha _{k + 1}}}\left( 1 \right) \times \cdots \times f_{_n}^{{\alpha _n}}\left( 1 \right) = {f_{n + 1}}\left( x \right) \text{,} 1 \leqslant k \leqslant n \end{aligned} $

将上面等式两端同时除 $ \displaystyle\prod\limits_{k = 1}^n {f_k^{{\alpha _k}}\left( 1 \right)} $ ,有

$ \frac{{f_{_k}^{{\alpha _k}}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right)}}{{f_{_k}^{{\alpha _k}}\left( 1 \right)}} = \frac{{{f_{k + 1}}\left( x \right)}}{{\displaystyle\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} }} = :\varphi \left( x \right) \text{,} 1 \leqslant k \leqslant n $

从而

$ f_{_k}^{{\alpha _k}}\left( {{x^{\frac{{{\beta _k}}}{{{\gamma _k}}}}}} \right) = \varphi \left( x \right)f_{_k}^{{\alpha _k}}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n $ (17)
$ {f_{k + 1}}\left( x \right) = \varphi \left( x \right)\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} $ (18)

于是

$ f_{_k}^{{\alpha _k}}\left( {x_{_k}^{{\beta _k}}} \right) = \varphi \left( {x_{_k}^{{\gamma _k}}} \right)f_{_k}^{{\alpha _k}}\left( 1 \right) \text{,} 1 \leqslant k \leqslant n $ (19)
$ {f_{k + 1}}\left( {\prod\limits_{k = 1}^n {x_{_k}^{{\gamma _k}}} } \right) = \varphi \left( {\prod\limits_{k = 1}^n {x_{_k}^{{\gamma _k}}} } \right)\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} $ (20)

将式(19)、(20)代入方程(4),整理可得

$ \prod\limits_{k = 1}^n {\varphi \left( {x_{_k}^{{\gamma _k}}} \right)} = \varphi \left( {\prod\limits_{k = 1}^n {x_{_k}^{{\gamma _k}}} } \right) $

由引理2可得,上式有解

$ \varphi \left( x \right) = {x^c} \text{,} \left( {c \in {\mathbf{R}}} \right) $

由式(17)、(18)可得

$ {f_k}\left( x \right) = {\varphi ^{\frac{1}{{{\alpha _k}}}}}\left( {{x^{\frac{{{\gamma _k}}}{{{\beta _k}}}}}} \right){f_k}\left( 1 \right) = {f_k}\left( 1 \right){x^{\frac{{c{\gamma _k}}}{{{\alpha _k}{\beta _k}}}}} \text{,} 1 \leqslant k \leqslant n $
$ {f_{k + 1}}\left( x \right) = \varphi \left( x \right)\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} = {x^c}\prod\limits_{k = 1}^n {f_{_k}^{{\alpha _k}}\left( 1 \right)} $
参考文献
[1]
PEXIDER J V. Notizuber funktionltheoreme[J]. Monatsh Math Phy, 1903, 14: 293-301.
[2]
RADO F, BAKER J A. Pexider’s equation and aggregation of allocations[J]. Aequationes Mathematicae, 1987, 32: 227-239.
[3]
NG C T. A Pexider-Jensen equation on groups[J]. Aequationes Math, 2005, 70(1/2): 131-153.
[4]
ACZEL J, SKOF F. Local Pexider and cauchy equations[J]. Aequationes Math, 2007, 73(3): 311-320. DOI: 10.1007/s00010-006-2863-5.
[5]
BARBARA S. Pexider equation on a restricted domain[J]. Demonstratio Math, 2010, XLIII(1): 81-88.
[6]
ACZEL J. Extension of a generalized Pexider equation[J]. Proc Am Math Soc, 2005, A133: 3227-3233.
[7]
BAJER M. A generalized Pexider equation[J]. Acta Mathematica Hungarica, 1997, 75(1/2): 43-54. DOI: 10.1023/A:1006578617193.
[8]
YUN S, PARK S. The stability of quadratic $ \alpha $ -functional equations [J]. Journal of Mathematical Sciences and Applications, 2016, 9(6): 3980-3991.
[9]
ZI Y, LU G, YUAN F J, et al. The stability of additive $ \left( {\alpha, \beta } \right) $-functional equations[J]. Journal of Applied Analysis and Computation, 2019(6): 2295-2307.
[10]
MURSALEEN M, MOHIUDDINE S A, KHURSHEED J, et al. On the stability of fuzzy set-valued functional equations[J]. Congent Mathematics, 2017(4): 1-12.
[11]
YANG X, SHEN G, LIU G. On the stability of the functional equations in matrix normed spaces[J]. Journal of Mathematical Research with Applications, 2016, 36(3): 328-340.
[12]
SONG J S, LI Y H. Hyers-Ulam-Rassias stability of a quadratic-additive type function equation in fuzzy space[J]. International Electronic Journal of Pure and Applied Mathematics, 2015, 9(3): 121-136.
[13]
徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132.
XU L, SONG C X. Stability and boundedness of a class of third-order delay differential equations[J]. Journal of Guangdong University of Technology, 2015, 32(1): 128-132.
[14]
黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(6): 56-62.
HUANG H M, GUO C J. Stability of solutions for a class of impulsive stochastic differential equations[J]. Journal of Guangdong University of Technology, 2020, 37(6): 56-62.
[15]
ACZEL J. Lectures on Function Equations and Their Applications[M]. New York: Academic Press, 1966.
[16]
GUIASU S. Information Theory with Applications[M]. New York: McGraw-Hill, 1977.