有关于肿瘤生长的偏微分模型的方程类型总共有3类:一类是Byrne-Chaplain型肿瘤模型,只含反应扩散方程;另一类是King-Ward型肿瘤模型,既含反应扩散方程又含守恒率方程;以及流体型肿瘤模型,不仅含有以上两类方程而且还含有Stokes方程[1](由Franks等[2-5]提出)。本文研究的模型属于King-Ward型肿瘤模型,该模型的肿瘤来源于实验室,专门培育出来用于研究肿瘤生长问题[6-7]。该模型由关于繁殖细胞密度、休眠态细胞密度以及死细胞密度的一阶双曲方程组,一个关于营养物浓度的椭圆方程和用来描述肿瘤自由边界运动的常微分方程所耦合的自由边界问题。在营养物浓度是线性反应扩散方程和Dirichlet边界条件下,文献[8-10]得到了整体解的适定性和肿瘤半径的一些性质。
肿瘤的生长依赖于新生血管,当肿瘤细胞分泌生长因子时,会促进血管的再生。而新生的肿瘤血管组织,仍然可以作为输送途径吸收营养物[11-12],因此本文假设
$\frac{{\partial C}}{{\partial r}} + \alpha \left( t \right)\left( {C - \bar C} \right) = 0,\;\;r = R\left( t \right),\;\;t \geqslant 0\;\;\;\;\;\;$ |
其中
本文在前述文献的基础上,考虑营养物浓度
$P + Q + D = N$ | (1) |
细胞在肿瘤内做连续运动,其中包括细胞的增殖和细胞的坏死。本文用速度场
假设肿瘤表面的压力即表面张力,则在细胞边界处有
$\sigma = \gamma \kappa $ |
其中
本文研究的具体模型为
${\nabla ^2}C - \lambda C = 0,\;\;\;\left| x \right| < R\left( t \right),\;\;t > 0$ | (2) |
$\;\frac{{\partial C}}{{\partial \left| x \right|}}\left( {0,t} \right) = 0,\;{\kern 1pt} {\kern 1pt} {\kern 1pt} \;\;\left| x \right| = 0,\;\;t > 0\;$ | (3) |
$\frac{{\partial C}}{{\partial \left| x \right|}} + \alpha \left( {C - \bar C} \right) = 0,\;\;\left| x \right| = R\left( t \right),\;\;t > 0$ | (4) |
$\begin{split} & \frac{{\partial P}}{{\partial t}} + {\rm{div}}\left( {P{{v}}} \right) = ({K_B}\left( C \right) - {K_Q}\left( C \right) - {K_A}\left( C \right))P +\\& {K_P}\left( C \right)Q,\;\;\left| x \right| < R\left( t \right),\;\;t > 0 \end{split}$ | (5) |
$\begin{split} & \frac{{\partial Q}}{{\partial t}} + {\rm{div}}\left( {Q{{v}}} \right) = {K_Q}\left( C \right)P - ({K_P}\left( C \right) +\\& {K_D}\left( C \right))Q,\;\;\left| x \right| < R\left( t \right),\;\;t > 0 \end{split}$ | (6) |
$\begin{split} & \frac{{\partial D}}{{\partial t}} + {\rm{div}}\left( {D{{v}}} \right) = {K_A}\left( C \right)P + {K_D}\left( C \right)Q -\\& \;{K_R}D,\;\;\left| x \right| < R\left( t \right),\;\;t > 0 \end{split}$ | (7) |
${{v}} = \nabla \sigma ,\;\;\;\left| x \right| < R\left( t \right),\;\;t > 0$ | (8) |
$\sigma = \gamma \kappa ,\;\;\;\left| x \right| = R\left( t \right),\;\;t > 0$ | (9) |
其中
由式(8)~(9)可得,只要给定了
给定初始条件
$R\left( 0 \right)\;,\;\;P\left( {x,0} \right),\;\;Q\left( {x,0} \right)$ | (10) |
在本文中,式(10)是径向对称的,考虑径向对称解,并令
$\frac{1}{{{r^2}}}\frac{\partial }{{\partial r}}\left( {{r^2}\frac{{\partial c}}{{\partial r}}} \right) = \lambda c,\;\;\;\;0 < r < R\left( t \right),\;\;t > 0$ | (11) |
$\;\frac{{\partial c}}{{\partial r}}\left( {0,t} \right) = 0,\;\;r = 0,\;\;t > 0\;$ | (12) |
$ \;\frac{{\partial c}}{{\partial r}} + \alpha \left( {c - 1} \right) = 0,\;\;r = R\left( t \right),\;\;t > 0 $ | (13) |
$ \begin{split} & \frac{{\partial p}}{{\partial t}} + \bar u\frac{{\partial p}}{{\partial r}} = ({K_B}\left( c \right) - {K_Q}\left( c \right) - {K_A}\left( c \right))p + {K_P}\left( c \right)q -\\& \left( {\left( {{K_B}\left( c \right) + {K_R}} \right)p\; + {K_R}q - {K_R}} \right)p,\;\;0 \leqslant r \leqslant R\left( t \right),\;\;t > 0 \end{split} $ | (14) |
$ \begin{split} & \frac{{\partial q}}{{\partial t}} + \bar u\frac{{\partial q}}{{\partial r}} = {K_Q}\left( c \right)p - ({K_P}\left( c \right) + {K_D}\left( c \right))q - \\&\left( {\left( {{K_B}\left( c \right) + {K_R}} \right)p\; + {K_R}q - {K_R}} \right)q,\;\;0 \leqslant r \leqslant R\left( t \right),\;\;t > 0 \end{split} $ | (15) |
$\frac{1}{{{r^2}}}\frac{\partial }{{\partial r}}\left( {{r^2}\bar u} \right) \!=\! \left( {{K_B}\left( c \right) \!+\! {K_R}} \right)p \!+\! {K_R}q - {K_R},\;\;0 < r \leqslant R\left( t \right),\;\;t \!>\! 0$ | (16) |
$\bar u\left( {0,t} \right) = 0,\;\;t > 0$ | (17) |
$\frac{{{\rm{d}}R\left( t \right)}}{{{\rm{d}}t}} = \bar u\left( {R\left( t \right),t} \right),\;\;\;t > 0$ | (18) |
其中
在本文的第2节中,将径向对称问题转换为固定域中的方程组。在第3~4节中,证明了方程组整体解的存在性和唯一性。最后,在第5节中,考虑一个特殊情况:肿瘤中的死亡细胞根本没有消解,即
为了能够更简便地求解以上方程组,本文将其转换为一个与之等价的固定区域进行求解。考虑营养物浓度的方程及边界条件[12],可得
$c\left( {r,t} \right) = \dfrac{\alpha }{{\left( {\left. {\sqrt \lambda \coth \left( {\sqrt \lambda R} \right) - \dfrac{1}{R} + \alpha } \right)} \right.}} \cdot \dfrac{{\dfrac{{\sinh \left( {\sqrt \lambda r} \right)}}{r}}}{{\dfrac{{\sinh \left( {\sqrt \lambda R} \right)}}{R}}}$ |
令
$\begin{array}{l} c\left( {z,R} \right) = \dfrac{\alpha }{{\left( {\left. {\sqrt \lambda \coth \left( {\sqrt \lambda R} \right) - \dfrac{1}{R} + \alpha } \right)} \right.}} \cdot \dfrac{{\sinh \left( {\sqrt \lambda Rz} \right)}}{{z\sinh \left( {\sqrt \lambda R} \right)}},\\ 0 < z \leqslant 1,\;\;R > 0, \\ c\left( {0,R} \right) = \dfrac{\alpha }{{\left( {\left. {\sqrt \lambda \coth \left( {\sqrt \lambda R} \right) - \dfrac{1}{R} + \alpha } \right)} \right.}} \cdot \dfrac{{\sqrt \lambda R}}{{\sinh \left( {\sqrt \lambda R} \right)}},\;R > 0 \end{array} $ | (19) |
引入新的函数
$\begin{split} & \frac{{\partial p}}{{\partial t}}\! +\! {{v}}\frac{{\partial p}}{{\partial z}} \!=\! ({K_B}\left( c \right) \!-\! {K_Q}\left( c \right) \!-\! {K_A}\left( c \right))p + {K_P}\left( c \right)q\; - \\&\left( {\left( {{K_B}\left( c \right) + {K_R}} \right)p} \right. + {K_R}q - \left. {{K_R}} \right)p,\;\;0 \leqslant z \leqslant 1,\;\;t > 0 \end{split}$ | (20) |
$\begin{split} & \frac{{\partial q}}{{\partial t}} + {{v}}\frac{{\partial q}}{{\partial z}} = {K_Q}\left( c \right)p - ({K_P}\left( c \right) + {K_D}\left( c \right))q\; -\\& \left( {\left( {{K_B}\left( c \right) + {K_R}} \right)p + } \right.{K_R}q - \left. {{K_R}} \right)\;q,\;\;0 \leqslant z \leqslant 1,\;\;t > 0 \end{split}$ | (21) |
${{v}}\left( {z,t} \right) = u\left( {z,t} \right) - zu\left( {1,t} \right),\;\;0 \leqslant z \leqslant 1,\;\;t > 0$ | (22) |
$\frac{1}{{{z^2}}}\frac{\partial }{{\partial z}}( {{z^2}u}) = \left( {{K_B}\left( c \right) + {K_R}} \right)p + {K_R}q - {K_R},\;\;\;0 < z \leqslant 1,\;\;t > 0$ | (23) |
$u\left( {0,t} \right) = 0,\;\;t > 0$ | (24) |
$\frac{{{\rm{d}}R\left( t \right)}}{{{\rm{d}}t}} = R\left( t \right)u\left( {1,t} \right),\;\;\;t > 0$ | (25) |
$R\left( 0 \right) = {R_0},\;\;p\left( {z,0} \right) = {p_0}\left( z \right),\;\;q\left( {z,0} \right) = {q_0}\left( z \right),\;\;0 \leqslant z \leqslant 1$ | (26) |
其中
$R\left( 0 \right) > 0,\;{p_0}\left( z \right) \geqslant 0,\;{q_0}\left( z \right) \geqslant 0,\;{p_0}\left( z \right) + \;{q_0}\left( z \right) \leqslant 1,\;0 \leqslant z \leqslant 1$ | (27) |
为方便计算,把式(23)化为以下的积分形式
$\begin{split} & u\left( {z,t} \right) = \frac{1}{{{z^2}}}\int_0^z {\left( {\left( {{K_B}\left( {c\left( {\rho ,R\left( t \right)} \right)} \right) + {K_R}} \right)} \right.} p\left( {\rho ,t} \right) + \\& \left. {{K_R}q\left( {\rho ,t} \right) - {K_R}} \right){\rho ^2}{\rm{d}}\rho \end{split} $ | (28) |
则式(25)可改写为
$\begin{split} & \frac{{{\rm{d}}R\left( t \right)}}{{{\rm{d}}t}} = R\left( t \right)\int_0^1 {\left( {\left( {{K_B}\left( {c\left( {z,R\left( t \right)} \right)} \right) + {K_R}} \right)p\left( {z,t} \right)} \right.} +\\& \left. {{K_R}q\left( {z,t} \right) - {K_R}} \right){z^2}{\rm{d}}z \end{split}$ | (29) |
又因为
$\begin{split} & \frac{{\partial d}}{{\partial t}} + v\frac{{\partial d}}{{\partial z}} = {K_A}\left( c \right)p + {K_D}\left( c \right)q\; - \\&\left( {\left. {{K_B}\left( c \right)p - {K_R}d + {K_R}} \right)} \right.\;d,\;\;0 \leqslant z \leqslant 1,\;\;t > 0 \end{split}$ | (30) |
通过式(19),发现
$\mathop {\lim }\limits_{R \to 0} c\left( {z,R} \right) = 1\;\;\;\;\left( {0 \leqslant z \leqslant 1} \right)$ |
以及
$\mathop {\lim }\limits_{R \to \infty } c\left( {z,R} \right) = \left\{ \begin{array}{l} 0,\;\;\;\;0 \leqslant z < 1 \\ 1,\;\;\;\;z = 1 \end{array} \right.$ |
定理1 令
$p\left( {z,t} \right) \geqslant 0,\;\;q\left( {z,t} \right) \geqslant 0\;,\;\;\left| {\left( {p\left( {z,t} \right),q\left( {z,t} \right)} \right)} \right| \leqslant 2{M_0}$ |
则对于
在进行证明之前,本文先作出如下假设:
(a)
${K_B}\left( c \right) > {K_A}\left( c \right),\;\;\;{K'_B}\left( c \right) > 0,\;\;{K'_p}\left( c \right) > 0,\;\;\;\;0 \leqslant c \leqslant 1$ |
${K_B}\left( 0 \right) = {K_P}\left( 0 \right) = 0$ |
$\begin{split} & {K'_A}\left( c \right) \leqslant 0,\;{K'_D}\left( c \right) < 0,\;{K'_Q}\left( c \right) < 0\\ &{K'_B}\left( c \right) + {K'_D}\left( c \right) > 0,\;0 \leqslant c \leqslant 1 \end{split}$ |
${K_A}\left( 1 \right) = {K_D}\left( 1 \right) = {K_Q}\left( 1 \right) = 0$ |
(b)
由文献[13]可得
$\begin{split} & u\left( {z,t} \right) = \frac{1}{{{z^2}}}\int_0^z {g\left( {\rho ,R\left( t \right),p\left( {\rho ,t} \right),q\left( {\rho ,t} \right)} \right)} {\rho ^2}{\rm{d}}\rho ,\\&0 < z \leqslant 1,\;\;t > 0 \end{split}$ |
为了证明局部解的存在唯一性,先引入一个度量空间
(i)
$\left| {R\left( t \right) - {R_0}} \right| \leqslant \delta ,\;\;0 \leqslant t \leqslant T$ | (31) |
其中
(ii)
$\begin{split} & p\left( {z,t} \right) \geqslant 0,\;\;q\left( {z,t} \right) \geqslant 0,\;\;\left| {\left( {p\left( {z,t} \right),q\left( {z,t} \right)} \right)} \right| \leqslant 2{M_0},\\&0 \leqslant z \leqslant 1,\;\;0 \leqslant t \leqslant T \end{split}$ |
定义
$\begin{split} & \rho \left( {\left( {{R_1},{p_1},{q_1}} \right),\left( {{R_2},{p_2},{q_2}} \right)} \right) = \mathop {\max }\limits_{0 \leqslant t \leqslant T} \left| {{R_1}\left( t \right) - {R_2}\left( t \right)} \right| +\\& \mathop {\max }\limits_{0 \leqslant z \leqslant 1,0 \leqslant t \leqslant T} \left| {\left( {\left( {{p_1}\left( t \right) - {p_2}\left( t \right)),{q_1}\left( t \right) - {q_2}\left( t \right)} \right)} \right)} \right| \end{split}$ |
显然
定义映射
$\frac{{\partial \tilde p}}{{\partial t}} + {{v}}\frac{{\partial \tilde p}}{{\partial z}} = {a_{11}}\left( {z,t} \right)\tilde p + {a_{12}}\left( {z,t} \right)\tilde q,\;\;0 \leqslant z \leqslant 1,\;\;0 < t \leqslant T$ |
$ \begin{split} & \frac{{\partial \tilde q}}{{\partial t}} + {{v}}\frac{{\partial \tilde q}}{{\partial z}} = {a_{21}}\left( {z,t} \right)\tilde p + {a_{22}}\left( {z,t} \right)\tilde q,\;\;0 \leqslant z \leqslant 1,\;\;0 < t \leqslant T,\\& \tilde p\left( {z,0} \right) = {p_0}\left( z \right),\;\;\tilde q\left( {z,0} \right) = {q_0}\left( z \right),\;\;0 \leqslant z \leqslant 1 \end{split} $ |
$\frac{{{\rm{d}}\tilde R\left( t \right)}}{{{\rm{d}}t}} = \tilde R\left( t \right)u\left( {1,t} \right),\;\;\;0 < t \leqslant T$ | (32) |
$\tilde R\left( 0 \right) = {R_0}$ | (33) |
其中
$ \begin{split} & {a_{12}} = {K_P}( c ),\;{a_{11}} = {K_B}( c ) - {K_Q}( c ) - {K_A}( c ) - \\&( {{K_B}( c ) + {K_R}} )p + {K_R}q - {K_R}\\& {a_{21}} = {K_Q}( c ),\;{a_{22}} = {K_R} - {K_R}q - {K_P}( c ) -\\& {K_D}( c ) - ( {{K_B}( c ) + {K_R}} )p \end{split} $ |
显然,方程(32)~(33)有唯一解
$\tilde R\left( t \right) = {R_0}\exp \left( {\int_0^t {u\left( {1,\tau } \right)} {\rm{d}}\tau } \right),\;\;\;\;\;\;0 \leqslant t \leqslant T$ | (34) |
因此
$ \begin{split} & | {g( {z,R( t ),p( {z,t} ),q( {z,t} )} )} | \leqslant ( {{K_B}( 1 ) + {K_R}} )( {{M_0} + 1} ) + \\& {K_R}( {{M_0} + 1} ) + {K_R} \equiv {M_1}\;({M_1}{\text{为一个正数}}) \end{split}$ |
有
$\left| {\tilde R\left( t \right) - {R_0}} \right| \leqslant \frac{1}{3}{R_0}{M_1}T{{\rm{e}}^{\frac{1}{3}{M_1}T}},\;\;\;\;\;\;\;0 \leqslant t \leqslant T$ |
因此,当
由文献[9]中的Lemma 4.2和Lemma 4.3得,当
$\begin{split} & \tilde p\left( {z,t} \right) \geqslant 0,\;\;\tilde q\left( {z,t} \right) \geqslant 0\;,\;\;\left| {\left( {\tilde p\left( {z,t} \right),\tilde q\left( {z,t} \right)} \right)} \right| \leqslant 2{M_0},\\& 0 \leqslant z \leqslant 1,\;\;0 \leqslant t \leqslant T \end{split}$ |
因此,
由(i)、(ii)的结论可知:对于足够小的
下证当
$\begin{split} & {u_i}\left( {z,t} \right) = \frac{1}{{{z^2}}}\int_0^z {g\left( {\rho ,{R_i}\left( t \right),{p_i}\left( {\rho ,t} \right),{q_i}\left( {\rho ,t} \right)} \right)} {\rho ^2}{\rm{d}}\rho \\& {v_i}\left( {z,t} \right) = {u_i}\left( {z,t} \right) - z{u_i}\left( {1,t} \right) \end{split}$ |
$\left( {{{\tilde R}_i},{{\tilde p}_i},{{\tilde q}_i}} \right) = {\cal{F}}\left( {{R_i},{p_i},{q_i}} \right),\;\;\rho = \rho \left( {\left( {{R_1},{p_1},{q_1}} \right),\left( {{R_2},{p_2},{q_2}} \right)} \right)$ |
通过直接计算,可得
$\left| {{u_1}\left( {z,t} \right) - {u_2}\left( {z,t} \right)} \right| \leqslant {M_2}\rho ,\;\;\;0 \leqslant z \leqslant 1,\;\;0 \leqslant t \leqslant T$ |
因此,根据式(34),有
$\mathop {\max }\limits_{0 \leqslant t \leqslant T} \left| {{{\tilde R}_1}\left( t \right) - {{\tilde R}_2}\left( t \right)} \right| \leqslant {M_3}T\rho $ | (35) |
其中
利用文献[9]中的方法,从而有
$\mathop {\max }\limits_{0 \leqslant t \leqslant T} \left| {\left( {\left( {{{\tilde p}_1}\left( t \right) - {{\tilde p}_2}\left( t \right)),{{\tilde q}_1}\left( t \right) - {{\tilde q}_2}\left( t \right)} \right)} \right)} \right| \leqslant TC\left( T \right)\rho $ | (36) |
其中
$\begin{split} & \rho \left( {\left( {{{\tilde R}_1},{{\tilde p}_1},{{\tilde q}_1}} \right),\left( {{{\tilde R}_2},{{\tilde p}_2},{{\tilde q}_2}} \right)} \right) \leqslant \\& \left( {{M_3} + C\left( T \right)} \right)T\rho \left( {\left( {{R_1},{p_1},{q_1}} \right),\left( {{R_2},{p_2},{q_2}} \right)} \right) \end{split}$ |
因此,只要T足够小,使得
在本节中,主要证明以下定理:
定理2 方程(20)~(26)对于
$p\left( {z,t} \right) \geqslant 0,\;\;q\left( {z,t} \right) \geqslant 0,\;\;p\left( {z,t} \right) + q\left( {z,t} \right) \leqslant 1$ | (37) |
${R_0}{{\rm{e}}^{ - \frac{1}{3}{K_R}t}} \leqslant R\left( t \right) \leqslant {R_0}{{\rm{e}}^{\frac{1}{3}{K_B}\left( 1 \right)t}}$ | (38) |
$ - \frac{1}{3}{K_R} \leqslant \frac{{\dot R\left( t \right)}}{{R\left( t \right)}} \leqslant \frac{1}{3}{K_B}\left( 1 \right)$ | (39) |
证明 根据定理1,要证明方程组的解在
$\left| {\frac{{\partial p\left( {z,t} \right)}}{{\partial z}}} \right| \leqslant C\left( T \right),\;\;\;\;\;\;\left| {\frac{{\partial q\left( {z,t} \right)}}{{\partial z}}} \right| \leqslant C\left( T \right)$ | (40) |
在
为了证明式(37),令
$ \begin{split} & \frac{{\partial {\tilde{ \tilde p}}\left( {\xi ,t} \right)}}{{\partial t}} = {a_{11}}\left( {\xi ,t} \right){\tilde{ \tilde p}}\left( {\xi ,t} \right) + {a_{12}}\left( {\xi ,t} \right){ \tilde {\tilde q}}\left( {\xi ,t} \right) \\& \frac{{\partial{ \tilde {\tilde q}}\left( {\xi ,t} \right)}}{{\partial t}} = {a_{21}}\left( {\xi ,t} \right){\tilde{ \tilde p}}\left( {\xi ,t} \right) + {a_{22}}\left( {\xi ,t} \right){ \tilde {\tilde q}}\left( {\xi ,t} \right) \end{split}$ |
这里的
$\begin{split} & {a_{12}}\left( {\xi ,t} \right) = {K_P}\left( {c\left( {z\left( {\xi ,t} \right),R\left( t \right)} \right)} \right) \geqslant 0,\\& {a_{21}}\left( {\xi ,t} \right) = {K_Q}\left( {c\left( {z\left( {\xi ,t} \right),R\left( t \right)} \right)} \right) \geqslant 0 \end{split}$ |
因为
${\tilde{ \tilde p}}\left( {\xi ,t} \right) \geqslant 0,\;\;\;\;\;\;{ \tilde {\tilde q}}\left( {\xi ,t} \right) \geqslant 0$ |
成立。则对
$p\left( {z,t} \right) \geqslant 0,\;\;q\left( {z,t} \right) \geqslant 0$ |
成立。将其代入式(30),可得
$\frac{{\partial d}}{{\partial t}}\! +\! v\frac{{\partial d}}{{\partial z}} \!+\! \left( {\left. {{K_B}\left( c \right)p \!- \!{K_R}d + {K_R}} \right)} \right.d \geqslant 0,\;0 \leqslant z \leqslant 1,\;0 \leqslant t < T$ |
由于当
结合式(29)和式(37),可得
$\dot R\left( t \right) \geqslant - {K_R}R\left( t \right)\int_0^1 {{z^2}} {\rm{d}}z = - \frac{1}{3}{K_R}R\left( t \right),\;\;0 < t < T$ |
且有
$ \begin{split} & \dot R\left( t \right) = R\left( t \right)\int_0^1 {\left( {{K_B}\left( {c\left( {z,R\left( t \right)} \right)} \right)p\left( {z,t} \right) - } \right.} \\&\left. {{K_R}\left( {1 - p\left( {z,t} \right) - q\left( {z,t} \right)} \right)} \right){z^2}{\rm{d}}z \leqslant {K_B}\left( 1 \right)R\left( t \right)\int_0^1 {{z^2}{\rm{d}}z} = \\&\frac{1}{3}{K_B}\left( 1 \right)R\left( t \right),\;\;0 < t < T \end{split} $ |
即式(39)成立。由式(39)可以直接推出式(38)。而由文献[9]的Lemma 4.2,可知式(40)成立,定理2证毕。
5 KR=0时当
$\dot R\left( t \right) = R\left( t \right)\int_0^1 {{K_B}\left( {c\left( {z,R\left( t \right)} \right)} \right)p\left( {z,t} \right)} {z^2}{\rm{d}}z \geqslant 0$ | (41) |
因为
$p\left( {z,0} \right) \ne 0,\;{p_z}\left( {z,0} \right) \geqslant 0,\;{d_z}\left( {z,0} \right) \leqslant 0,\;\;0 \leqslant z \leqslant 1$ | (42) |
${K_D}\left( c \right) \geqslant {K_A}\left( c \right),\;\;0 \leqslant c \leqslant 1$ | (43) |
式(42)与实验结果有关,即死亡细胞倾向于集中在肿瘤的内部区域,而繁衍态细胞倾向于集中在肿瘤的外部区域。而式(43)基于事实:休眠态细胞的死亡速率大于繁衍态细胞的死亡速率。
定理 3 假设
$\mathop {\lim }\limits_{t \to \infty } R\left( t \right) = \infty $ | (44) |
为了证明这个结论,需要给出以下引理。
引理 1 令
${p_z}\left( {z,t} \right) \geqslant 0,\;\;{d_z}\left( {z,t} \right) \leqslant 0,\;\;\;0 \leqslant z \leqslant 1,\;\;t \geqslant 0$ |
证明 令
$\frac{{\partial {\psi _z}}}{{\partial t}} + {{v}}\frac{{\partial {\psi _z}}}{{\partial z}} = {b_{11}}{\psi _z} + {b_{12}}{p_z} + {b_{10}}$ |
其中
$\begin{split} & {b_{10}} = \left( {\left. {{{K_B'}}\left( c \right)dp - {{K_A'}}\left( c \right)p - {{K_D'}}\left( c \right)q} \right)} \right.{c_z},\\& {b_{11}} = - {v_z} - {K_B}\left( c \right)p - {K_D}\left( c \right),\\& {b_{12}} = {K_B}\left( c \right)d + {K_D}\left( c \right) - {K_A}\left( c \right) \end{split}$ |
类似地,对式(20)关于
$\frac{{\partial {p_z}}}{{\partial t}} + {{v}}\frac{{\partial {p_z}}}{{\partial z}} = {b_{21}}\;{\psi _z} + {b_{22}}{p_z} + {b_{20}}$ |
其中
$\begin{split} & {b_{20}}\! =\! \left( {\left. {\left( {\left. {{{K'}_B}\left( c \right)\left( {1 \!-\! p} \right) \!-\! {{K'}_Q}\left( c \right) \!- \!{{K'}_A}\left( c \right)} \right)p \!+\! {{K'}_P}\left( c \right)q} \right.} \right)} \right.{c_z},\\& {b_{21}} = {K_P}\left( c \right),\\& {b_{22}} = - {v_z} + {K_B}\left( c \right)\left( {1 - 2p} \right) - {K_P}\left( c \right) - {K_Q}\left( c \right) - {K_A}\left( c \right) \end{split}$ |
则根据式(43)和假设(a)可得,
引理 2 令
证明 由于
$\frac{\partial }{{\partial z}}\left( {\frac{{\partial {{v}}}}{{\partial z}} + \frac{2}{z}{{v}}} \right) = \frac{\partial }{{\partial z}}\left( {\frac{{\partial u}}{{\partial z}} + \frac{2}{z}u} \right) = {K_B}\left( c \right){p_z} + {K'_B}\left( c \right)p{c_z}$ |
所以,由引理1可得
$\frac{{{\partial ^2}{{v}}}}{{\partial {z^2}}} + \frac{2}{z}\frac{{\partial {{v}}}}{{\partial z}} - \frac{2}{{{z^2}}}{{v}} \geqslant 0\;,\;\;0 < z < 1,\;\;t > 0$ |
因为对
令
$\left\{ \begin{aligned} & \frac{{\partial \bar p\left( {z,t} \right)}}{{\partial t}} = ( {K_B}\left( c \right) - {K_Q}\left( c \right) - {{K_A}\left( c \right) - {K_B}\left( c \right)\bar p} )\bar p,\\& 0 \leqslant z \leqslant 1,\;t > 0 \\& \bar p\left( {z,0} \right) = p\left( {z,0} \right),\;\;\;\;\;\;0 \leqslant z \leqslant 1 \end{aligned} \right.$ | (45) |
且该初值问题对于
引理 3 假设
$\begin{split} & \mathop {\lim }\limits_{t \to \infty } \bar p\left( {z,t} \right) = {\bar p_\infty }\left( z \right) \equiv \\& \max \left\{ {\left. {0,1 - \frac{{\left( {{K_A} + {K_Q}} \right)c\left( {z,{R_\infty }} \right)}}{{{K_B}\left( {c\left( {z,{R_\infty }} \right)} \right)}}} \right\}} \right.,\;0 \leqslant z \leqslant 1 \end{split}$ |
证明(定理3) 由式(41)可知
令
$\frac{{\partial p}}{{\partial t}} \!\geqslant \!\left( {{K_B}\left( c \right) \!-\! {K_Q}\left( c \right) \!-\! } \right.\left. {{K_A}\left( c \right)\! -\! {K_B}\left( c \right)p} \right)p,\;\;\;0\! \leqslant\! z \!\leqslant\! 1,\;\;t > 0$ |
因此,利用比较原理和式(45),有
$p\left( {z,t} \right) \geqslant \bar p\left( {z,t} \right),\;\;\;\;\;\;0 \leqslant z \leqslant 1,\;\;t \geqslant 0$ |
令
$\begin{split} & \dot V\left( t \right) = {R^3}\left( t \right)\int_0^1 {{K_B}\left( {c\left( {z,R\left( t \right)} \right)} \right)p\left( {z,t} \right)} {z^2}dz \geqslant\\& {K_B}\left( {c\left( {0,{R_\infty }} \right)} \right){R^3}\left( t \right)\int_0^1 {\bar p\left( {z,t} \right)} {z^2}{\rm{d}}z \end{split}$ |
由引理3可得:对
$\mathop {\lim }\limits_{t \to \infty } \inf \dot V\left( t \right) \geqslant {K_B}\left( {c\left( {0,{R_\infty }} \right)} \right)\;{R_\infty }^3\int_0^1 {{{\bar p}_\infty }\left( z \right)} {z^2}{\rm{d}}z > 0$ |
即
[1] |
崔尚斌. 肿瘤生长的自由边界问题[J].
数学进展, 2009, 38(1): 1-18.
CUI S B. Free boundary problems modeling tumor growth[J]. Advances in Mathematics, 2009, 38(1): 1-18. DOI: 10.11845/sxjz.2009.38.01.0001. |
[2] |
DRASDO D, HÖHME S. A single cell based model of tumor growth in vitro: monolayers[J].
Physical Biology, 2005, 2(3): 133.
DOI: 10.1088/1478-3975/2/3/001. |
[3] |
KIM J B, STEIN R, O'HARE M J. Three-dimensional in vitro tissue culture models for breast cancer-a review
[J].
Breast Cancer Research & Treatment, 2004, 85(3): 281-291.
|
[4] |
KYLE A H, CHAN C T O, MINCHINTON A I. Characterization of three-dimensional tissue cultures using impedance spectroscopy[J].
Biophysical Journal, 1999, 76(5): 2640-2648.
DOI: 10.1016/S0006-3495(99)77416-3. |
[5] |
MUELLER-KLIESER W. Three-dimensional cell cultures: from molecular mechanisms to clinical applications[J].
American Journal of Physiology Cell Physiology, 1997, 273(4): 1109-1123.
DOI: 10.1152/ajpcell.1997.273.4.C1109. |
[6] |
ADAM J A, BELLOMO N. A survey of models for tumor-immune system dynamics[M]. Boston: Birkhäuser, 1997: 89-133.
|
[7] |
SUTHERLAND R M. Cell and enviroment interactions in tumor microregions: the multicell spheroid model[J].
Science, 1998, 240(4849): 177-184.
|
[8] |
CUI S B, FRIEDMAN A. A hyperbolic free boundary problem modeling tumor growth[J].
Interfaces and Free Boundaries, 2003, 5(2): 159-182.
|
[9] |
CUI S B, WEI X M. Global existence for a parabolic-hyperbolic free boundary problem modelling tumor growth[J].
Acta Mathematicae Applicate Sinica, English Series, 2005, 21(4): 597-614.
DOI: 10.1007/s10255-005-0268-1. |
[10] |
WEI X M, CUI S B. Global well-posedness for a drug transport model in tumor multicell spheroids[J].
Mathematical & Computer Modelling, 2007, 45(5-6): 553-563.
|
[11] |
FRIEDMAN A, LAM K. Analysis of a free boundary tumor model with angiogenssis[J].
Journal of Differential Equations, 2015, 259(12): 7636-7661.
DOI: 10.1016/j.jde.2015.08.032. |
[12] |
沈海双. 带有Robin 自由边界条件的肿瘤生长模型的定性分析[D]. 广州: 广东工业大学, 2019.
|
[13] |
PETTET G J, PLEASE C P, TINDALL M J, et al. The migration of cells in multicell tumor spheroids[J].
Bulletin of Mathematical Biology, 2001, 63(2): 231-257.
DOI: 10.1006/bulm.2000.0217. |
[14] |
PROTTER M H, WEINBERGER H F. Maximum Principles in Differential Equations[M]. New York: Springer, 1967: 1-3.
|