在信号处理领域,为了实现信号的分类、存储、识别等目的,通常需要将信号分解为不同的原子,研究它们的不同表示形式。而稀疏表示的目的就是用尽可能少的原子来表示信号,以获得信号更为简洁的表示形式和更容易地获取信号所蕴含的信息,实现信号的压缩、存贮等目标[1-3]。经典的信号分解模型有Fourier分解、短时Fourier分解、小波分解等[4-5]。在1998年,N.E.Huang等人提出了经验模式分解算法(Empirical Mode Decomposition,简称EMD),它能将任意复杂信号
| $f(t) = \sum\nolimits_{k = 1}^n {{f_k}(t)} + {r_{n + 1}}(t)$ | (1) |
其中
| ${z_k}(t) = {f_k}(t) + {\rm{j}} \left( {H{f_k}} \right)\left( t \right) = {a_k}(t){{\rm{e}} ^{{\rm{j}} {\theta _k}(t)}}$ | (2) |
其中
为了建立IMF和EMD算法的相关理论基础以及推广和改进现有的非平稳数据处理方法,研究者们根据HHT(Hilbert-Huang transform)提出的理论背景,希望刻画出满足瞬时频率为正的解析信号的特征,并最终实现将复杂信号
| $f(t) = \sum\nolimits_{k = 0}^n {{a_k}(t)} \cos {\theta _k}(t) + r(t)$ | (3) |
其中
| $ H({a_k}( \cdot )\cos {\theta _k}( \cdot ))(t) = {a_k}(t)\sin {\theta _k}(t), {a_k}(t) \geqslant 0, \theta _k'(t) \geqslant 0 $ |
为了从理论上实现上述分解目标,研究者们根据解析信号空间
| $ \begin{split} & {\phi _0}({{\rm{e}} ^{{\rm{i}} t}}) = \frac{{\sqrt {1 - {{\left| {{\alpha _0}} \right|}^2}} }}{{1 - {{\overline \alpha }_0}{{\rm{e}} ^{{\rm{i}} t}}}} , \\& {\phi _k}({{\rm{e}} ^{{\rm{i}} t}}) = \frac{{\sqrt {1 - {{\left| {{\alpha _k}} \right|}^2}} }}{{1 - {{\overline \alpha }_k}{{\rm{e}} ^{{\rm{i}} t}}}}\prod\limits_{j = 1}^{k - 1} {\frac{{{{\rm{e}} ^{{\rm{i}} t}} - {\alpha _j}}}{{1 - {{\overline \alpha }_j}{{\rm{e}} ^{{\rm{i}} t}}}}} , k \geqslant 1 \end{split} $ | (4) |
其中
| $ \begin{split} & f({{\rm{e}} ^{{\rm{i}} t}}) = \left\langle {f({{\rm{e}} ^{{\rm{i}} t}}),{\phi _0}({{\rm{e}} ^{it}})} \right\rangle {\phi _0}({{\rm{e}} ^{it}}) + \cdots + \\& \left\langle {f({{\rm{e}} ^{it}}),{\phi _k}({{\rm{e}} ^{it}})} \right\rangle {\phi _k}({{\rm{e}} ^{it}}) + \cdots = \left\langle {f({{\rm{e}} ^{it}}),\frac{{\sqrt {1 - |{\alpha _0}{|^2}} }}{{1 - {{\overline \alpha }_0}{{\rm{e}} ^{it}}}}} \right\rangle + \cdots + \\& \left\langle{f({{\rm{e}} ^{it}}),\frac{{\sqrt {1 - |{\alpha _0}{|^2}} }}{{1 - {{\overline \alpha }_0}{{\rm{e}} ^{it}}}}\prod\limits_{j = 0}^{k - 1} {\frac{{{{\rm{e}} ^{it}} - {\alpha _j}}}{{1 - {{\overline \alpha }_j}{{\rm{e}} ^{it}}}}} }\right\rangle\frac{{\sqrt {1 - |{\alpha _0}{|^2}} }}{{1 - {{\overline \alpha }_0}{{\rm{e}} ^{it}}}}\prod\limits_{j = 0}^{k - 1}{\frac{{{{\rm{e}} ^{it}} - {\alpha _j}}}{{1 - {{\overline \alpha }_j}{{\rm{e}} ^{it}}}}} + \cdots \end{split} $ | (5) |
其中
| $ \left\langle {f({{\rm{e}} ^{{\rm{i}}t}}),g({{\rm{e}} ^{{\rm{i}}t}})} \right\rangle = \frac{1}{{2{\rm{{\text{π}} }}}}\int\limits_0^{2{\rm{{\text{π}} }}} {f({{\rm{e}} ^{{\rm{i}}t}})\overline {g({{\rm{e}} ^{{\rm{i}}t}})} } {\rm{d}} t = \frac{1}{{2{\rm{{\text{π}} i}}}}\oint\limits_{|z| = 1} {f(z)\overline {g\left(\frac{1}{{\overline z }}\right)} } \frac{{{\rm{d}} z}}{z} $ | (6) |
关于有理Fourier级数的研究已经被成功应用到系统辨识、信号处理等领域[17-20]。
事实上,当令
| $ \begin{split} \left\langle {{f_{k + 1}}({{\mathop{\rm{e}}\nolimits} ^{{\rm{i}}t}}),{\phi _{k + 1}}({{\mathop{\rm{e}}\nolimits} ^{{\rm{i}}t}})} \right\rangle =& \left\langle {{f_k}({{\mathop{\rm{e}}\nolimits} ^{{\rm{i}}t}}),{\phi _{k + 1}}({{\mathop{\rm{e}}\nolimits} ^{{\rm{i}}t}})} \right\rangle = \cdots =\\& \left\langle {{f_0}({{\mathop{\rm{e}}\nolimits} ^{{\rm{i}}t}}),{\phi _{k + 1}}({{\mathop{\rm{e}}\nolimits} ^{{\rm{i}}t}})} \right\rangle \end{split} $ |
因此,上述分解也可进一步表示为
| $ \begin{split} {f_0}({{\rm{e}} ^{{\rm{i}}t}}) =& {{{f}}_1}{\rm{(}}{{\rm{e}}^{{\rm{i}}t}}{\rm{) + }}\left\langle {{f_0}({{\rm{e}} ^{{\rm{i}}t}}),{\phi _0}({{\rm{e}} ^{{\rm{i}}t}})} \right\rangle {\phi _0}({{\rm{e}} ^{{\rm{i}}t}}){\rm{ = }} \cdots = \\& \sum\limits_{j = 1}^k {\left\langle {{f_k}({{\rm{e}} ^{{\rm{i}}t}}),{\phi _k}({{\rm{e}} ^{{\rm{i}}t}})} \right\rangle } {\phi _k}({{\rm{e}} ^{{\rm{i}}t}}){\rm{ + }}{f_{k + 1}}({{\rm{e}} ^{{\rm{i}}t}}) = \\& \sum\limits_{j = 1}^k {\left\langle {{f_0}({{\rm{e}} ^{{\rm{i}}t}}),{\phi _k}({{\rm{e}} ^{{\rm{i}}t}})} \right\rangle } {\phi _k}({{\rm{e}} ^{{\rm{i}}t}}){\rm{ + }}{f_{k + 1}}({{\rm{e}} ^{{\rm{i}}t}}) \end{split} $ | (7) |
为了实现上述模型的快速分解,在2011年,钱涛教授及合作者结合分解算法的能量守恒原则
| $ {\rm{|}}f{\rm{(}}{{\rm{e}} ^{{\rm{i}}t}}{\rm{)|}}{{\rm{|}}^2} = |\left\langle {{f_{0,}}{\phi _0}} \right\rangle {|^2} + |\left\langle {{f_{1,}}{\phi _1}} \right\rangle {|^2}{\rm{ + }} \cdots {\rm{ + }}|\left\langle {{f_{k,}}{\phi _k}} \right\rangle {|^2} + ||{f_{k + 1}}({{\rm{e}} ^{{\rm{i}}t}})|{|^2} $ |
及正交匹配追踪算法(Orthogonal Matching Pursuit,OMP)的思想[21],给出了解析信号
令
| $ \begin{split} \alpha _0^* =& \mathop {\arg \max }\limits_{{\alpha _0} \in D} |\left\langle {{f_0},{\phi _0}} \right\rangle {|^2} = \mathop {\arg \max }\limits_{{\alpha _0} \in D} |\left\langle {f,\frac{{\sqrt {1 - |{\alpha _0}{|^2}} }}{{1 - {{\overline \alpha }_0}{{\rm{e}} ^{{\rm{i}}t}}}}} \right\rangle {|^2} = \\& \mathop {\arg \max }\limits_{{\alpha _0} \in D} (1 - |{\alpha _0}{|^2}){\rm{|}}f\left( {{\alpha _0}} \right){{\rm{|}}^2}\\[-18pt] \end{split} $ | (8) |
令
| $ \begin{split} \alpha _1^* = &\mathop {\arg \max }\limits_{{\alpha _1} \in D} |\langle {{f_1}({{\rm{e}} ^{{\rm{i}}t}}),{\phi _1}({{\rm{e}} ^{{\rm{i}}t}})} \rangle {|^2} = \\& \mathop {\arg \max }\limits_{{\alpha _1} \in D} \left|\left\langle {{f_1}({{\rm{e}} ^{{\rm{i}}t}}),\frac{{\sqrt {1 - |{\alpha _1}{|^2}} }}{{1 - \overline {{\alpha _1}} {{\rm{e}} ^{{\rm{i}}t}}}}\frac{{{{\rm{e}} ^{{\rm{i}}t}} - \alpha _0^{\rm{*}}}}{{1 - \overline {\alpha _0^ * } {{\rm{e}} ^{{\rm{i}}t}}}}} \right\rangle \right|^2 = \\& \mathop {\arg \max }\limits_{{\alpha _1} \in D} (1 - |{\alpha _1}{|^2}){\rm{|}}{{\rm{g}}_1}\left( {{\alpha _1}} \right){{\rm{|}}^2} \end{split} $ | (9) |
其中
依次迭代下去,令
| $ \begin{split} \alpha _k^* = &\mathop {\arg \max }\limits_{{\alpha _k} \in D} |\left\langle {{f_k}({{\rm{e}} ^{{\rm{i}}t}}),{\phi _k}({{\rm{e}} ^{{\rm{i}}t}})} \right\rangle |^2 = \\[-3pt]& \mathop {\arg \max }\limits_{{\alpha _k} \in D} \left|\left\langle {{f_k}({{\rm{e}} ^{{\rm{i}}t}}),\frac{{\sqrt {1 - |{\alpha _k}{|^2}} }}{{1 - \overline {{\alpha _k}} {{\rm{e}} ^{{\rm{i}}t}}}}\prod\limits_{j = 0}^{k - 1} {\frac{{{{\rm{e}} ^{{\rm{i}}t}} - \alpha _j^*}}{{1 - \overline {\alpha _j^*} }}} } \right\rangle \right|^2 {\rm{ = }}\\[-3pt]& \mathop {\arg \max }\limits_{{\alpha _k} \in D} \left|\left\langle {{g_k}({{\rm{e}} ^{{\rm{i}}t}}),\frac{{\sqrt {1 - |{\alpha _k}{|^2}} }}{{1 - {{\overline \alpha }_k}{{\rm{e}} ^{{\rm{i}}t}}}}} \right\rangle \right|^2 \end{split} $ |
其中
当
关于这个算法极大值选取的存在性及算法的收敛性证明具体参见文献[22]。围绕这个分解,钱涛教授及合作者[23-26]开展了一系列的工作,他们不仅从理论上证明了AFD算法的快速收敛性,而且实现了在系统辨识、图像去噪等领域的应用,并将AFD分解的相关结论推广到矩阵值函数、高维复分析、Clifford分析等领域。
由于自适应Fourier分解是基于Hardy空间的性质建立的分解模型,而Hardy空间本质上是一个再生核空间。为了拓宽其应用范围,本文将研究再生核空间
定义1
对于任意的
| $(u,v) = \int_a^b {[u(x)v(x) + u'(x)v'(x)]{\rm{d}}x} $ |
故其范数为
在文献[27-29],已证明
| $ R(x,y)=\frac{{\rm{e}}^{x+y}+{\rm{e}}^{2a+2b-(x+y)}+{\rm{e}}^{2a+|x-y|}+{\rm{e}}^{2b-|x-y|}}{2({\rm{e}}^{2b}-{\rm{e}}^{2a})}$ | (10) |
设
| ${I_j}u = u({x_j}), \;\;(u \in W_2^1,j = 1,2,\cdots,n) $ |
则
| $ | {{I_j}u} | = | {u({x_j})} | \leqslant {\| u \|_c} \leqslant M\| u \| (u \in W_2^1,j = 1,2,\cdots,n), $ |
其中
| $ \begin{split} & {I_j}u = (u(x), {\varphi _j}(x)), \;\;\;\;(u(x) \in W_2^1)\\& \| {{I_j}} \| = \| {{\varphi _j}} \|,\;\;\;\;(j = 1,2,\cdots,n) \end{split}$ |
对于
| $u(x) = {Q_x}u = (u(y),R(x,y)), \;\;(u(x) \in W_2^1)$ |
因此有
| $ \begin{split} {\varphi _j}(x) =& {Q_x}{\varphi _j} = ({\varphi _j}(y),R(x,y)) = (R(x,y),{\varphi _j}(y)) = \\& {I_j}R(x,y) = R(x,{x_j}) \end{split} $ |
设
| ${u_n}(x) = \sum\nolimits_{j = 1}^n {{a_j}(x){R_{{x_j}}}(x)} $ | (11) |
根据最小均方误差原理有
| $ \begin{split} & \mathop {\min }\limits_{{a_k}} {\left\| {u(x) - \sum\nolimits_{j = 1}^n {{a_j}(x){R_{{x_j}}}(x)} } \right\|^2} = \\& {\left\| {u(x) - \sum\nolimits_{j = 1}^n {\left\langle {u(x)} \right.,\left. {\widetilde {{\varphi _j}}(x)} \right\rangle \widetilde {{\varphi _j}}(x)} } \right\|^2} \end{split} $ | (12) |
其中
根据规范正交函数系的性质,知
| $ \left\langle {\widetilde {{\varphi _n}}(x)} \right.,\left. {\widetilde {{\varphi _j}}(x)} \right\rangle = \sum\nolimits_{i = 1}^j {\beta _{ij}^*{{\tilde \varphi }_n}} ({x_i}) = 0, j = 1,2, \cdots ,n - 1 $ |
从而推得
根据最佳平方逼近原理,最佳
根据再生核的性质,上述公式也可以表示为
| $u_n^*(x) = \sum\nolimits_{j = 1}^n {a_j^*{\varphi _j}(x)} $ |
| $ \left( {\begin{array}{*{20}{c}} {\left\langle {{\varphi _1},\left. {{\varphi _1}} \right\rangle } \right.}&{\left\langle {{\varphi _1},\left. {{\varphi _2}} \right\rangle } \right.}& \cdots &{\left\langle {{\varphi _1},\left. {{\varphi _n}} \right\rangle } \right.}\\ {\left\langle {{\varphi _2},\left. {{\varphi _1}} \right\rangle } \right.}&{\left\langle {{\varphi _2},\left. {{\varphi _2}} \right\rangle } \right.}& \cdots &{\left\langle {{\varphi _2},\left. {{\varphi _n}} \right\rangle } \right.}\\ \vdots & \vdots & {} & \vdots \\ {\left\langle {{\varphi _n},\left. {{\varphi _1}} \right\rangle } \right.}&{\left\langle {{\varphi _n},\left. {{\varphi _2}} \right\rangle } \right.}& \cdots &{\left\langle {{\varphi _n},\left. {{\varphi _n}} \right\rangle } \right.} \end{array}} \right)\left( {\begin{array}{*{20}{c}} {a_1^*}\\ {a_2^*}\\ \vdots \\ {a_n^*} \end{array}} \right) = \left( {\begin{array}{*{20}{c}} {u({x_1})}\\ {u({x_2})}\\ \vdots \\ {u({x_n})} \end{array}} \right)$ |
因此,很容易知道最佳的
| $u_n^*({x_i}) = f({x_i}), \;\;i = 1,2, \cdots n$ |
而且,利用再生核的性质,
定理1 最佳
| $u_n^*(x) = \sum\nolimits_{j = 1}^n {l{}_j(x)u({x_j})} $ |
其中,拉格朗日基函数
| $l{}_j(x) = \sum\nolimits_{i = j}^n {{\beta _{ij}}\widetilde {{\varphi _i}}(x)} = \sum\nolimits_{i = j}^n {{\beta _{ij}}\sum\nolimits_{k = 1}^i {{\beta _{ki}}{\varphi _k}(x)} } $ | (13) |
并且满足
证明 因为
| $\widetilde {{\varphi _j}}(x) = \sum\limits_{k = 1}^j {{\beta _{kj}}{\varphi _k}(x)} {\rm{ = }}\sum\limits_{k = 1}^j {{\beta _{kj}}{R_{{x_k}}}(x)} $ |
而
| $ \begin{split} u_n^*(x) =& \sum\nolimits_{j = 1}^n {\left\langle {u(x)} \right.,\left. {\widetilde {{\varphi _j}}(x)} \right\rangle \widetilde {{\varphi _j}}(x)} {\rm{ = }}\\& \sum\nolimits_{j = 1}^n {\sum\nolimits_{i = 1}^j {{\beta _{ij}}u({x_i})} \widetilde {{\varphi _j}}(x)} = \\& \sum\nolimits_{j = 1}^n {\left[ {\sum\nolimits_{i = j}^n {{\beta _{ij}}} \widetilde {{\varphi _i}}(x)} \right]u({x_j})} \end{split} $ |
因此,拉格朗日基函数
| $ l{}_j(x) = \sum\nolimits_{i = j}^n {{\beta _{ij}}\widetilde {{\varphi _i}}(x)} = \sum\nolimits_{i = j}^n {{\beta _{ij}}\sum\nolimits_{k = 1}^i {{\beta _{ki}}{\varphi _k}(x)} } $ |
接下来简单讨论一下
| $ {l_j}({x_k}) = \left\{ {\begin{array}{*{20}{c}} {1 , j = k} \\ {0 , j \ne k} \end{array}} \right. $ |
(1) 当
| ${l_k}({x_k}) = \sum\nolimits_{i = k}^n {{\beta _{ki}}\widetilde {{\varphi _i}}({x_k})} = \sum\nolimits_{i = k}^n {{\beta _{ki}}\left\langle {\widetilde {{\varphi _i}}} \right.,\left. {{\varphi _k}} \right\rangle } $ |
再由
| ${l_k}({x_k}) = \sum\nolimits_{i = k}^n {{\beta _{ki}}\left\langle {\widetilde {{\varphi _i}}} \right.,\left. {{\varphi _k}} \right\rangle } = {\beta _{kk}}{\gamma _{kk}} = 1$ |
(2) 当
①
②
引理1 设
| $u_n^{\rm{*}}(x) = \sum\limits_{i = 1}^n {\left\langle {u(x),{{\tilde \varphi }_i}(x)} \right\rangle } {\tilde \varphi _i}(x){\rm{ = }}\sum\nolimits_{i = 1}^n {{l_i}(x){u_i}} $ | (14) |
一致收敛于原函数
证明 若
| $0 = \sum\nolimits_{k = 1}^i {{\beta _{ki}}} \left\langle {u(x),{\varphi _k}(x)} \right\rangle = \sum\nolimits_{k = 1}^i {{\beta _{ki}}} u({x_k}) (i = 1,2, \cdots )$ | (15) |
因此
| $u({x_i}) = 0,\;\;(i = 1,2, \cdots )$ | (16) |
由
| $u(x) \equiv 0 ,\;\;(x \in \left[ {a,b} \right])$ | (17) |
因此,对任何
| $ \begin{split} & \left\| {u(x) - u_n^{\rm{*}}(x)} \right\| = \left\| {u(x) - \sum\nolimits_{i = 1}^n {{l_i}(x){u_i}} } \right\| = \\& \left\| {u(x) - \sum\nolimits_{i = 1}^n {\left\langle {u(x),\widetilde {{\varphi _i}}(x)} \right\rangle \widetilde {{\varphi _i}}(x)} } \right\| \to 0 \;\;(n \to \infty ) \end{split}$ | (18) |
再根据
| $ u_{n}^{*}(x)\xrightarrow{{\text{一致}}}u(x), \;\;(n\to \infty ) $ |
证毕。
定理2 设
| $\mathop {\sup }\limits_{\left\| u \right\| \leqslant 1} \left| {u\left( x \right) - {u_n}\left( x \right)} \right| \leqslant M\sqrt d $ | (19) |
其中
证明 令
| $ \begin{split} & {d_B}(x) = \mathop {\inf }\limits_{{X_n} \in W_2^1} \mathop {\inf }\limits_{\left\{ {{l_i}} \right\}_{i = 1}^n \in {X_n}} \mathop {\sup }\limits_{\left\| u \right\| \leqslant 1} \left| {u(x) - \sum\nolimits_{i = 1}^n {{l_i}(x){u_i}} } \right| = \\& \mathop {\inf }\limits_{{X_n} \in W_2^1} \mathop {\inf }\limits_{\left\{ {{l_i}} \right\}_{i = 1}^n \in {X_n}} \mathop {\sup }\limits_{\left\| u \right\| \leqslant 1} \left| {\left\langle {u( \cdot ),{R_x}( \cdot )} \right\rangle - \sum\nolimits_{i = 1}^n {{l_i}(x)\left\langle {u( \cdot ),{R_{{x_i}}}( \cdot )} \right\rangle } } \right| = \\& \rho \mathop {\inf }\limits_{{X_n} \in W_2^1} \mathop {\inf }\limits_{\left\{ {{l_i}} \right\}_{i = 1}^n \in {X_n}} \mathop {\sup }\limits_{\left\| u \right\| \leqslant 1} \left| {\left\langle {u( \cdot ),{R_x}( \cdot )} \right\rangle - \sum\nolimits_{i = 1}^n {{l_i}(x){\varphi _i}( \cdot )} } \right| = \\& \rho \mathop {\inf }\limits_{{X_n} \in W_2^1} \mathop {\inf }\limits_{\left\{ {{l_i}} \right\}_{i = 1}^n \in {X_n}} \left| {{R_x}( \cdot ) - \sum\nolimits_{i = 1}^n {{l_i}(x){\varphi _i}( \cdot )} } \right| \end{split} $ |
设
| $\mathop {\sup }\limits_{\left\| u \right\| \leqslant 1} \left| {u\left( x \right) - {u_n}\left( x \right)} \right| = {d_B}(x) = \left\| {{R_x}( \cdot ) - \left( {{P_n}{R_x}} \right)( \cdot )} \right\|$ | (20) |
由于,对于每一个
| $ \begin{split} & d_B^2(x) \leqslant {\left\| {{R_{{x_t}}}( \cdot ) - \left\langle {{R_{{x_t}}}(x),{\varphi _i}(x)} \right\rangle {\varphi _i}( \cdot )/{{\left\| {{\varphi _i}} \right\|}^2}} \right\|^2} = \\& {R_{{x_t}}}(x) - {\varphi _i}(x){\varphi _i}(x)/{\left\| {{\varphi _i}} \right\|^2} = \left[ {{R_{{x_t}}}(x){R_{{x_i}}}({x_i}) - R_{{x_i}}^2(x)} \right]/{\left\| {{\varphi _i}} \right\|^2} = \\& [{R_{{x_t}}}(x)\left( {{R_{{x_i}}}({x_i}) - {R_{{x_i}}}(x)} \right) + {R_{{x_i}}}(x)\left( {{R_{{x_t}}}(x) - {R_{{x_i}}}(x)} \right)]/{\left\| {{\varphi _i}} \right\|^2} \end{split} $ | (21) |
再生核
| $ \left\{ \begin{aligned} & {R_s}(x) = {R_r}(s), \left| {{R_s}({x_1}) - {R_s}({x_2})} \right| \leqslant \left| {{x_1} - {x_2}} \right| \\ & \mathop {\max }\limits_{s,x} \left| {{R_s}(x)} \right| = \frac{{{\rm{ch}} (b - a)}}{{{\rm{sh}} (b - a)}}, \mathop {\min }\limits_x \left| {{R_x}(x)} \right| = \frac{{1 + {\rm{ch}} (b - a)}}{{2{\rm{sh}} (b - a)}} \end{aligned} \right. $ |
故
| $ \left| {{R_{{x_i}}}({x_i}) - {R_{{x_i}}}(x)} \right| \leqslant \left| {{x_i} - x} \right|,\left| {{R_{{x_t}}}(x) - {R_{{x_i}}}(x)} \right| \leqslant \left| {{x_t} - {x_i}} \right| $ |
综上可得
| $d_B^2(x) \leqslant 4 \cdot \frac{{{\rm{ch}} (b - a)}}{{1 + {\rm{ch}} (b - a)}} \cdot d$ | (22) |
其中
接下来,进一步论证逐步按能量最大的原理选取
(1) 令
| $ \begin{split} x_1^* = & \mathop {\arg \max }\limits_{y \in [a,b]} {\left| {\left\langle {u(x),\frac{{{\phi _y}(x)}}{{\sqrt {\left\langle {{\phi _y}(x),{\phi _y}(x)} \right\rangle } }}} \right\rangle } \right|^2} = \\& \mathop {\arg \max }\limits_{y \in [a,b]} {\left| {\left\langle {u(x),\frac{{{R_y}(x)}}{{\sqrt {\left\langle {{R_y}(x),{R_y}(x)} \right\rangle } }}} \right\rangle } \right|^2} = \\& \mathop {\arg \max }\limits_{y \in [a,b]} {\left| {\frac{{u(y)}}{{R(y,y)}}} \right|^2} \end{split} $ |
(2) 令
| $ \begin{split} x_2^{\rm{*}} = &\mathop {\arg \max }\limits_{y \in [a,b]} {\left| {\left\langle {u_2^a(x),\frac{{{\phi _y}(x) - \left\langle {{\phi _y}(x), {{\tilde\phi _{x_1^*}}}(x)} \right\rangle {{\tilde\phi _{x_1^*}}}(x)}}{{\sqrt {R{\rm{(}}y{\rm{,}}y{\rm{)}} - {{\left| {\left\langle {{\phi _y}(x), {{\tilde\phi _{x_1^*}}}(x)} \right\rangle } \right|}^2}} }}} \right\rangle } \right|^2} = \\& \mathop {\arg \max }\limits_{y \in [a,b]} {\left| {\left\langle {u_2^a(x),\frac{{{R_y}(x)}}{{\sqrt {R(y,y) - {{\left| {\left\langle {{R_y}(x), {{\tilde\phi _{x_1^*}}}(x)} \right\rangle } \right|}^2}} }}} \right\rangle } \right|^2} = \\& \mathop {\arg \max }\limits_{y \in [a,b]} \frac{{{{\left| {u_2^a(y)} \right|}^2}}}{{R(y,y) - {{\left| {\left\langle {{R_y}(x), {{\tilde\phi _{x_1^*}}}(x)} \right\rangle } \right|}^2}}} \end{split} $ |
(3) 逐步重复上述步骤,令
| $u_k^a(x) = u_{k - 1}^a(x) - \left\langle {u_{k - 1}^a(x),{\tilde {\phi} _{x_{k - 1}^*}}(x)} \right\rangle {\tilde{\phi} _{x_{k - 1}^*}}(x) $ |
按照能量下降最快原理,可得最优的
| $ \begin{split} x_k^*=&\mathop {\arg \max }\limits_{y \in [a,b]} {\left| {\left\langle {{u_k}(x),\frac{{{\phi _y}(x) - \displaystyle\sum\nolimits_{j = 1}^{k - 1} {\left\langle {{\phi _y}(x), {{\tilde\phi _{x_j^*}}}(x)} \right\rangle {{\tilde\phi _{x_j^*}}}(x)} }}{{\sqrt {R{\rm{(}}y{\rm{,}}y{\rm{)}} - \displaystyle\sum\nolimits_{j = 1}^{k - 1} {{{\left| {\left\langle {{\phi _y}(x), {{\tilde\phi _{x_j^*}}}(x)} \right\rangle } \right|}^2}} } }}} \right\rangle } \right|^2} = \\& \mathop {\arg \max }\limits_{y \in [a,b]} \frac{{{{\left| {{u_k}(y)} \right|}^2}}}{{R(y,y) - \displaystyle\sum\nolimits_{j = 1}^{k - 1} {{{\left| {\left\langle {{R_y}(x), {{\tilde\phi _{x_j^*}}}(x)} \right\rangle } \right|}^2}} }} \end{split} $ |
其中
接下来,证明在AFD原则得到的
定理3 假设
证明 因为
| $ \begin{split} & {\left\| {u_{k + 1}^a(x)} \right\|^2} = {\left\| {u_k^a(x)} \right\|^2} - {\left| {\left\langle {u_k^a(x),{\tilde {\phi} _{x_k^*}}(x)} \right\rangle } \right|^2} =\\& {\left\| {u(x)} \right\|^2}-\displaystyle\sum\nolimits_{j = 1}^k {{{\left| {\left\langle {u_j^a(x),{\tilde {\phi} _{x_j^*}}(x)} \right\rangle } \right|}^2}} {\rm{ = }}{\left\| {u(x)} \right\|^2} - \\& \displaystyle\sum\nolimits_{j = 1}^k {{{\left| {\left\langle {u_j^a(x),\frac{{{\phi _{_{x_j^*}}}(x) - \displaystyle\sum\nolimits_{i = 1}^{j - 1} {\left\langle {{\phi _{x_j^*}}(x), {{\tilde\phi _{x_i^*}}}(x)} \right\rangle } {{\tilde\phi _{x_i^*}}}(x)}}{{\sqrt {\left\langle {{\phi _{x_j^*}}(x),{\phi _{x_j^*}}(x)} \right\rangle-\displaystyle\sum\nolimits_{i = 1}^{j - 1} {{{\left| {\left\langle {{\phi _{x_j^*}}(x), {{\tilde\phi _{x_i^*}}}(x)} \right\rangle } \right|}^2}} } }}} \right\rangle } \right|}^2}} \end{split} $ |
因此有
| $ \begin{split} & {\left\| {u(x)} \right\|^2} ={\left\| {u_{k + 1}^a(x)} \right\|^2} + \sum\nolimits_{j = 1}^k {{{\left| {\left\langle {u_j^a(x),{\tilde {\phi} _{x_j^*}}(x)} \right\rangle } \right|}^2}} = \\& {\left\| {u_{k + 1}^a(x)} \right\|^2} + \sum\nolimits_{j = 1}^k {\frac{{{{\left| {u_j^a(x_j^*)} \right|}^2}}}{{R(x_j^*,x_j^*) - \displaystyle\sum\nolimits_{i = 1}^{j - 1} {{{\left| {\left\langle {{\phi _{x_j^*}}(x),{\tilde {\phi} _{x_i^*}}(x)} \right\rangle } \right|}^2}} }}} \end{split} $ |
由于
| $ \sum\nolimits_{j = 1}^\infty {\frac{{{{\left| {u_j^a(x_j^*)} \right|}^2}}}{{R(x_j^*,x_j^{\rm{*}}) - \displaystyle\sum\nolimits_{i = 1}^{j - 1} {{{\left| {\left\langle {{\phi _{x_j^*}}(x),{\tilde {\phi} _{x_i^*}}(x)} \right\rangle } \right|}^2}} }}} \leqslant {\left\| u \right\|^2} < \infty $ |
根据无穷级数收敛原理,有
| $\mathop {\lim }\limits_{j \to \infty } \frac{{{{\left| {u_j^a(x_j^*)} \right|}^2}}}{{R(x_j^*,x_j^*) - \displaystyle\sum\nolimits_{i = 1}^{j - 1} {{{\left| {\left\langle {{\phi _{x_j^*}}(x),{\tilde {\phi} _{x_i^*}}(x)} \right\rangle } \right|}^2}} }} = 0$ |
因为
| $ \begin{split} & \frac{{{{\left| {u_j^a(y)} \right|}^2}}}{{R(y,y)}} \leqslant \frac{{{{\left| {u_j^a(y)} \right|}^2}}}{{R(y,y) - \displaystyle\sum\nolimits_{i = 1}^{j - 1} {{{\left| {\left\langle {{\phi _y}(x),{\tilde {\phi} _{x_i^*}}(x)} \right\rangle } \right|}^2}} }} \leqslant \\& \frac{{{{\left| {u_j^a(x_j^*)} \right|}^2}}}{{R(x_j^*,x_j^*) - \displaystyle\sum\nolimits_{j = 1}^{k - 1} {{{\left| {\left\langle {{\psi _{x_k^*}}(x),{\tilde {\psi} _{x_j^*}}(x)} \right\rangle } \right|}^2}} }} \end{split} $ |
再根据
设
| $ \begin{split} u_n^c(x) = &\sum\nolimits_{j = 1}^n {\left\langle {u(x),\widetilde {{\varphi _j}}(x)} \right\rangle } \widetilde {{\varphi _j}}(x) = \sum\nolimits_{j = 1}^n {[{l_j}(x)]u({x_j})} {\rm{ = }}\\& \sum\nolimits_{j = 1}^n {\left[ {\sum\nolimits_{i = j}^n {\beta _{ji}^*\sum\nolimits_{k = 1}^i {{\beta _{ki}}R({x_k},x)} } } \right]} u({x_j}) \end{split} $ | (23) |
其中
定理4 设
| $ \begin{split} & f_n^c(x) = \int_a^x {u_n^c(t){\rm{d}} t} = \\& \sum\nolimits_{j = 1}^n {\left[ {\sum\nolimits_{i = j}^n {\beta _{ji}^*\sum\nolimits_{k = 1}^i {{\beta _{ki}}\int_a^x {R({x_k},t){\rm{d}} t} } } } \right] } u({x_j}) \end{split} $ | (24) |
当
| $ \begin{split} & \int_a^x {{R_{{x_k}}}(t){\mathop{\rm{d}}\nolimits} t} {\rm{ = }}\\& \frac{{{{\mathop{\rm{e}}\nolimits} ^{{x_k} + x}} - {{\mathop{\rm{e}}\nolimits} ^{2a + 2b - {x_k} - x}} - 2{{\mathop{\rm{e}}\nolimits} ^{2a}} + {{\mathop{\rm{e}}\nolimits} ^{2a - {x_k} + x}} + 2{{\mathop{\rm{e}}\nolimits} ^{2b}} - {{\mathop{\rm{e}}\nolimits} ^{2b + {x_k} - x}}}}{{2\left( {{{\mathop{\rm{e}}\nolimits} ^{2b}} - {{\mathop{\rm{e}}\nolimits} ^{2a}}} \right)}} \end{split} $ | (25) |
证明 由于
| $ \begin{split} u_n^c(x) = &\sum\nolimits_{j = 1}^n {\left\langle {u(x), {{\tilde \varphi _j}}(x)} \right\rangle } {{\tilde \varphi _j}}(x) = \sum\nolimits_{j = 1}^n {[{l_j}(x)]u({x_j})} {\rm{ = }}\\& \sum\nolimits_{j = 1}^n {\left[ {\sum\nolimits_{i = j}^n {\beta _{ji}^*\sum\nolimits_{k = 1}^i {{\beta _{ki}}R({x_k},x)} } } \right]} u({x_j}) \end{split} $ |
一致收敛于
| $f_n^c(x) = \sum\nolimits_{j = 1}^n {\left[ {\sum\nolimits_{i = j}^n {\beta _{ji}^*\sum\nolimits_{k = 1}^i {{\beta _{ki}}\int_a^x {R({x_k},t){\rm{d}} t} } } } \right]} u({x_j})$ | (25) |
再根据再生核的表达式
| $ {R_x}(t){\rm{ = }} \dfrac{{{{\mathop{\rm{e}}\nolimits} ^{x + t}} + {{\mathop{\rm{e}}\nolimits} ^{2a + 2b - (x + t)}} + {{\mathop{\rm{e}}\nolimits} ^{2a + |x - t|}} + {{\mathop{\rm{e}}\nolimits} ^{2b - |x - t|}}}}{{2\left( {{{\mathop{\rm{e}}\nolimits} ^{2b}} - {{\mathop{\rm{e}}\nolimits} ^{2a}}} \right)}} $ |
知其为
| $ \begin{split} & {\lambda _k}(x) = \int_a^x {{R_{{x_k}}}(t){\mathop{\rm{d}}\nolimits} t} {\rm{ = }}\\&\frac{{\left\{ {{{\mathop{\rm{e}}\nolimits} ^{{x_k} + x}} - {{\mathop{\rm{e}}\nolimits} ^{2a + 2b - {x_k} - x}} - 2{{\mathop{\rm{e}}\nolimits} ^{2a}} + {{\mathop{\rm{e}}\nolimits} ^{2a - {x_k} + x}} + 2{{\mathop{\rm{e}}\nolimits} ^{2b}} - {{\mathop{\rm{e}}\nolimits} ^{2b + {x_k} - x}}} \right\}}}{{2\left( {{{\mathop{\rm{e}}\nolimits} ^{2b}} - {{\mathop{\rm{e}}\nolimits} ^{2a}}} \right)}} \end{split} $ |
证毕。
算例:用简单的函数来验证用两种方式求得的最佳数值原函数的逼近效果,取
| $f(x) = \int_0^x {\sin t{\rm{d}} t} = - \cos x{\rm{ + 1}}$ |
在[0,1]区间上分别按等分方式和AFD思想取5个节点,分别得到最佳数值逼近原函数
|
图 1 求解的数值积分原函数 Figure 1 Solving the original function of numerical integration |
| [1] |
石斌, 郭俊锋. 基于过完备字典稀疏表示振动信号压缩感知方法[J].
机械设计与制造工程, 2018, 47(5): 55-59.
SHI B, GUO J F. Compressed sensing method based on over-complete dictionary and sparse representation of vibration signal[J]. Mechanical Design and Manufacturing Engineering, 2018, 47(5): 55-59. |
| [2] |
ROSENTHAL A, RAZANSKY D, NTZIACH- RISTOS V. Quantitative optoacoustic signal extraction using sparse signal representation[J].
IEEE Transactions on Medical Imaging, 2009, 28(12): 1997-2006.
DOI: 10.1109/TMI.2009.2027116. |
| [3] |
PROTTER M, YAVNEH I, ELAD M. Closed- form MMSE estimation for signal denoising under sparse representation modeling over a unitary dictionary[J].
IEEE Transactions on Signal Processing, 2010, 58(7): 3471-3484.
DOI: 10.1109/TSP.2010.2046596. |
| [4] |
DAUBECHIES I. Ten lectures on wavelets[J].
Computers in Physics, 1992, 93(3): 1671-1671.
|
| [5] |
COHEN L. Time-frequency analysis[M]. New Jersey: Prentice Hall, 1995.
|
| [6] |
HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].
Proceedings Mathematical Physical & Engineering Sciences, 1998, 454(1971): 903-995.
|
| [7] |
GABOR D. Theory of communication[J].
Journal of Institute of Electrical Engineers, 1946, 93(26): 429-441.
|
| [8] |
GEORGOULAS G, TSOUMAS I, ANTONINO DAVIU J, et al. Automatic pattern identification based on the complex empirical mode decomposition of the startup current for the diagnosis of rotor asymmetries in asynchronous machines[J].
IEEE Transactions on Industrial Electronics, 2014, 61(9): 4937-4946.
DOI: 10.1109/TIE.2013.2284143. |
| [9] |
YEH J, FAN S, SHIEH J, et al. Human heart beat analysis using a modified algorithm of detrended fluctuation analysis based on empirical mode decomposition[J].
Medical Engineering and Physics, 2009, 31(1): 92-100.
DOI: 10.1016/j.medengphy.2008.04.011. |
| [10] |
LEI Y G, LIN J, HE Z J, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery[J].
Mechanical System and Signal Processing, 2013, 35(1): 108-126.
|
| [11] |
HUANG N E, DAUBECHIES I, HOU T Y. Adaptive data analysis: theory and applications[J].
Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 2016, 374: 20-65.
|
| [12] |
SHARPLEY R C, VATCHEV V. Analysis of the intrinsic mode functions[J].
Constructive Approximation, 2006, 24(1): 17-47.
DOI: 10.1007/s00365-005-0603-z. |
| [13] |
DOROSLOVACKI M I. On nontrivial analytic signals with positive instantaneous frequency[J].
Signal Processing, 2003, 83(3): 655-658.
DOI: 10.1016/S0165-1684(02)00483-8. |
| [14] |
QIAN T, CHEN Q H, Li L Q. Analytic unit quadrature signals with nonlinear phase[J].
Physica D: Nonlinear Phenomena, 2005, 203: 80-87.
DOI: 10.1016/j.physd.2005.03.005. |
| [15] |
TAN L H, YANG L H, HUANG D R. The structure of instantaneous frequencies of periodic analytic signals[J].
Science China, 2010, 53(2): 347-355.
DOI: 10.1007/s11425-009-0093-8. |
| [16] |
QIAN T, TAN L H. Characterizations of mono- components: the blaschke and starlike types[J].
Complex Analysis and Operator Theory, 2018, 12: 1383-1399.
DOI: 10.1007/s11785-015-0491-6. |
| [17] |
BULTHEEL A. Orthogonal rational functions[M]. Cambridge: Cambridge University Press, 1999: 123-126.
|
| [18] |
NINNESS B, GUSTAFSSON F. A unifying construction of orthonormal bases for system identification[J].
IEEE Transactions on Automatic Control, 2002, 42(4): 515-521.
|
| [19] |
HUSEYIN A, NINNESS B. Orthonormal basis functions for modelling continuous time systems[J].
Signal Processing, 1999, 77(3): 261-274.
DOI: 10.1016/S0165-1684(99)00039-0. |
| [20] |
QIAN T, SPROBIG W, WANG Y B. Adaptive fourier decomposition of functions in quaternionic hardy spaces[J].
Mathematical Methods in the Applied Sciences, 2012, 35(1): 43-64.
DOI: 10.1002/mma.1532. |
| [21] |
SHIM B, WANG J, KWON S. Generalized orthogonal matching pursuit[J].
IEEE Transaction on Signal Processing, 2012, 60(4): 6202-6216.
|
| [22] |
QIAN T, WANG Y B. Adaptive fourier series-a variation of greedy algorithm[M]. New York: Springer-Verlag, 2011: 279-293.
|
| [23] |
ZHANG L M. Adaptive fourier decomposition based time-frequency analysis[J].
Journal of Electronic Science and Technology, 2014, 12(2): 201-205.
|
| [24] |
TAN C Y, ZHANG L M, WU H T. A novel blaschke unwinding adaptive fourier decomposition based signal compression algorithm with application on ECG signals[J].
IEEE Journal of Biomedical and Health Informatics, 2019, 23(2): 672-682.
DOI: 10.1109/JBHI.2018.2817192. |
| [25] |
MI W, QIAN T. Frequency-domain identification: an algorithm based on an adaptive rational orthogonal system[J].
Automatica, 2012, 48(6): 1154-1162.
DOI: 10.1016/j.automatica.2012.03.002. |
| [26] |
钱涛. 自适应Fourier变换: 一个贯穿复几何, 调和分析及信号分析的数学方法[M]. 北京: 科学出版社, 2015: 25-33.
|
| [27] |
崔明根, 邓中兴. W21空间中的最佳插值逼近算子
[J].
计算数学, 1986, 8(2): 209-216.
CUI M G, DENG Z X. The best interpolation approximation operator in W21-space [J]. Computational Mathematics, 1986, 8(2): 209-216. DOI: 10.12286/jssx.1986.2.209. |
| [28] |
崔明根, 吴勃英. 再生核空间的数值分析[M]. 北京: 科学出版社, 2004: 124-128.
|
| [29] |
吴勃英, 林迎珍. 应用型再生核空间[M]. 北京: 科学出版社, 2012: 130-141.
|
2021, Vol. 38