广东工业大学学报  2021, Vol. 38Issue (2): 60-65.  DOI: 10.12052/gdutxb.200109.
0

引用本文 

周云, 卫雪梅. 一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析[J]. 广东工业大学学报, 2021, 38(2): 60-65. DOI: 10.12052/gdutxb.200109.
Zhou Yun, Wei Xue-mei. A Qualitative Analysis of a Hyperbolic Tumor Growth Model with Robin Free Boundary[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2021, 38(2): 60-65. DOI: 10.12052/gdutxb.200109.

基金项目:

国家自然科学基金资助项目(11101095);广东省高校特色创新类项目(2016KTSCX028)

作者简介:

周云(1995–),女,硕士研究生,主要研究方向为偏微分方程。

通信作者

卫雪梅(1972–),女,教授,硕士生导师,主要研究方向为偏微分方程,E-mail:wxm_gdut@163.com

文章历史

收稿日期:2020-08-28
一个具有Robin自由边界的双曲肿瘤生长模型解的定性分析
周云, 卫雪梅    
广东工业大学 应用数学学院,广东 广州 510520
摘要: 研究了一个具有Robin自由边界的双曲肿瘤生长数学模型, 该模型包含了一个描述营养物浓度变化的椭圆型方程, 一个描述肿瘤半径的常微分方程和描述肿瘤细胞生长的两个双曲型偏微分方程。本文通过特征线方法结合 ${\rm{Banach}}$ 不动点定理证明了该模型整体解的存在性和唯一性。最后证明当 ${K_R} = 0$ 时, 有 $\mathop {\lim }\limits_{t \to \infty } R\left( t \right) = \infty $
关键词: 肿瘤生长    自由边界问题    整体解    
A Qualitative Analysis of a Hyperbolic Tumor Growth Model with Robin Free Boundary
Zhou Yun, Wei Xue-mei    
School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
Abstract: A hyperbolic tumor growth model with Robin free boundary is studied, which contains an elliptic partial differential equation describing the concentration of nutrients, an ordinary differential equation describing the radius of tumor and two hyperbolic equations describing the growth of tumor cells. In this paper, by applying the method of characteristic curves and the Banach fixed point theorem, the existence and uniqueness of the global solution of the model are proven. Finally, it is proven that while ${K_R} = 0$ , $\mathop {\lim }\limits_{t \to \infty } R\left( t \right) = \infty$ .
Key words: tumor growth    free boundary problem    global solution    
1 问题的提出

有关于肿瘤生长的偏微分模型的方程类型总共有3类:一类是Byrne-Chaplain型肿瘤模型,只含反应扩散方程;另一类是King-Ward型肿瘤模型,既含反应扩散方程又含守恒率方程;以及流体型肿瘤模型,不仅含有以上两类方程而且还含有Stokes方程[1](由Franks等[2-5]提出)。本文研究的模型属于King-Ward型肿瘤模型,该模型的肿瘤来源于实验室,专门培育出来用于研究肿瘤生长问题[6-7]。该模型由关于繁殖细胞密度、休眠态细胞密度以及死细胞密度的一阶双曲方程组,一个关于营养物浓度的椭圆方程和用来描述肿瘤自由边界运动的常微分方程所耦合的自由边界问题。在营养物浓度是线性反应扩散方程和Dirichlet边界条件下,文献[8-10]得到了整体解的适定性和肿瘤半径的一些性质。

肿瘤的生长依赖于新生血管,当肿瘤细胞分泌生长因子时,会促进血管的再生。而新生的肿瘤血管组织,仍然可以作为输送途径吸收营养物[11-12],因此本文假设

$\frac{{\partial C}}{{\partial r}} + \alpha \left( t \right)\left( {C - \bar C} \right) = 0,\;\;r = R\left( t \right),\;\;t \geqslant 0\;\;\;\;\;\;$

其中 $C$ 是营养物浓度, $\bar C$ (正常数)是细胞外营养物浓度, $\alpha \left( t \right)$ 是营养物交换系数, $r$ 是肿瘤半径, $R\left( t \right)$ 表示 $t$ 时刻的肿瘤半径。当 $\alpha \left( t \right) = 0$ 时,有 $\dfrac{{\partial C}}{{\partial r}} = 0$ ,意味着内部与外部完全隔离; 当 $\alpha \left( t \right) = + \infty $ 时,则边界和外部营养为同一个固定常数。但是从生物学上来说,细胞膜具有一定的选择透性,即内外部营养不均衡,具体的差距取决于 $\alpha \left( t \right)$ ,所以研究具有Robin边界条件的新模型非常有意义。

本文在前述文献的基础上,考虑营养物浓度 $C$ 为线性椭圆方程的Robin问题。该模型中描述肿瘤细胞生长的两个双曲型偏微分方程,包含繁衍态的肿瘤细胞密度 $P$ 、休眠态的肿瘤细胞密度 $Q$ 和已经死亡但尚未消解的肿瘤细胞密度 $D$ [1], $N$ 代表这3类细胞混合体的密度且为正常数,有

$P + Q + D = N$ (1)

细胞在肿瘤内做连续运动,其中包括细胞的增殖和细胞的坏死。本文用速度场 ${{v}}$ 表示此运动速度,将肿瘤组胞视为多孔介质,因此根据Darcy’s定律,有

${{v}} = \nabla \sigma $ ( $\sigma $ 表示压力)

假设肿瘤表面的压力即表面张力,则在细胞边界处有

$\sigma = \gamma \kappa $

其中 $\kappa $ 表示平均曲率, $\gamma $ 为正常数。

本文研究的具体模型为

${\nabla ^2}C - \lambda C = 0,\;\;\;\left| x \right| < R\left( t \right),\;\;t > 0$ (2)
$\;\frac{{\partial C}}{{\partial \left| x \right|}}\left( {0,t} \right) = 0,\;{\kern 1pt} {\kern 1pt} {\kern 1pt} \;\;\left| x \right| = 0,\;\;t > 0\;$ (3)
$\frac{{\partial C}}{{\partial \left| x \right|}} + \alpha \left( {C - \bar C} \right) = 0,\;\;\left| x \right| = R\left( t \right),\;\;t > 0$ (4)
$\begin{split} & \frac{{\partial P}}{{\partial t}} + {\rm{div}}\left( {P{{v}}} \right) = ({K_B}\left( C \right) - {K_Q}\left( C \right) - {K_A}\left( C \right))P +\\& {K_P}\left( C \right)Q,\;\;\left| x \right| < R\left( t \right),\;\;t > 0 \end{split}$ (5)
$\begin{split} & \frac{{\partial Q}}{{\partial t}} + {\rm{div}}\left( {Q{{v}}} \right) = {K_Q}\left( C \right)P - ({K_P}\left( C \right) +\\& {K_D}\left( C \right))Q,\;\;\left| x \right| < R\left( t \right),\;\;t > 0 \end{split}$ (6)
$\begin{split} & \frac{{\partial D}}{{\partial t}} + {\rm{div}}\left( {D{{v}}} \right) = {K_A}\left( C \right)P + {K_D}\left( C \right)Q -\\& \;{K_R}D,\;\;\left| x \right| < R\left( t \right),\;\;t > 0 \end{split}$ (7)
${{v}} = \nabla \sigma ,\;\;\;\left| x \right| < R\left( t \right),\;\;t > 0$ (8)
$\sigma = \gamma \kappa ,\;\;\;\left| x \right| = R\left( t \right),\;\;t > 0$ (9)

其中 $\lambda $ 是非负常数, $\;\left| {{x}} \right| \leqslant R\left( t \right)\;\;( {x \in {R^3}} )$ 表示肿瘤在时刻 $t$ 所占的空间区域, ${K_B}\left( C \right),\;\;{K_P}\left( C \right),\;{K_Q}\left( C \right)$ 分别表示繁衍态细胞的繁殖速率,休眠态细胞变为繁殖细胞的转换速率和繁殖细胞变为休眠态细胞的转换速率, ${K_A}\left( C \right)$ ${K_D}\left( C \right)$ 分别表示繁衍态细胞和休眠态细胞的死亡速率[1],其中 ${K_B}\left( C \right),{\kern 1pt} {\kern 1pt} {\kern 1pt} {K_P}\left( C \right)$ 随着 $C$ 的增大而增大, ${K_Q}\left( C \right),\;{K_A}\left( C \right),\;{K_D}\left( C \right)$ 随着 $C$ 的增大而减小。另外,由于增殖率大于凋亡率,所以 ${K_B}\left( C \right) > {K_A}\left( C \right)$ ${K_R}$ 表示死亡细胞的消解速率,这个速率是一个非负的且与 $C$ 无关的常数[8]

由式(8)~(9)可得,只要给定了 ${{v}}$ $R\left( t \right)$ ,则 $\sigma $ 能够直接被确定,因此在本文后面的计算中忽略 $\sigma $

给定初始条件

$R\left( 0 \right)\;,\;\;P\left( {x,0} \right),\;\;Q\left( {x,0} \right)$ (10)

在本文中,式(10)是径向对称的,考虑径向对称解,并令 ${{v}} = \dfrac{x}{{\left| {{x}} \right|}}\bar u,\;\;\;\left| x \right| \leqslant R\left( t \right)$ 。对模型进行无量纲化,令 $p = \dfrac{P}{N},{\kern 1pt} {\kern 1pt} \;\;{\kern 1pt} q = \dfrac{Q}{N},\;\;c = \dfrac{C}{{\bar C}},$ 则由方程组(1)~(10)可得如下等价的方程组

$\frac{1}{{{r^2}}}\frac{\partial }{{\partial r}}\left( {{r^2}\frac{{\partial c}}{{\partial r}}} \right) = \lambda c,\;\;\;\;0 < r < R\left( t \right),\;\;t > 0$ (11)
$\;\frac{{\partial c}}{{\partial r}}\left( {0,t} \right) = 0,\;\;r = 0,\;\;t > 0\;$ (12)
$ \;\frac{{\partial c}}{{\partial r}} + \alpha \left( {c - 1} \right) = 0,\;\;r = R\left( t \right),\;\;t > 0 $ (13)
$ \begin{split} & \frac{{\partial p}}{{\partial t}} + \bar u\frac{{\partial p}}{{\partial r}} = ({K_B}\left( c \right) - {K_Q}\left( c \right) - {K_A}\left( c \right))p + {K_P}\left( c \right)q -\\& \left( {\left( {{K_B}\left( c \right) + {K_R}} \right)p\; + {K_R}q - {K_R}} \right)p,\;\;0 \leqslant r \leqslant R\left( t \right),\;\;t > 0 \end{split} $ (14)
$ \begin{split} & \frac{{\partial q}}{{\partial t}} + \bar u\frac{{\partial q}}{{\partial r}} = {K_Q}\left( c \right)p - ({K_P}\left( c \right) + {K_D}\left( c \right))q - \\&\left( {\left( {{K_B}\left( c \right) + {K_R}} \right)p\; + {K_R}q - {K_R}} \right)q,\;\;0 \leqslant r \leqslant R\left( t \right),\;\;t > 0 \end{split} $ (15)
$\frac{1}{{{r^2}}}\frac{\partial }{{\partial r}}\left( {{r^2}\bar u} \right) \!=\! \left( {{K_B}\left( c \right) \!+\! {K_R}} \right)p \!+\! {K_R}q - {K_R},\;\;0 < r \leqslant R\left( t \right),\;\;t \!>\! 0$ (16)
$\bar u\left( {0,t} \right) = 0,\;\;t > 0$ (17)
$\frac{{{\rm{d}}R\left( t \right)}}{{{\rm{d}}t}} = \bar u\left( {R\left( t \right),t} \right),\;\;\;t > 0$ (18)

其中 $R\left( 0 \right),\;\;p\left( {r,0} \right),\;\;q\left( {r,0} \right)$ 为初值,且式(14)~(16)中的 ${K_i}( C ) = {K_i}( {c\bar C} ),\;i = A,B,D,P,Q$

在本文的第2节中,将径向对称问题转换为固定域中的方程组。在第3~4节中,证明了方程组整体解的存在性和唯一性。最后,在第5节中,考虑一个特殊情况:肿瘤中的死亡细胞根本没有消解,即 ${K_R} = 0,$ 并证明了当 $t \to \infty $ 时,有 $R\left( t \right) \to \infty $

2 转换方程组

为了能够更简便地求解以上方程组,本文将其转换为一个与之等价的固定区域进行求解。考虑营养物浓度的方程及边界条件[12],可得

$c\left( {r,t} \right) = \dfrac{\alpha }{{\left( {\left. {\sqrt \lambda \coth \left( {\sqrt \lambda R} \right) - \dfrac{1}{R} + \alpha } \right)} \right.}} \cdot \dfrac{{\dfrac{{\sinh \left( {\sqrt \lambda r} \right)}}{r}}}{{\dfrac{{\sinh \left( {\sqrt \lambda R} \right)}}{R}}}$

$z = \dfrac{r}{{R\left( t \right)}}$ ,则有

$\begin{array}{l} c\left( {z,R} \right) = \dfrac{\alpha }{{\left( {\left. {\sqrt \lambda \coth \left( {\sqrt \lambda R} \right) - \dfrac{1}{R} + \alpha } \right)} \right.}} \cdot \dfrac{{\sinh \left( {\sqrt \lambda Rz} \right)}}{{z\sinh \left( {\sqrt \lambda R} \right)}},\\ 0 < z \leqslant 1,\;\;R > 0, \\ c\left( {0,R} \right) = \dfrac{\alpha }{{\left( {\left. {\sqrt \lambda \coth \left( {\sqrt \lambda R} \right) - \dfrac{1}{R} + \alpha } \right)} \right.}} \cdot \dfrac{{\sqrt \lambda R}}{{\sinh \left( {\sqrt \lambda R} \right)}},\;R > 0 \end{array} $ (19)

引入新的函数 $p\left( {z,t} \right) = p\left( {r,t} \right),\;\;q\left( {z,t} \right) = q\left( {r,t} \right), u\left( {z,t} \right) = \dfrac{{\bar u\left( {r,t} \right)}}{{R\left( t \right)}},$ 其中 $0 \leqslant z \leqslant 1,\;\;t \geqslant 0$ 。从而得到方程组(11)~(18)的等价方程组

$\begin{split} & \frac{{\partial p}}{{\partial t}}\! +\! {{v}}\frac{{\partial p}}{{\partial z}} \!=\! ({K_B}\left( c \right) \!-\! {K_Q}\left( c \right) \!-\! {K_A}\left( c \right))p + {K_P}\left( c \right)q\; - \\&\left( {\left( {{K_B}\left( c \right) + {K_R}} \right)p} \right. + {K_R}q - \left. {{K_R}} \right)p,\;\;0 \leqslant z \leqslant 1,\;\;t > 0 \end{split}$ (20)
$\begin{split} & \frac{{\partial q}}{{\partial t}} + {{v}}\frac{{\partial q}}{{\partial z}} = {K_Q}\left( c \right)p - ({K_P}\left( c \right) + {K_D}\left( c \right))q\; -\\& \left( {\left( {{K_B}\left( c \right) + {K_R}} \right)p + } \right.{K_R}q - \left. {{K_R}} \right)\;q,\;\;0 \leqslant z \leqslant 1,\;\;t > 0 \end{split}$ (21)
${{v}}\left( {z,t} \right) = u\left( {z,t} \right) - zu\left( {1,t} \right),\;\;0 \leqslant z \leqslant 1,\;\;t > 0$ (22)
$\frac{1}{{{z^2}}}\frac{\partial }{{\partial z}}( {{z^2}u}) = \left( {{K_B}\left( c \right) + {K_R}} \right)p + {K_R}q - {K_R},\;\;\;0 < z \leqslant 1,\;\;t > 0$ (23)
$u\left( {0,t} \right) = 0,\;\;t > 0$ (24)
$\frac{{{\rm{d}}R\left( t \right)}}{{{\rm{d}}t}} = R\left( t \right)u\left( {1,t} \right),\;\;\;t > 0$ (25)
$R\left( 0 \right) = {R_0},\;\;p\left( {z,0} \right) = {p_0}\left( z \right),\;\;q\left( {z,0} \right) = {q_0}\left( z \right),\;\;0 \leqslant z \leqslant 1$ (26)

其中

$R\left( 0 \right) > 0,\;{p_0}\left( z \right) \geqslant 0,\;{q_0}\left( z \right) \geqslant 0,\;{p_0}\left( z \right) + \;{q_0}\left( z \right) \leqslant 1,\;0 \leqslant z \leqslant 1$ (27)

为方便计算,把式(23)化为以下的积分形式

$\begin{split} & u\left( {z,t} \right) = \frac{1}{{{z^2}}}\int_0^z {\left( {\left( {{K_B}\left( {c\left( {\rho ,R\left( t \right)} \right)} \right) + {K_R}} \right)} \right.} p\left( {\rho ,t} \right) + \\& \left. {{K_R}q\left( {\rho ,t} \right) - {K_R}} \right){\rho ^2}{\rm{d}}\rho \end{split} $ (28)

则式(25)可改写为

$\begin{split} & \frac{{{\rm{d}}R\left( t \right)}}{{{\rm{d}}t}} = R\left( t \right)\int_0^1 {\left( {\left( {{K_B}\left( {c\left( {z,R\left( t \right)} \right)} \right) + {K_R}} \right)p\left( {z,t} \right)} \right.} +\\& \left. {{K_R}q\left( {z,t} \right) - {K_R}} \right){z^2}{\rm{d}}z \end{split}$ (29)

又因为 $d = 1 - p - q,$ 得到关于 $d$ 的方程

$\begin{split} & \frac{{\partial d}}{{\partial t}} + v\frac{{\partial d}}{{\partial z}} = {K_A}\left( c \right)p + {K_D}\left( c \right)q\; - \\&\left( {\left. {{K_B}\left( c \right)p - {K_R}d + {K_R}} \right)} \right.\;d,\;\;0 \leqslant z \leqslant 1,\;\;t > 0 \end{split}$ (30)

通过式(19),发现 $c\left( {z,R} \right)$ 关于 $z$ 严格递增,关于 $R$ 严格递减,且有

$\mathop {\lim }\limits_{R \to 0} c\left( {z,R} \right) = 1\;\;\;\;\left( {0 \leqslant z \leqslant 1} \right)$

以及

$\mathop {\lim }\limits_{R \to \infty } c\left( {z,R} \right) = \left\{ \begin{array}{l} 0,\;\;\;\;0 \leqslant z < 1 \\ 1,\;\;\;\;z = 1 \end{array} \right.$
3 证明等价方程组局部解的存在性和唯一性

定理1  令 ${\delta _0} \leqslant {R_0} \leqslant {1/{{\delta _0}\left( {{\delta _0} > 0} \right)}}$

$p\left( {z,t} \right) \geqslant 0,\;\;q\left( {z,t} \right) \geqslant 0\;,\;\;\left| {\left( {p\left( {z,t} \right),q\left( {z,t} \right)} \right)} \right| \leqslant 2{M_0}$

则对于 $0 \leqslant z \leqslant 1,\;\;0 \leqslant t \leqslant T,$ 只要T足够小,方程(20)~(26)存在唯一解,其中 ${M_0}$ 是一个正常数。

在进行证明之前,本文先作出如下假设:

(a) ${K_i}\left( c \right)\left( {i = A,\;B,\;D,\;P,\;Q} \right)$ $0 \leqslant c \leqslant 1$ 上都是非负连续可导函数,且

${K_B}\left( c \right) > {K_A}\left( c \right),\;\;\;{K'_B}\left( c \right) > 0,\;\;{K'_p}\left( c \right) > 0,\;\;\;\;0 \leqslant c \leqslant 1$
${K_B}\left( 0 \right) = {K_P}\left( 0 \right) = 0$
$\begin{split} & {K'_A}\left( c \right) \leqslant 0,\;{K'_D}\left( c \right) < 0,\;{K'_Q}\left( c \right) < 0\\ &{K'_B}\left( c \right) + {K'_D}\left( c \right) > 0,\;0 \leqslant c \leqslant 1 \end{split}$
${K_A}\left( 1 \right) = {K_D}\left( 1 \right) = {K_Q}\left( 1 \right) = 0$

(b) ${p_0}\left( z \right)$ ${q_0}\left( z \right)$ $0 \leqslant z \leqslant 1$ 上是连续可微的,而且满足式(27)。

由文献[13]可得 ${K'_B}\left( c \right) + {K'_D}\left( c \right) > 0$ 。在本节和下一节中,假设 $0 \leqslant {K_R} < \infty $ 。令 $g\left( {z,R,p,q} \right) = \left( {{K_B}\left( {c\left( {z,R} \right)} \right) + } \right. \left. {{K_R}} \right)p + {K_R}q - {K_R},$ 则式(28)化为

$\begin{split} & u\left( {z,t} \right) = \frac{1}{{{z^2}}}\int_0^z {g\left( {\rho ,R\left( t \right),p\left( {\rho ,t} \right),q\left( {\rho ,t} \right)} \right)} {\rho ^2}{\rm{d}}\rho ,\\&0 < z \leqslant 1,\;\;t > 0 \end{split}$

为了证明局部解的存在唯一性,先引入一个度量空间 ${X_T}$ 。给定 $T > 0$ ,定义 ${X_T}$ 上的函数 $\left( {R\left( t \right),} \right. p\left( {z,t} \right),\; \left. {q\left( {z,t} \right)} \right)$ ,满足以下条件:

(i) $R\left( t \right) \in C\left[ {0,T} \right],\;\;R\left( 0 \right) = {R_0}$ 且有

$\left| {R\left( t \right) - {R_0}} \right| \leqslant \delta ,\;\;0 \leqslant t \leqslant T$ (31)

其中 $\delta $ 是一个任意的固定数且 $0 < \delta < {R_0}$ (例如,可能取 $\delta = {{{R_0}} / 2}$ );

(ii) $p\left( {z,t} \right),q\left( {z,t} \right) \in C\left( {\left[ {0,1} \right] \times \left[ {0,T} \right]} \right),\;p\left( {z,0} \right)$ $ = {p_0}\left( z \right), q\left( {z,0} \right) = {q_0}\left( z \right)$ 且有

$\begin{split} & p\left( {z,t} \right) \geqslant 0,\;\;q\left( {z,t} \right) \geqslant 0,\;\;\left| {\left( {p\left( {z,t} \right),q\left( {z,t} \right)} \right)} \right| \leqslant 2{M_0},\\&0 \leqslant z \leqslant 1,\;\;0 \leqslant t \leqslant T \end{split}$

定义 ${X_T}$ 中的度量 $\;\rho $

$\begin{split} & \rho \left( {\left( {{R_1},{p_1},{q_1}} \right),\left( {{R_2},{p_2},{q_2}} \right)} \right) = \mathop {\max }\limits_{0 \leqslant t \leqslant T} \left| {{R_1}\left( t \right) - {R_2}\left( t \right)} \right| +\\& \mathop {\max }\limits_{0 \leqslant z \leqslant 1,0 \leqslant t \leqslant T} \left| {\left( {\left( {{p_1}\left( t \right) - {p_2}\left( t \right)),{q_1}\left( t \right) - {q_2}\left( t \right)} \right)} \right)} \right| \end{split}$

显然 ${X_T}$ 是一个完备的度量空间。

定义映射 ${\cal F}:{X_T} \to {X_T}$ 的具体形式为

$\frac{{\partial \tilde p}}{{\partial t}} + {{v}}\frac{{\partial \tilde p}}{{\partial z}} = {a_{11}}\left( {z,t} \right)\tilde p + {a_{12}}\left( {z,t} \right)\tilde q,\;\;0 \leqslant z \leqslant 1,\;\;0 < t \leqslant T$
$ \begin{split} & \frac{{\partial \tilde q}}{{\partial t}} + {{v}}\frac{{\partial \tilde q}}{{\partial z}} = {a_{21}}\left( {z,t} \right)\tilde p + {a_{22}}\left( {z,t} \right)\tilde q,\;\;0 \leqslant z \leqslant 1,\;\;0 < t \leqslant T,\\& \tilde p\left( {z,0} \right) = {p_0}\left( z \right),\;\;\tilde q\left( {z,0} \right) = {q_0}\left( z \right),\;\;0 \leqslant z \leqslant 1 \end{split} $
$\frac{{{\rm{d}}\tilde R\left( t \right)}}{{{\rm{d}}t}} = \tilde R\left( t \right)u\left( {1,t} \right),\;\;\;0 < t \leqslant T$ (32)
$\tilde R\left( 0 \right) = {R_0}$ (33)

其中

$ \begin{split} & {a_{12}} = {K_P}( c ),\;{a_{11}} = {K_B}( c ) - {K_Q}( c ) - {K_A}( c ) - \\&( {{K_B}( c ) + {K_R}} )p + {K_R}q - {K_R}\\& {a_{21}} = {K_Q}( c ),\;{a_{22}} = {K_R} - {K_R}q - {K_P}( c ) -\\& {K_D}( c ) - ( {{K_B}( c ) + {K_R}} )p \end{split} $

显然,方程(32)~(33)有唯一解 $\tilde R\left( t \right) \in {C^1}\left[ {0,T} \right]$ ,且有

$\tilde R\left( t \right) = {R_0}\exp \left( {\int_0^t {u\left( {1,\tau } \right)} {\rm{d}}\tau } \right),\;\;\;\;\;\;0 \leqslant t \leqslant T$ (34)

因此

$ \begin{split} & | {g( {z,R( t ),p( {z,t} ),q( {z,t} )} )} | \leqslant ( {{K_B}( 1 ) + {K_R}} )( {{M_0} + 1} ) + \\& {K_R}( {{M_0} + 1} ) + {K_R} \equiv {M_1}\;({M_1}{\text{为一个正数}}) \end{split}$

$\left| {u\left( {1,t} \right)} \right| \leqslant {{{M_1}} / 3}$ ,由此可以得到

$\left| {\tilde R\left( t \right) - {R_0}} \right| \leqslant \frac{1}{3}{R_0}{M_1}T{{\rm{e}}^{\frac{1}{3}{M_1}T}},\;\;\;\;\;\;\;0 \leqslant t \leqslant T$

因此,当 $T$ 足够小时, $\tilde R\left( t \right)$ 满足式(31),即 $\tilde R\left( t \right)$ 满足条件(i)。

由文献[9]中的Lemma 4.2和Lemma 4.3得,当 $T$ 足够小时,有

$\begin{split} & \tilde p\left( {z,t} \right) \geqslant 0,\;\;\tilde q\left( {z,t} \right) \geqslant 0\;,\;\;\left| {\left( {\tilde p\left( {z,t} \right),\tilde q\left( {z,t} \right)} \right)} \right| \leqslant 2{M_0},\\& 0 \leqslant z \leqslant 1,\;\;0 \leqslant t \leqslant T \end{split}$

因此, $\tilde p\left( t \right),\;\tilde q\left( t \right)$ 满足条件(ii)。

由(i)、(ii)的结论可知:对于足够小的 $T$ ${\cal{F}}$ ${X_T}$ 自身到自身的映射。

下证当 $T$ 如果足够小, ${\cal{F}}$ 为压缩映射。设 $( {R_i},{p_i}, {q_i} ) \in {X_T}$ ,其中 $i = 1,2$ 且令

$\begin{split} & {u_i}\left( {z,t} \right) = \frac{1}{{{z^2}}}\int_0^z {g\left( {\rho ,{R_i}\left( t \right),{p_i}\left( {\rho ,t} \right),{q_i}\left( {\rho ,t} \right)} \right)} {\rho ^2}{\rm{d}}\rho \\& {v_i}\left( {z,t} \right) = {u_i}\left( {z,t} \right) - z{u_i}\left( {1,t} \right) \end{split}$
$\left( {{{\tilde R}_i},{{\tilde p}_i},{{\tilde q}_i}} \right) = {\cal{F}}\left( {{R_i},{p_i},{q_i}} \right),\;\;\rho = \rho \left( {\left( {{R_1},{p_1},{q_1}} \right),\left( {{R_2},{p_2},{q_2}} \right)} \right)$

通过直接计算,可得

$\left| {{u_1}\left( {z,t} \right) - {u_2}\left( {z,t} \right)} \right| \leqslant {M_2}\rho ,\;\;\;0 \leqslant z \leqslant 1,\;\;0 \leqslant t \leqslant T$

因此,根据式(34),有

$\mathop {\max }\limits_{0 \leqslant t \leqslant T} \left| {{{\tilde R}_1}\left( t \right) - {{\tilde R}_2}\left( t \right)} \right| \leqslant {M_3}T\rho $ (35)

其中 ${M_3}$ 表示独立于 $T$ 的常数。

利用文献[9]中的方法,从而有

$\mathop {\max }\limits_{0 \leqslant t \leqslant T} \left| {\left( {\left( {{{\tilde p}_1}\left( t \right) - {{\tilde p}_2}\left( t \right)),{{\tilde q}_1}\left( t \right) - {{\tilde q}_2}\left( t \right)} \right)} \right)} \right| \leqslant TC\left( T \right)\rho $ (36)

其中 $C\left( T \right)$ 是一个只与T有关的常数。结合式(35)~(36),可得

$\begin{split} & \rho \left( {\left( {{{\tilde R}_1},{{\tilde p}_1},{{\tilde q}_1}} \right),\left( {{{\tilde R}_2},{{\tilde p}_2},{{\tilde q}_2}} \right)} \right) \leqslant \\& \left( {{M_3} + C\left( T \right)} \right)T\rho \left( {\left( {{R_1},{p_1},{q_1}} \right),\left( {{R_2},{p_2},{q_2}} \right)} \right) \end{split}$

因此,只要T足够小,使得 $\left( {{M_3} + C\left( T \right)} \right)T < 1$ ,则 ${\cal{F}}$ 为压缩映射,定理1证毕。

4 整体解

在本节中,主要证明以下定理:

定理2  方程(20)~(26)对于 $0 \leqslant z \leqslant 1,\;0 \leqslant t < \infty $ 有唯一解,并且具有以下性质:

$p\left( {z,t} \right) \geqslant 0,\;\;q\left( {z,t} \right) \geqslant 0,\;\;p\left( {z,t} \right) + q\left( {z,t} \right) \leqslant 1$ (37)
${R_0}{{\rm{e}}^{ - \frac{1}{3}{K_R}t}} \leqslant R\left( t \right) \leqslant {R_0}{{\rm{e}}^{\frac{1}{3}{K_B}\left( 1 \right)t}}$ (38)
$ - \frac{1}{3}{K_R} \leqslant \frac{{\dot R\left( t \right)}}{{R\left( t \right)}} \leqslant \frac{1}{3}{K_B}\left( 1 \right)$ (39)

证明  根据定理1,要证明方程组的解在 $0 \leqslant t < T$ 成立,其中 $T > 0$ 且是任意的,只需证明式(37)~(38)以及

$\left| {\frac{{\partial p\left( {z,t} \right)}}{{\partial z}}} \right| \leqslant C\left( T \right),\;\;\;\;\;\;\left| {\frac{{\partial q\left( {z,t} \right)}}{{\partial z}}} \right| \leqslant C\left( T \right)$ (40)

$0 \leqslant z \leqslant 1,\;\;0 \leqslant t < T$ 成立,其中 $C\left( T \right)$ 是一个只与T有关的常数。

为了证明式(37),令 ${\tilde{ \tilde p}}\left( {\xi ,t} \right) = \tilde p\left( {z\left( {\xi ,t} \right),t} \right)$ ${ \tilde {\tilde q}}\left( {\xi ,t} \right) = \tilde q\left( {z\left( {\xi ,t} \right),t} \right),$

$ \begin{split} & \frac{{\partial {\tilde{ \tilde p}}\left( {\xi ,t} \right)}}{{\partial t}} = {a_{11}}\left( {\xi ,t} \right){\tilde{ \tilde p}}\left( {\xi ,t} \right) + {a_{12}}\left( {\xi ,t} \right){ \tilde {\tilde q}}\left( {\xi ,t} \right) \\& \frac{{\partial{ \tilde {\tilde q}}\left( {\xi ,t} \right)}}{{\partial t}} = {a_{21}}\left( {\xi ,t} \right){\tilde{ \tilde p}}\left( {\xi ,t} \right) + {a_{22}}\left( {\xi ,t} \right){ \tilde {\tilde q}}\left( {\xi ,t} \right) \end{split}$

这里的 ${a_{ij}}$ 都是连续函数且有

$\begin{split} & {a_{12}}\left( {\xi ,t} \right) = {K_P}\left( {c\left( {z\left( {\xi ,t} \right),R\left( t \right)} \right)} \right) \geqslant 0,\\& {a_{21}}\left( {\xi ,t} \right) = {K_Q}\left( {c\left( {z\left( {\xi ,t} \right),R\left( t \right)} \right)} \right) \geqslant 0 \end{split}$

因为 ${\tilde{ \tilde p}}\left( {\xi ,0} \right) = {p_0}\left( \xi \right) \geqslant 0$ ${ \tilde {\tilde q}}\left( {\xi ,0} \right) = {q_0}\left( \xi \right) \geqslant 0$ ,通过运用常微分方程组的比较定理(参见文献[14]),可以推出:对 $0 \leqslant \xi \leqslant 1,\;\;0 \leqslant t < T,$

${\tilde{ \tilde p}}\left( {\xi ,t} \right) \geqslant 0,\;\;\;\;\;\;{ \tilde {\tilde q}}\left( {\xi ,t} \right) \geqslant 0$

成立。则对 $0 \leqslant z \leqslant 1,\;\;0 \leqslant t < T,$

$p\left( {z,t} \right) \geqslant 0,\;\;q\left( {z,t} \right) \geqslant 0$

成立。将其代入式(30),可得

$\frac{{\partial d}}{{\partial t}}\! +\! v\frac{{\partial d}}{{\partial z}} \!+\! \left( {\left. {{K_B}\left( c \right)p \!- \!{K_R}d + {K_R}} \right)} \right.d \geqslant 0,\;0 \leqslant z \leqslant 1,\;0 \leqslant t < T$

由于当 $0 \leqslant z \leqslant 1$ 时,有 $d\left( {z,0} \right) = 1 - {p_0}\left( z \right) - {q_0}\left( z \right) \geqslant 0$ ,同理,可得: $d\left( {z,t} \right) \geqslant 0$ ,即: $p\left( {z,t} \right) + q\left( {z,t} \right) \leqslant 1$ $0 \leqslant z \leqslant 1, 0 \leqslant t < T$ 成立。

结合式(29)和式(37),可得

$\dot R\left( t \right) \geqslant - {K_R}R\left( t \right)\int_0^1 {{z^2}} {\rm{d}}z = - \frac{1}{3}{K_R}R\left( t \right),\;\;0 < t < T$

且有

$ \begin{split} & \dot R\left( t \right) = R\left( t \right)\int_0^1 {\left( {{K_B}\left( {c\left( {z,R\left( t \right)} \right)} \right)p\left( {z,t} \right) - } \right.} \\&\left. {{K_R}\left( {1 - p\left( {z,t} \right) - q\left( {z,t} \right)} \right)} \right){z^2}{\rm{d}}z \leqslant {K_B}\left( 1 \right)R\left( t \right)\int_0^1 {{z^2}{\rm{d}}z} = \\&\frac{1}{3}{K_B}\left( 1 \right)R\left( t \right),\;\;0 < t < T \end{split} $

即式(39)成立。由式(39)可以直接推出式(38)。而由文献[9]的Lemma 4.2,可知式(40)成立,定理2证毕。

5 KR=0时

${K_R} = 0$ 时,意味着肿瘤中的死亡细胞完全没有消解,则通过式(29),有

$\dot R\left( t \right) = R\left( t \right)\int_0^1 {{K_B}\left( {c\left( {z,R\left( t \right)} \right)} \right)p\left( {z,t} \right)} {z^2}{\rm{d}}z \geqslant 0$ (41)

因为 $R\left( t \right)$ 关于 $t$ 单增,但同时随着 $R\left( t \right)$ 的增大,营养物浓度 $c\left( {z,R\left( t \right)} \right)$ 降低,所以增殖率 ${K_B}\left( c \right)$ 也降低。从而,当 $t \to \infty $ 时, $R\left( t \right)$ 趋于 $\infty $ 还是保持有界尚不清楚。在本节中主要证明,在以下假设的基础上, $R\left( t \right)$ 趋于 $\infty $

$p\left( {z,0} \right) \ne 0,\;{p_z}\left( {z,0} \right) \geqslant 0,\;{d_z}\left( {z,0} \right) \leqslant 0,\;\;0 \leqslant z \leqslant 1$ (42)
${K_D}\left( c \right) \geqslant {K_A}\left( c \right),\;\;0 \leqslant c \leqslant 1$ (43)

式(42)与实验结果有关,即死亡细胞倾向于集中在肿瘤的内部区域,而繁衍态细胞倾向于集中在肿瘤的外部区域。而式(43)基于事实:休眠态细胞的死亡速率大于繁衍态细胞的死亡速率。

定理 3  假设 ${K_R} = 0$ 且式(42)、(43)成立。则

$\mathop {\lim }\limits_{t \to \infty } R\left( t \right) = \infty $ (44)

为了证明这个结论,需要给出以下引理。

引理 1  令 ${K_R} = 0$ 并假设式(42)、(43)成立。则

${p_z}\left( {z,t} \right) \geqslant 0,\;\;{d_z}\left( {z,t} \right) \leqslant 0,\;\;\;0 \leqslant z \leqslant 1,\;\;t \geqslant 0$

证明  令 $\psi = 1 - d = p + q$ 。则 ${\psi _z} = - {d_z},$ 将式(30)对 $z$ 进行微分并用 ${\psi _z} - {p_z}$ 替换 ${q_z},$ 得到

$\frac{{\partial {\psi _z}}}{{\partial t}} + {{v}}\frac{{\partial {\psi _z}}}{{\partial z}} = {b_{11}}{\psi _z} + {b_{12}}{p_z} + {b_{10}}$

其中

$\begin{split} & {b_{10}} = \left( {\left. {{{K_B'}}\left( c \right)dp - {{K_A'}}\left( c \right)p - {{K_D'}}\left( c \right)q} \right)} \right.{c_z},\\& {b_{11}} = - {v_z} - {K_B}\left( c \right)p - {K_D}\left( c \right),\\& {b_{12}} = {K_B}\left( c \right)d + {K_D}\left( c \right) - {K_A}\left( c \right) \end{split}$

类似地,对式(20)关于 $z$ 进行微分,得到

$\frac{{\partial {p_z}}}{{\partial t}} + {{v}}\frac{{\partial {p_z}}}{{\partial z}} = {b_{21}}\;{\psi _z} + {b_{22}}{p_z} + {b_{20}}$

其中

$\begin{split} & {b_{20}}\! =\! \left( {\left. {\left( {\left. {{{K'}_B}\left( c \right)\left( {1 \!-\! p} \right) \!-\! {{K'}_Q}\left( c \right) \!- \!{{K'}_A}\left( c \right)} \right)p \!+\! {{K'}_P}\left( c \right)q} \right.} \right)} \right.{c_z},\\& {b_{21}} = {K_P}\left( c \right),\\& {b_{22}} = - {v_z} + {K_B}\left( c \right)\left( {1 - 2p} \right) - {K_P}\left( c \right) - {K_Q}\left( c \right) - {K_A}\left( c \right) \end{split}$

则根据式(43)和假设(a)可得, ${b_{10}},{b_{12}},{b_{20}}$ ${b_{21}}$ 均是非负数。因此通过比较原理,可得:对 $0 \leqslant z \leqslant 1,\;t \geqslant 0,$ ${\psi _z}\left( {z,t} \right) \geqslant 0,\;{p_z}\left( {z,t} \right) \geqslant 0$ 。引理1证毕。

引理 2  令 ${K_R} = 0$ 并假设式(42)~(43)成立。则对 $\forall 0 \leqslant z \leqslant 1,\;t \geqslant 0,$ ${{v}}\left( {z,t} \right) \leqslant 0$

证明  由于 ${{v}}\left( {z,t} \right) = u\left( {z,t} \right) - zu\left( {1,t} \right)$ $\dfrac{{\partial u}}{{\partial z}} + \dfrac{2}{z}u = {K_B}\left( c \right)p,$

$\frac{\partial }{{\partial z}}\left( {\frac{{\partial {{v}}}}{{\partial z}} + \frac{2}{z}{{v}}} \right) = \frac{\partial }{{\partial z}}\left( {\frac{{\partial u}}{{\partial z}} + \frac{2}{z}u} \right) = {K_B}\left( c \right){p_z} + {K'_B}\left( c \right)p{c_z}$

所以,由引理1可得

$\frac{{{\partial ^2}{{v}}}}{{\partial {z^2}}} + \frac{2}{z}\frac{{\partial {{v}}}}{{\partial z}} - \frac{2}{{{z^2}}}{{v}} \geqslant 0\;,\;\;0 < z < 1,\;\;t > 0$

因为对 $\forall t \geqslant 0,\;$ ${{v}}\left( {0,t} \right) = {{v}}\left( {1,t} \right) = 0,$ 所以 ${{v}} \leqslant 0$ (最大值原理)。引理2证毕。

$\bar p = \bar p\left( {z,t} \right)$ 是初值问题的解

$\left\{ \begin{aligned} & \frac{{\partial \bar p\left( {z,t} \right)}}{{\partial t}} = ( {K_B}\left( c \right) - {K_Q}\left( c \right) - {{K_A}\left( c \right) - {K_B}\left( c \right)\bar p} )\bar p,\\& 0 \leqslant z \leqslant 1,\;t > 0 \\& \bar p\left( {z,0} \right) = p\left( {z,0} \right),\;\;\;\;\;\;0 \leqslant z \leqslant 1 \end{aligned} \right.$ (45)

且该初值问题对于 $\forall 0 \leqslant z \leqslant 1,\;t \geqslant 0$ 有唯一解。

引理 3  假设 $\mathop {\lim }\limits_{t \to \infty } R\left( t \right) = {R_\infty } < \infty ,$ 并且 $p\left( {z,0} \right)$ 连续, $p\left( {z,0} \right) \geqslant 0,\;p\left( {z,0} \right)\not \equiv 0,\;0 \leqslant z \leqslant 1,$

$\begin{split} & \mathop {\lim }\limits_{t \to \infty } \bar p\left( {z,t} \right) = {\bar p_\infty }\left( z \right) \equiv \\& \max \left\{ {\left. {0,1 - \frac{{\left( {{K_A} + {K_Q}} \right)c\left( {z,{R_\infty }} \right)}}{{{K_B}\left( {c\left( {z,{R_\infty }} \right)} \right)}}} \right\}} \right.,\;0 \leqslant z \leqslant 1 \end{split}$

证明(定理3)  由式(41)可知 $R\left( t \right)$ 关于 $t$ 单调递增,若式(44)不成立,则当 $t \to \infty $ 时,有 $R\left( t \right) \to {R_\infty }$ ${R_\infty } < \infty ,$ 下面用反证法证明。

$\bar p = \bar p\left( {z,t} \right)$ 如引理3所定义。结合引理1、2和式(20),有

$\frac{{\partial p}}{{\partial t}} \!\geqslant \!\left( {{K_B}\left( c \right) \!-\! {K_Q}\left( c \right) \!-\! } \right.\left. {{K_A}\left( c \right)\! -\! {K_B}\left( c \right)p} \right)p,\;\;\;0\! \leqslant\! z \!\leqslant\! 1,\;\;t > 0$

因此,利用比较原理和式(45),有

$p\left( {z,t} \right) \geqslant \bar p\left( {z,t} \right),\;\;\;\;\;\;0 \leqslant z \leqslant 1,\;\;t \geqslant 0$

$V\left( t \right) = \dfrac{1}{3}{R^3}\left( t \right),$

$\begin{split} & \dot V\left( t \right) = {R^3}\left( t \right)\int_0^1 {{K_B}\left( {c\left( {z,R\left( t \right)} \right)} \right)p\left( {z,t} \right)} {z^2}dz \geqslant\\& {K_B}\left( {c\left( {0,{R_\infty }} \right)} \right){R^3}\left( t \right)\int_0^1 {\bar p\left( {z,t} \right)} {z^2}{\rm{d}}z \end{split}$

由引理3可得:对 $\forall 0 \leqslant z \leqslant 1,$ ${\bar p_\infty }\left( z \right) \geqslant 0$ ${\bar p_\infty }\left( z \right)\not \equiv 0$ ,则

$\mathop {\lim }\limits_{t \to \infty } \inf \dot V\left( t \right) \geqslant {K_B}\left( {c\left( {0,{R_\infty }} \right)} \right)\;{R_\infty }^3\int_0^1 {{{\bar p}_\infty }\left( z \right)} {z^2}{\rm{d}}z > 0$

$\mathop {\lim }\limits_{t \to \infty } V\left( t \right) = \infty $ ,因此与 ${R_\infty } < \infty $ 矛盾,定理3证毕。

参考文献
[1]
崔尚斌. 肿瘤生长的自由边界问题[J]. 数学进展, 2009, 38(1): 1-18.
CUI S B. Free boundary problems modeling tumor growth[J]. Advances in Mathematics, 2009, 38(1): 1-18. DOI: 10.11845/sxjz.2009.38.01.0001.
[2]
DRASDO D, HÖHME S. A single cell based model of tumor growth in vitro: monolayers[J]. Physical Biology, 2005, 2(3): 133. DOI: 10.1088/1478-3975/2/3/001.
[3]
KIM J B, STEIN R, O'HARE M J. Three-dimensional in vitro tissue culture models for breast cancer-a review [J]. Breast Cancer Research & Treatment, 2004, 85(3): 281-291.
[4]
KYLE A H, CHAN C T O, MINCHINTON A I. Characterization of three-dimensional tissue cultures using impedance spectroscopy[J]. Biophysical Journal, 1999, 76(5): 2640-2648. DOI: 10.1016/S0006-3495(99)77416-3.
[5]
MUELLER-KLIESER W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications[J]. American Journal of Physiology Cell Physiology, 1997, 273(4): 1109-1123. DOI: 10.1152/ajpcell.1997.273.4.C1109.
[6]
ADAM J A, BELLOMO N. A survey of models for tumor-immune system dynamics[M]. Boston: Birkhäuser, 1997: 89-133.
[7]
SUTHERLAND R M. Cell and enviroment interactions in tumor microregions: the multicell spheroid model[J]. Science, 1998, 240(4849): 177-184.
[8]
CUI S B, FRIEDMAN A. A hyperbolic free boundary problem modeling tumor growth[J]. Interfaces and Free Boundaries, 2003, 5(2): 159-182.
[9]
CUI S B, WEI X M. Global existence for a parabolic-hyperbolic free boundary problem modelling tumor growth[J]. Acta Mathematicae Applicate Sinica, English Series, 2005, 21(4): 597-614. DOI: 10.1007/s10255-005-0268-1.
[10]
WEI X M, CUI S B. Global well-posedness for a drug transport model in tumor multicell spheroids[J]. Mathematical & Computer Modelling, 2007, 45(5-6): 553-563.
[11]
FRIEDMAN A, LAM K. Analysis of a free boundary tumor model with angiogenssis[J]. Journal of Differential Equations, 2015, 259(12): 7636-7661. DOI: 10.1016/j.jde.2015.08.032.
[12]
沈海双. 带有Robin 自由边界条件的肿瘤生长模型的定性分析[D]. 广州: 广东工业大学, 2019.
[13]
PETTET G J, PLEASE C P, TINDALL M J, et al. The migration of cells in multicell tumor spheroids[J]. Bulletin of Mathematical Biology, 2001, 63(2): 231-257. DOI: 10.1006/bulm.2000.0217.
[14]
PROTTER M H, WEINBERGER H F. Maximum Principles in Differential Equations[M]. New York: Springer, 1967: 1-3.