广东工业大学学报  2022, Vol. 39Issue (2): 62-65.  DOI: 10.12052/gdutxb.200125.
0

引用本文 

岑达康, 汪志波. 分数阶捕食者−食饵模型的变分迭代法[J]. 广东工业大学学报, 2022, 39(2): 62-65. DOI: 10.12052/gdutxb.200125.
Cen Da-kang, Wang Zhi-bo. A Variational Iteration Method for Fractional Predator-Prey Model[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2022, 39(2): 62-65. DOI: 10.12052/gdutxb.200125.

基金项目:

国家自然科学基金资助项目(11701103);广东省珠江人才计划引进高层次人才项目(2017GC010379);广东省自然科学基金资助项目(2019A1515010876);广东省计算科学重点实验室开放基金(2021023);广州市科技计划一般项目(201904010341,202102020704)

作者简介:

岑达康(1997–),男,硕士研究生,主要研究方向为微分方程数值解。

通信作者

汪志波(1987–),男,副教授,主要研究方向为微分方程数值解,E-mail:wzbmath@gdut.edu.cn

文章历史

收稿日期:2020-09-22
分数阶捕食者−食饵模型的变分迭代法
岑达康, 汪志波    
广东工业大学 数学与统计学院, 广东 广州 510520
摘要: 讨论了一类分数阶捕食者−食饵模型的变分迭代方法(Variational Iteration Method,VIM)。对该模型进行积分变换,得到与之等价的耦合积分微分方程组。根据变分原理,得出拉格朗日乘子,构建VIM求解格式,并对求解格式的收敛性进行分析。最后进行了相关的数值模拟,模拟结果验证了该方法的可行性和有效性。
关键词: 分数阶捕食者−食饵模型    变分迭代方法    收敛性    
A Variational Iteration Method for Fractional Predator-Prey Model
Cen Da-kang, Wang Zhi-bo    
School of Mathematics and Statistics, Guangdong University of Technology, Guangzhou 510520, China
Abstract: A variational iteration method (VIM) for a class of fractional predator-prey model is studied. A pair equivalent coupled integro-differential equation to the model is obtained by means of integral transformation. According to variational theory, the Lagrange multiplier is calculated and the VIM scheme is constructed. Finally, a convergence analysis of the scheme is given and a numerical simulation is carried out.The results verify the feasibility and effectiveness of the method.
Key words: fractional predator-prey model    variational iteration method    convergence    

近年来分数阶微分方程(Fractional Differential Equation, FDEs)的应用越来越普遍,如模拟反常扩散过程、波传播、湍流、生物系统等[1-2]。目前除了少数简单的FDEs外,大部分FDEs还不能找到其解析解[3]。因此,针对FDEs提出简单高效的数值算法是十分必要的。

求解分数阶微分方程的数值算法主要包括有限差分法、有限元法、级数逼近法(变分迭代法、Adomian分解法、同伦摄动法等)、移动网格法、矩阵转化法等。有限差分法[4-5]、有限元法[6-7]将方程离散化,从而得到方程的近似数值解。与它们相比,变分迭代法(Variational Iteration Method, VIM)不需要进行变换和数值逼近,是一种重要的近似解析方法。1978年,Inokuti等[8]提出广义拉格朗日乘子法(Lagrange Multiplier, LM)。基于LM方法,何吉欢[9]于1997年提出了VIM方法。目前,VIM方法已广泛应用于非线性微分方程的近似逼近问题。尹伟石等[10]应用VIM方法求解Riesz分数阶偏微分方程。基于VIM方法,高秀丽等[11]成功模拟了Whitham-Broer-Kaup方程和mKdV方程两类非线性数学物理方程的行波解。姜兆敏等[12]用VIM求解二阶常微分方程组边值问题,并给出2个具体应用实例。

许多数学家和生态学家对捕食者−食饵(Predator-Prey, P-P)系统进行了深入的研究,建立了一系列数学模型,如Volterra模型、带自身阻滞作用logistic项的改进Volterra模型、Lotlak-Volterra模型等。分数阶微积分的非局部性质使其在模拟遗传性和记忆性现象上更具优势。因此,分数阶P-P模型越来越受到研究者的关注。El-Shahed等[13]研究了一类分数阶广义P-P模型的正平衡点的存在性、稳定性和极限环。王虎等[14]讨论了具有阶段结构的时滞分数阶P-P模型的稳定性,得到了平衡点的渐进稳定性条件和参数稳定区间。关于P-P模型的VIM方法研究,汪维刚等[15]利用一组泛函,选取拉格朗日乘子,用修正的变分方法,得到了相应模型的近似解。但是其并未对VIM迭代格式进行收敛性分析。由于分数阶模型的VIM方法研究相对较少,本文研究式(1)~(2)的分数阶捕食者−食饵模型的VIM方法及其收敛性。

$ {}_0^{\rm{C}}D_t^\alpha u{\text{(}}t{\text{) = }}{r_1}u\left( {1 - \frac{u}{{{N_1}}} - {\sigma _1}\frac{v}{{{N_2}}}} \right) \text{,} 0 \leqslant t \leqslant T $ (1)
$ {}_0^{\rm{C}}D_t^\beta v{\text{(}}t{\text{) = }}{r_2}v\left( { - 1 + {\sigma _2}\frac{u}{{{N_1}}} - \frac{v}{{{N_2}}}} \right) \text{,} 0 \leqslant t \leqslant T $ (2)

式(1)~(2)中:uv分别为捕食者和食饵的种群密度,t为时间,Tt的最大时间。 $\alpha $ $\beta $ 分别为Caputo分数阶导数的阶数。 $ {r_{\text{1}}} $ 为食饵种群增长率, $ {r_{\text{2}}} $ 为捕食者种群死亡率, $ {N_{\text{1}}} $ 为食饵种群环境容纳量, $ {N_{\text{2}}} $ 为捕食者种群环境容纳量, $ {\sigma _{\text{1}}} $ 为供给比率, $ {\sigma _{\text{2}}} $ 为消耗比率。 $ 1 \lt \alpha $ $ \beta \lt 2 $ $ u{\text{(0)}} $ $ v{\text{(0)}} $ $ u^{\prime}{\text{(0)}} $ $ v^{\prime}{\text{(0)}} $ 已知。

$ {}_0^{\rm{C}}D_t^\theta w(t) $ 是Caputo分数阶导数。

$ {}_0^{\rm{C}}D_t^\theta w(t) = \frac{1}{{\varGamma ({\text{2}} - \theta )}}\int_0^t {\frac{{{w^{\left( 2 \right)}}(\tau )}}{{{{(t - \tau )}^{\theta - 1}}}}} {\text{d}}\tau \text{,} \theta \in \left( {1,2} \right) $

式中:Γ是Gamma函数,τ为积分运算变量。

为了将 $ {}_0^{\rm{C}}D_t^\theta w(t) $ 转化成便于处理的整数阶导数,作式(3)的变换。

$ {J^{\theta - 1}}{}_0^{\rm{C}}D_t^\theta w(t){\text{ = }}w^{\prime}{\text{}}(t) - w^{\prime}{\text{}}(0) $ (3)

式中: $ {J^{\theta - 1}}f(t) $ 为分数阶积分,定义为

$ {J^{\theta - 1}}f(t) = \frac{1}{{\varGamma \left( {\theta - 1} \right)}}\int_0^t {{{(t - \tau )}^{\theta - 2}}f(\tau )} {\text{d}}\tau $

由式(3)可得式(1)~(2)的等价模型为

$ u^{\prime}{\text{(}}t{\text{)}} - u^{\prime}{\text{(0)}} - {J^{\alpha - 1}}F{\text{(}}u,v{\text{)}} = 0 $ (4)
$ v^{\prime}{\text{(}}t{\text{)}} - v^{\prime}{\text{(0)}} + {J^{\beta - 1}}G{\text{(}}u,v{\text{)}} = 0 $ (5)

式中:

$ F{\text{(}}u,v{\text{)}} = {r_1}u - \frac{{{r_1}}}{{{N_1}}}{u^{\text{2}}} - \frac{{{r_1}{\sigma _1}}}{{{N_2}}}uv $
$ G{\text{(}}u,v{\text{)}} = {r_2}v - \frac{{{r_2}{\sigma _2}}}{{{N_1}}}uv + \frac{{{r_2}}}{{{N_2}}}{v^2} $

假设 $ F $ $ G $ 满足Lipschitz条件,存在常数 $ C $ ,使

$ \begin{array}{*{20}{c}}\left| {F{\text{(}}u,v{\text{)}} - F{\text{(}}\tilde u,v{\text{)}}} \right| \leqslant C\left| {u - \tilde u} \right| \\ \left| {F{\text{(}}u,v{\text{)}} - F{\text{(}}u,\tilde v{\text{)}}} \right| \leqslant C\left| {v - \tilde v} \right| \\ \left| {G{\text{(}}u,v{\text{)}} - G{\text{(}}\tilde u,v{\text{)}}} \right| \leqslant C\left| {u - \tilde u} \right| \\ \left| {G{\text{(}}u,v{\text{)}} - G{\text{(}}u,\tilde v{\text{)}}} \right| \leqslant C\left| {v - \tilde v} \right| \end{array}$
1 变分迭代格式

对模型(4)~(5)构造式(6)~(7)的限制泛函。

$ \begin{gathered} {u_{n + 1}}{\text{(}}t{\text{)}} = {u_n}{\text{(}}t{\text{)}} + \hfill \int_0^t {{\lambda _1}{\text{(}}\tau {\text{)}}( {u_n^{\prime}{\text{(}}\tau {\text{)}} - u^{\prime}{\text{(0)}} - {J^{\alpha - 1}}\tilde F{\text{(}}{u_n},{v_n}{\text{)}}} ){\text{d}}\tau } \hfill \\ \end{gathered} $ (6)
$ \begin{gathered} {v_{n + 1}}{\text{(}}t{\text{)}} = {v_n}{\text{(}}t{\text{)}} + \hfill \int_0^t {{\lambda _{\text{2}}}{\text{(}}\tau {\text{)}}( {v_n^{{\prime}}{\text{(}}\tau {\text{)}} - v^{\prime}{\text{(0)}} + {J^{\beta - 1}}\tilde G{\text{(}}{u_n},{v_n}{\text{)}}} ){\text{d}}\tau } \hfill \\ \end{gathered} $ (7)

式(6)~(7)中: $ \lambda $ 为拉格朗日乘子, $ \tilde F $ $ \tilde G $ 为限制变分量,n为迭代次数,δ $\tilde F = 0 $ ,δ $ \tilde G = 0 $ 。由变分理论,可得

$ {\text{δ}} {u_{n + 1}}{\text{(}}t{\text{)}} = {\text{δ}} {u_n}{\text{(}}t{\text{)}} + \int_0^t {{\lambda _{\text{1}}}{\text{(}}\tau {\text{)}} {\text{δ}} u_n^{{\prime}}{\text{(}}\tau {\text{)d}}\tau } = 0 $
$ {\text{δ}} {v_{n + 1}}{\text{(}}t{\text{)}} = {\text{δ}} {v_n}{\text{(}}t{\text{)}} + \int_0^t {{\lambda _{\text{2}}}{\text{(}}\tau {\text{)}} {\text{δ}} v_n^{{\prime}}{\text{(}}\tau {\text{)d}}\tau } = 0 $

解得

$ {\text{1}} + {\lambda _{\text{1}}}{\text{(}}\tau {\text{)}}{{\text{|}}_{\tau = t}} = 0 \text{,} \lambda _{\text{1}}^{{\prime}}{\text{(}}\tau {\text{)}} = 0 $
$ {\text{1}} + {\lambda _{\text{2}}}{\text{(}}\tau {\text{)}}{{\text{|}}_{\tau = t}} = 0 \text{,} \lambda _{\text{2}}^{{\prime}}{\text{(}}\tau {\text{)}} = 0 $

$ {\lambda _{\text{1}}}{\text{(}}\tau {\text{)}} = {\lambda _2}{\text{(}}\tau {\text{)}} = - 1 $ 。将拉格朗日乘子代入式(6)~(7),还原限制变分量,得到如下迭代格式。

$ \begin{gathered} {u_{n + 1}}{\text{(}}t{\text{)}} = {u_n}{\text{(}}t{\text{)}} - \hfill \int_0^t {u_n^{{\prime}}{\text{(}}\tau {\text{)}} - u^{\prime}{\text{(0)}} - {J^{\alpha - 1}}F{\text{(}}{u_n},{v_n}{\text{)d}}\tau } \hfill \\ \end{gathered} $ (8)
$ \begin{gathered} {v_{n + 1}}{\text{(}}t{\text{)}} = {v_n}{\text{(}}t{\text{)}} - \hfill \int_0^t {v_n^{{\prime}}{\text{(}}\tau {\text{)}} - v^{\prime}{\text{(0)}} + {J^{\beta - 1}}G{\text{(}}{u_n},{v_n}{\text{)d}}\tau } \hfill \\ \end{gathered} $ (9)
2 收敛性分析

定理1 取 ${u_{\text{0}}}{\text{(}}t{\text{)}} = $ $ \phi {\text{(}}t{\text{)}} $ $ {v_{\text{0}}}{\text{(}}t{\text{)}} = \varphi {\text{(}}t{\text{)}} $ ,其中 $ \phi {\text{(0)}} = $ $ u{\text{(0)}} $ $ \varphi {\text{(0)}} = v{\text{(0)}} $ 。由迭代格式(8)~(9)得到的近似解序列 $ \left\{ {{u_n}{\text{(}}t{\text{)}}} \right\}_1^\infty $ $ \left\{ {{v_n}{\text{(}}t{\text{)}}} \right\}_1^\infty $ 收敛于模型(4)~(5)的精确解 $ u{\text{(}}t{\text{)}} $ $ v{\text{(}}t{\text{)}} $

证明  易知 $ u{\text{(}}t{\text{)}} $ $ v{\text{(}}t{\text{)}} $ 满足

$ \begin{array}{l}u\text{(}t\text{)}=u\text{(}t\text{)}- {\displaystyle {\int }_{0}^{t}u^{\prime}\text{(}\tau \text{)}-u^{\prime}\text{(0)}-{J}^{\alpha -1}F\text{(}u,v\text{)d}\tau }\end{array} $
$ \begin{gathered} v{\text{(}}t{\text{)}} = v{\text{(}}t{\text{)}} - \hfill \int_0^t {v^{\prime}{\text{(}}\tau {\text{)}} - v^{\prime}{\text{(0)}} + {J^{\beta - 1}}G{\text{(}}u,v{\text{)d}}\tau } \hfill \\ \end{gathered} $

$ {e_n}{\text{(}}t{\text{)}} = {u_n}{\text{(}}t{\text{)}} - u{\text{(}}t{\text{)}} $ $ {\varepsilon _n}{\text{(}}t{\text{)}} = {v_n}{\text{(}}t{\text{)}} - v{\text{(}}t{\text{)}} $ 。由迭代格式(8)~(9),可得误差方程(10)~(11)。

$ \begin{gathered} {e_{n + 1}}{\text{(}}t{\text{)}} = {e_n}{\text{(}}t{\text{)}} - \hfill \int_0^t {e_n^{{\prime}}{\text{(}}\tau {\text{)}} - {J^{\alpha - 1}}\left( {{F{\text{(}}{u_n},{v_n}{\text{)}} - F{\text{(}}u,v{\text{)}}}} \right){\text{d}}\tau } \hfill \\ \end{gathered} $ (10)
$ \begin{gathered} {\varepsilon _{n + 1}}{\text{(}}t{\text{)}} = {\varepsilon _n}{\text{(}}t{\text{)}} - \hfill \int_0^t {\varepsilon _n^{{\prime}}{\text{(}}\tau {\text{)}} + {J^{\beta - 1}}\left( {G{\text{(}}{u_n},{v_n}{\text{)}} - G{\text{(}}u,v{\text{)}}} \right){\text{d}}\tau } \hfill \\ \end{gathered} $ (11)

显然有

$ {e_n}{\text{(0)}} = {\varepsilon _n}{\text{(0)}} = 0 $ (12)

计算可得

$\begin{split} {e_{n + 1}}{\text{(}}t{\text{)}} = & \hfill {e_n}{\text{(}}t{\text{)}} - \int_0^t {e_n^{{\prime}}{\text{(}}\tau {\text{)}} - {J^{\alpha - 1}}\left( {F{\text{(}}{u_n},{v_n}{\text{)}} - F{\text{(}}u,v{\text{)}}} \right){\text{d}}\tau } = \hfill \\ & {e_n}{\text{(0)}} + \int_0^t {{J^{\alpha - 1}}\left( {F{\text{(}}{u_n},{v_n}{\text{)}} - F{\text{(}}u,v{\text{)}}} \right){\text{d}}\tau } \hfill \\ \end{split}$

代入式(12),有

$ \begin{split} {e_{n + 1}}{\text{(}}t{\text{)}} = & \int_0^t {{J^{\alpha - 1}}\left( {F{\text{(}}{u_n},{v_n}{\text{)}} - F{\text{(}}u,{v_n}{\text{)}}} \right){\text{d}}\tau } + \hfill \\& \int_0^t {{J^{\alpha - 1}}\left( {F{\text{(}}u,{v_n}{\text{)}} - F{\text{(}}u,v{\text{)}}} \right){\text{d}}\tau } = \\ & \frac{1}{{\varGamma \left( {\alpha - 1} \right)}}\int_0^t \int_0^\tau {{{\text{(}}\tau - s{\text{)}}}^{\alpha - 2}}( F{\text{(}}{u_n},{v_n}{\text{)}} - F{\text{(}}u,{v_n}{\text{)}} ) {\text{d}}s{\text{d}}\tau + \hfill \\ & \frac{1}{{\varGamma \left( {\alpha - 1} \right)}}\int_0^t \int_0^\tau {{{\text{(}}\tau - s{\text{)}}}^{\alpha - 2}} ( F{\text{(}}u,{v_n}{\text{)}} - F{\text{(}}u,v{\text{)}} ) {\text{d}}s{\text{d}}\tau \hfill \\ \end{split} $

由Lipschitz条件,有

$ \begin{split} \left| {{e_{n + 1}}{\text{(}}t{\text{)}}} \right| \leqslant \hfill & \frac{C}{{\varGamma \left( {\alpha - 1} \right)}}\int_0^t {\int_0^\tau {{{{\text{(}}\tau - s{\text{)}}}^{\alpha - 2}}\left( {\left| {{e_n}{\text{(}}s{\text{)}}} \right| + \left| {{\varepsilon _n}{\text{(}}s{\text{)}}} \right|} \right)} {\text{d}}s{\text{d}}\tau } \leqslant \hfill \\ & \frac{C}{{\varGamma \left( {\alpha - 1} \right)}}\int_0^t \mathop {{\text{max}}}\limits_{0 \leqslant s \leqslant \tau } \left( {\left| {{e_n}{\text{(}}s{\text{)}}} \right| + \left| {{\varepsilon _n}{\text{(}}s{\text{)}}} \right|} \right) \int_0^\tau {{{{\text{(}}\tau - s{\text{)}}}^{\alpha - 2}}} {\text{d}}s{\text{d}}\tau \leqslant \hfill \\ & \frac{C}{{\varGamma \left( \alpha \right)}}\int_0^t {\mathop {{\text{max}}}\limits_{0 \leqslant s \leqslant \tau } \left( {\left| {{e_n}{\text{(}}s{\text{)}}} \right| + \left| {{\varepsilon _n}{\text{(}}s{\text{)}}} \right|} \right){\tau ^{\alpha - 1}}{\text{d}}\tau } \leqslant \hfill \\ & \frac{{C{T^{\alpha - 1}}}}{{\varGamma \left( \alpha \right)}}\int_0^t {\mathop {{\text{max}}}\limits_{0 \leqslant s \leqslant \tau } \left( {\left| {{e_n}{\text{(}}s{\text{)}}} \right| + \left| {{\varepsilon _n}{\text{(}}s{\text{)}}} \right|} \right){\text{d}}\tau } \hfill \\ \end{split} $

  同理,可得

$ \left| {{\varepsilon _{n + 1}}{\text{(}}t{\text{)}}} \right| \leqslant \frac{{C{T^{\beta - 1}}}}{{\varGamma \left( \beta \right)}}\int_0^t {\mathop {{\text{max}}}\limits_{0 \leqslant s \leqslant \tau } \left( {\left| {{e_n}{\text{(}}s{\text{)}}} \right| + \left| {{\varepsilon _n}{\text{(}}s{\text{)}}} \right|} \right){\text{d}}\tau } $

  综上,有

$ \left| {{e_{n + 1}}{\text{(}}t{\text{)}}} \right| + \left| {{\varepsilon _{n + 1}}{\text{(}}t{\text{)}}} \right| \leqslant C\left( {\frac{{{T^{\alpha - 1}}}}{{\varGamma \left( \alpha \right)}} + \frac{{{T^{\beta - 1}}}}{{\varGamma \left( \beta \right)}}} \right) \int_0^t {\mathop {{\text{max}}}\limits_{0 \leqslant s \leqslant \tau } \left( {\left| {{e_n}{\text{(}}s{\text{)}}} \right| + \left| {{\varepsilon _n}{\text{(}}s{\text{)}}} \right|} \right){\text{d}}\tau } $

${|| {{E_{n + 1}}{\text{(}}\tilde t{\text{)}}} ||_\infty } = \mathop {{\text{max}}}\limits_{0 \leqslant t \leqslant \tilde t} ( {\left| {{e_{n + 1}}{\text{(}}t{\text{)}}} \right| + \left| {{\varepsilon _{n + 1}}{\text{(}}t{\text{)}}} \right|} )$ ,可得

$ \begin{split} & {\left\| {{E_{n + 1}}{\text{(}}T{\text{)}}} \right\|_\infty } \leqslant C\left( {\frac{{{T^{\alpha - 1}}}}{{\varGamma \left( \alpha \right)}} + \frac{{{T^{\beta - 1}}}}{{\varGamma \left( \beta \right)}}} \right)\int_0^T {{{\left\| {{E_n}{\text{(}}{\xi _1}{\text{)}}} \right\|}_\infty }{\text{d}}{\xi _1}} \leqslant \hfill \\& {C^{\text{2}}}{\left( {\frac{{{T^{\alpha - 1}}}}{{\varGamma \left( \alpha \right)}} + \frac{{{T^{\beta - 1}}}}{{\varGamma \left( \beta \right)}}} \right)^{\text{2}}}\int_0^T {\int_0^{{\xi _1}} {{{\left\| {{E_{n - 1}}{\text{(}}{\xi _2}{\text{)}}} \right\|}_\infty }} {\text{d}}{\xi _2}{\text{d}}{\xi _1}} \leqslant \hfill \\& \cdots {C^{n + 1}}{\left( {\frac{{{T^{\alpha - 1}}}}{{\varGamma \left( \alpha \right)}} + \frac{{{T^{\beta - 1}}}}{{\varGamma \left( \beta \right)}}} \right)^{n + 1}}\int_0^T \int_0^{{\xi _1}} \cdots \int_0^{{\xi _n}} {{{\left\| {{E_0}{\text{(}}{\xi _{n + 1}}{\text{)}}} \right\|}_\infty }} {\text{d}}{\xi _{n + 1}} \cdots {\text{d}}{\xi _1} \leqslant \hfill \\& {C^{n + 1}}{\left( {\frac{{{T^{\alpha - 1}}}}{{\varGamma \left( \alpha \right)}} + \frac{{{T^{\beta - 1}}}}{{\varGamma \left( \beta \right)}}} \right)^{n + 1}}\frac{{{T^{n + 1}}}}{{\left( {n + 1} \right){\text{!}}}}{\left\| {{E_0}{\text{(}}T{\text{)}}} \right\|_\infty } \hfill \\ \end{split} $

$ n \to \infty $ 时, $ {\left\| {{E_{n + 1}}{\text{(}}T{\text{)}}} \right\|_\infty } \to {\text{0}} $ ,证毕。

3 数值模拟

1 考虑如下时间分数阶logistic模型

$ {}_0^{\rm{C}}D_t^{{\text{1}}{\text{.5}}}u{\text{(}}t{\text{) = 0}}{\text{.2}}u\left( {1 - {\text{0}}{\text{.5}}u} \right) + f{\text{(}}t{\text{)}} $ (13)

式中: $ f{\text{(}}t{\text{)}} = \varGamma {\text{(}}2.5{\text{)}} - 0.{\text{2}}{t^{1.5}} + 0.1{t^3} $ ,初值条件为 $ u{\text{(0)}} = 0 $ $ u^{\prime}{\text{(0)}} = 0 $ ;精确解为 $ u{\text{(}}t{\text{)}} = {t^{{\text{1}}{\text{.5}}}} $

$ {u_{\text{0}}}{\text{(}}t{\text{)}} = 0 $ ,得

$ \begin{split} {u_1}{\text{(}}t{\text{)}} = &\int_0^t {{J^{{\text{0}}{\text{.5}}}}( {\varGamma {\text{(}}2.5{\text{)}} - 0.{\text{2}}{\xi ^{1.5}} + 0.1{\xi ^3}} ){\text{d}}\tau } = \hfill \\& \int_0^t {\left( {1.5{\tau ^{0.5}} - \frac{{\varGamma {\text{(}}2.5{\text{)}}}}{{{\text{5}}\varGamma {\text{(}}3{\text{)}}}}{\tau ^2} + \frac{{\varGamma {\text{(4)}}}}{{10\varGamma {\text{(4}}{\text{.5)}}}}{\tau ^{3.5}}} \right){\text{d}}\tau } = \hfill \\& {t^{1.5}} - \frac{{\varGamma {\text{(}}2.5{\text{)}}}}{{{\text{15}}\varGamma {\text{(}}3{\text{)}}}}{t^3} + \frac{{\varGamma {\text{(4)}}}}{{45\varGamma {\text{(4}}{\text{.5)}}}}{t^{4.5}} \hfill \\ \end{split} $

表1列出了 $ {u_{\text{0}}}{\text{(}}t{\text{)}} $ $ {u_{\text{1}}}{\text{(}}t{\text{)}} $ 与精确解的绝对误差。

表 1 例1的数值误差结果 Table 1 Numerical error results for Example 1

2 考虑如下时间分数阶捕食者−食饵模型

$ {}_0^{\rm{C}}D_t^{{\text{1}}{\text{.4}}}u{\text{(}}t{\text{) = 0}}{\text{.2}}u\left( {1 - {\text{0}}{\text{.2}}u - {\text{0}}{\text{.1}}v} \right) + {g_1}{\text{(}}t{\text{)}} $ (14)
$ {}_0^{\rm{C}}D_t^{{\text{1}}{\text{.6}}}v{\text{(}}t{\text{) = 0}}{\text{.05}}v\left( { - 1 + {\text{0}}{\text{.02}}u - {\text{0}}{\text{.5}}v} \right) + {g_2}{\text{(}}t{\text{)}} $ (15)

式(14)~(15)中:

$ {g_1}{\text{(}}t{\text{)}} = \varGamma {\text{(}}2.{\text{4)}} - 0.2{t^{1.{\text{4}}}} + 0.04{t^{2.8}} + 0.02{t^3} $
$ {g_2}{\text{(}}t{\text{)}} = \varGamma {\text{(}}2.6{\text{)}} + 0.05{t^{1.6}} - 0.001{t^3} + 0.025{t^{3.2}} $

初值条件为 $u{\text{(0)}} = v{\text{(0)}} = 0 \text{,} u^{\prime}{\text{(0)}} = v^{\prime}{\text{(0)}} = {\text{0}} $ ,精确解为 $ u{\text{(}}t{\text{)}} = {t^{{\text{1}}{\text{.4}}}} $

$ v{\text{(}}t{\text{)}} = {t^{{\text{1}}{\text{.6}}}} $ ,取 $ {u_{\text{0}}}{\text{(}}t{\text{)}} = 0 $ $ {v_0}{\text{(}}t{\text{)}} = 0 $ ,算得

$\begin{split} {u}_{1}\text{(}t\text{)}= & {\displaystyle {\int }_{0}^{t}{J}^{\text{0}\text{.4}}(\varGamma \text{(}2.\text{4)}-0.2{\xi }^{1.\text{4}}+0.04{\xi }^{2.8}+0.02{\xi }^{3})\text{d}\tau }=\\& \displaystyle {\int }_{0}^{t}1.4{\tau }^{0.4}-\frac{\varGamma \text{(}2.4\text{)}}{\text{5}\varGamma \text{(}2.8\text{)}}{\tau }^{1.8} + \frac{\varGamma \text{(}3.8\text{)}}{\text{25}\varGamma \text{(}4.2\text{)}}{\tau }^{3.2} + \\& \frac{\varGamma \text{(4)}}{\text{5}0\varGamma \text{(4}\text{.4)}}{\tau }^{3.4}\text{d}\tau = {t}^{1.4}-\frac{\varGamma \text{(}2.4\text{)}}{\text{14}\varGamma \text{(}2.8\text{)}}{t}^{2.8}+ \\& \frac{\varGamma \text{(}3.8\text{)}}{\text{105}\varGamma \text{(}4.2\text{)}}{t}^{4.2}+\frac{\varGamma \text{(4)}}{220\varGamma \text{(4}\text{.4)}}{t}^{4.4} \end{split} $
$ \begin{split} {v_1}{\text{(}}t{\text{)}} = & \int_0^t {{J^{{\text{0}}{\text{.6}}}}( {\varGamma {\text{(}}2.6{\text{)}} + 0.05{\xi ^{1.6}} - 0.001{\xi ^3} + 0.025{\xi ^{3.2}}} ){\text{d}}\tau } = \hfill \\& \int_0^t 1.6{\tau ^{0.6}} + \frac{{\varGamma {\text{(}}2.6{\text{)}}}}{{20\varGamma {\text{(}}3.2{\text{)}}}}{\tau ^{2.2}} - \frac{{\varGamma {\text{(}}4{\text{)}}}}{{1\;000\varGamma {\text{(}}4.6{\text{)}}}}{\tau ^{3.6}} + \\& \frac{{\varGamma {\text{(4}}{\text{.2)}}}}{{40\varGamma {\text{(4}}{\text{.8)}}}}{\tau ^{3.8}}{\text{d}}\tau = \hfill {t^{1.6}} + \frac{{\varGamma {\text{(}}2.6{\text{)}}}}{{{\text{64}}\varGamma {\text{(}}3.2{\text{)}}}}{t^{3.2}} - \\& \frac{{\varGamma {\text{(}}4{\text{)}}}}{{4\;600\varGamma {\text{(}}4.6{\text{)}}}}{t^{4.6}} + \frac{{\varGamma {\text{(4}}{\text{.2)}}}}{{192\varGamma {\text{(4}}{\text{.8)}}}}{t^{4.8}} \hfill \\& \end{split}$

表2列出了 $ {u_{\text{0}}}{\text{(}}t{\text{)}} $ $ {u_{\text{1}}}{\text{(}}t{\text{)}} $ $ {v_{\text{0}}}{\text{(}}t{\text{)}} $ $ {v_{\text{1}}}{\text{(}}t{\text{)}} $ 与精确解的绝对误差。

表 2 例2的数值误差结果 Table 2 Numerical error results for Example 2
4 结论

本文重点研究了一类分数阶捕食者−食饵模型。依据变分理论,对此类方程建立变分迭代格式,并严格地证明所建立格式的收敛性。最后,对2个模型进行数值模拟。模拟结果验证了该方法的可行性和有效性。

参考文献
[1]
EAB C H, LIM S C. Fractional Langevin equations of distributed order[J]. Physical Review E Statistical Nonlinear & Soft Matter Physics, 2011, 83(3): 031136.
[2]
赵天霄, 朱惠延, 刘岩柏, 等. 具水平抑制及母婴垂直传播的分数阶HIV/AIDS传染病模型的稳定性研究 [J]. 生物数学学报, 2018, 33(2): 204-210.
ZHAO T X, ZHU H Y, LIU Y B, et al, A study on stability of fractional HIV/ADIS epidemic model with horizontal inhibition and vertical mother-to-child transmission [J]. Journal of Biomathematics, 2018, 33(2): 204-210.
[3]
DAS S. Functional fractional calculus [M]. Berlin: Springer, 2011.
[4]
WANG Z, VONG S. Compact difference schemes for the modified anomalous fractional sub-diffusion equation and the fractional diffusion-wave equation[J]. Journal of Computational Physics, 2014, 277: 1-15. DOI: 10.1016/j.jcp.2014.08.012.
[5]
张会琴, 汪志波. 带周期边界的时间分数阶扩散方程的差分格式[J]. 广东工业大学学报, 2019, 36(3): 74-79.
ZHANG H Q, WANG Z B. Finite difference schemes for time fractional diffusion equations with periodic boundary conditions[J]. Journal of Guangdong University of Technology, 2019, 36(3): 74-79. DOI: 10.12052/gdutxb.180122.
[6]
HUANG C, STYNES M. Superconvergence of a finite element method for the multi-term time-fractional diffusion problem[J]. Journal of Scientific Computing, 2020, 82(1): 10. DOI: 10.1007/s10915-019-01115-w.
[7]
ZENG F, LI C, LIU F, et al. The use of finite difference/element approaches for solving the time-fractional subdiffusion equation[J]. SIAM Journal Scientific Computing, 2013, 35(6): A2979-A3000.
[8]
INOKUTI M, SEKINE H, MURA T. General use of the Lagrange multiplier in nonlinear physics[J]. Variational Methods in the Mechanics of Solids, 1980: 156-162.
[9]
HE J H. Variational iteration method for delay differential equation[J]. Communications in Nonlinear Science and Numerical Simulation, 1997, 2(4): 235-236. DOI: 10.1016/S1007-5704(97)90008-3.
[10]
尹伟石, 张绪财, 徐飞. 利用变分迭代法求Riesz分数阶偏微分方程近似解[J]. 黑龙江大学自然科学学报, 2016, 33(5): 587-591.
YIN W S, ZHANG X C, XU F. The approximate solution of Riesz fractional PDEs using variational iteration method[J]. Journal of Natural Science of Heilongjiang University, 2016, 33(5): 587-591.
[11]
高秀丽, 胡玉兰, 额尔敦布和. 基于变分迭代法数值模拟两种非线性发展方程的行波解[J]. 内蒙古大学学报(自然科学版), 2018, 49(6): 567-575.
GAO X L, HU Y L, EERDUN B. Numerical simulation of travelling wave solutions for mathematical physics equations by variational iteration method[J]. Journal of Inner Mongolia University (Natural Science Edition), 2018, 49(6): 567-575.
[12]
姜兆敏, 黄金城, 曹毅, 等. 利用变分迭代法解二阶常微分方程组边值问题 [J]. 数学的实践与认识, 2014, 44(10) : 289-293.
JIANG Z M, HUANG J C, CAO Y, et al, Numerical solutions of system of second-order boundary value problems using variational iteration method [J]. Mathematics in Practice and Theory, 2014, 44(10): 289-293.
[13]
EL-SHAHED M, AHMED A M, ABDELSTAR I M E. Fractional order model in generalist Predator-Prey dynamics.[J]. International Journal of Mathematics and its Applications, 2016, 4(3-A): 19-28.
[14]
王虎, 田晶磊, 孙玉琴, 等. 具有阶段结构的时滞分数阶捕食者−食饵系统的稳定性分析[J]. 应用数学学报, 2018, 41(1): 27-42.
WANG H, TIAN J L, SUN Y Q, et al. Stability analysis of fractional stage-structured Predator-Prey system with delay[J]. Acta Mathematicae Applicatae Sinica, 2018, 41(1): 27-42.
[15]
汪维刚, 石兰芳, 莫嘉琪. 一类生态模型的近似解析解[J]. 武汉大学学报(理学版), 2015, 61(4): 315-318.
WANG W G, SHI L F, MO J Q. The approximate analytic solution of a class of ecological model[J]. Journal of Wuhan University (Natural Science Edition), 2015, 61(4): 315-318.