关于复值函数
| $ {L}_{\alpha }\left({{s}}\right):=\underset{{{\varLambda}}\to \infty }{\lim} \int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}{{\rm{e}}}^{-{{s}}\cdot{{\lambda}}}{\rm{d}}\alpha \left({{\lambda}}\right) $ |
其中
L-S变换和其他积分变换密切相关,包括Fourier变换和Laplace变换,同时也是Dirichlet级数的推广,它是求解某些积分方程的有力工具,同时在概率论中也有应用。中外数学工作者在L-S变换和有关方面,已经取得了许多重要成果。1937年,文献[2]研究了二重L-S变换在有界收敛区域内的解析性。1941年,文献[3]深入研究了二重L-S变换的收敛区域,给出二重L-S变换相关收敛横坐标的定义及讨论了二重L-S变换的逆变换。1962年,余家荣[4]得到了二重Dirichlet级数和二重L-S变换相关收敛横坐标的计算公式。2009年,梁美丽等[5]定义了
本文将得到关于L-S变换的两个等式,其中一个推广了Dirichlet级数中的相应结论,另一个与内积空间中的Parseval等式类似。建立这2个等式,需要Vitali有界变差函数的一些性质,为方便起见,将给出Vitali有界变差函数的定义,首先引入一些术语和记号。
1 定义定义1 对(
| $ \Delta \left(f,\left[{{u}},{{v}}\right]\right):=\sum\limits_{{{x}}\in {\cal{V}}([{{u}},{{v}}])}\left[f\left({{x}}\right)\prod\limits_{1}^{n}{\left(-1\right)}^{{1}_{\left\{{u}_{j}\right\}}\circ {\pi}_{j}\left({{x}}\right)}\right] $ |
其中,
定义2 具有以下形式的集合D称为闭区间
下文给出Vitali有界变差函数的定义。
定义3 定义在
| $ V\left(f,D\right):=\sum\limits_{\left[{{u}},{{v}}\right]\in D}\left|\Delta \left(f,\left[{{u}},{{v}}\right]\right)\right| $ |
| $ {\rm{var}}\left(f,\left[{{a}},{{b}}\right]\right):=\sup\left\{V\left(f,D\right):D\in {\cal{D}}\left(\left[{{a}},{{b}}\right]\right)\right\} $ |
此外,若
为方便起见,
| $ {BV}_{0}\left[{{a}},{{b}}\right]:=\left\{f:f\in BV\left[{{a}},{{b}}\right],{{x}}\in \left[{{a}},{{b}}\right]\setminus \left(\left.{{a}},{{b}}\right]\right.\Rightarrow f\left({{x}}\right)=0\right\} $ |
对该定义有以下补充。
注1 若
| ${\mathop{\rm var}} (f,Q){\kern 1pt} {\kern 1pt} = {\kern 1pt} {\kern 1pt} {\mathop{\rm var}} (f,{Q_1}){\kern 1pt} {\kern 1pt} + {\kern 1pt} {\kern 1pt} (f,{Q_2}){\kern 1pt} $ |
事实上,若
所以
反之,若
| ${D}_{1}^{*}= \left\{\left[{{u}},{{v}}\right]\cap {Q}_{1}:\left[{{u}},{{v}}\right]\in D\right\}\in {\cal{D}}\left({Q}_{1}\right) $ |
| ${D}_{2}^{*}= \{[{{u}},{{v}}]\cap {Q}_{2}:[{{u}},{{v}}] \in D\}\in {\cal{D}}({Q}_{2}) $ |
由
| $ \begin{split} V\left(f,D\right)\leqslant & V\left(f,{D}_{1}^{*}\cup {D}_{2}^{*}\right)=V\left(f,{D}_{1}^{*}\right)+V\left(f,{D}_{2}^{*}\right) \leqslant\\ & \qquad {\rm{var}}\left(f,{Q}_{1}\right)+{\rm{var}}\left(f,{Q}_{2}\right) \end{split} $ |
所以
根据这个注记,可以引入以下的定义。
定义4 若
注2 若
| $ {\int\limits }_E g{\rm{d}}f:=\sum\limits_{1}^{m}{\int\limits }_{{Q}_{j}} g{\rm{d}}f $ |
事实上,R-S积分
为表述主要结果,需要引入以下的定义。
定义5 若
| $ \quad\;\;\;\;\begin{aligned} & \Delta \alpha \left({{\lambda}}\right):=\underset{{\mathbb{R}}_{+}^{n}\ni {{h}}\to 0}{\lim}\Delta \left(\alpha ,\left[{{\lambda}}-{{h}},{{\lambda}}+{{h}}\right]\cap \left[\left.{\bf{0}},\infty \right)\right.\right)=\\& \underset{{\mathbb{R}}_{+}^{n}\ni {{h}}\to 0}{\lim}\sum\limits_{{{\eta}}\in {\cal{V}}\left(\left[{{\lambda}}-{{h}},{{\lambda}}+{{h}}\right]\bigcap \left[\left.{\bf{0}},\infty \right)\right.\right)}\left[\alpha \left({{\eta}}\right)\prod\limits_{1}^{n}{\left(-1\right)}^{{1}_{\left\{{u}_{j}\right\}}\circ {\pi}_{j}\left({{\eta}}\right)}\right] \end{aligned}$ |
根据文献[1]的定理6.2.10,上述极限是存在的。
例如,当
| $\begin{split} & \Delta \alpha \left({{\lambda}}\right)=\lim_{{h}_{1},{h}_{2}\to +0}[f\left({\lambda }_{1}+{h}_{1},{\lambda }_{2}+{h}_{2}\right)- f\left({\lambda }_{1}-{h}_{1},{\lambda }_{2}+{h}_{2}\right)-\\&f({\lambda }_{1}+{h}_{1}{\lambda }_{2}- {h}_{2})+f({\lambda }_{1}-{h}_{1},{\lambda }_{2}-{h}_{2})]{\text{。}} \end{split} $ |
引理1 定义1中的映射是线性映射。此外,若其中一个变量不影响
证明 第一个断言是显然的。对第二个断言,假设第
| $ f\left({{x}}\right)\prod\limits_{1}^{n}{\left(-1\right)}^{{1}_{\left\{{u}_{j}\right\}}o {\pi}_{j}\left({{x}}\right)}+f\left({{y}}\right)\prod\limits_{1}^{n}{\left(-1\right)}^{{1}_{\left\{{u}_{j}\right\}}o {\pi}_{j}\left({{y}}\right)}=0 $ |
所以
| $\begin{split} & 2\Delta \left(f,\left[{{u}},{{v}}\right]\right)=\sum\limits_{{{x}}\in {\cal{V}}\left(\left[{{u}},{{v}}\right]\right)}\left[f\left({{x}}\right)\prod\limits_{1}^{n}{\left(-1\right)}^{{1}_{\left\{{u}_{j}\right\}}o {\pi}_{j}\left({{x}}\right)}\right]+\\& \sum\limits_{{{y}}\in {\cal{V}}\left(\left[{{u}},{{v}}\right]\right)}\left[f\left({{y}}\right)\prod\limits_{1}^{n}{\left(-1\right)}^{{1}_{\left\{{u}_{j}\right\}}o {\pi}_{j}\left({{y}}\right)}\right]= 0 \end{split}$ |
引理2 若
证明 对
| $ \alpha^{*}({{\lambda}})= \sum\limits_{m=1}^{n}(-1)^{m}\left[\sum\limits_{1 \leqslant j_{1}< \cdots < j_{m} \leqslant n} \alpha\bigg({{\lambda}}-\sum_{k=1}^{m} {\rm{e}}_{{{\lambda}}}^{j_{k}}\bigg)\right] $ |
| $ {\alpha }_{0}\left({{\lambda}}\right)= \alpha \left({{\lambda}}\right)+{\alpha }^{*}\left({{\lambda}}\right) $ |
注意到
| $\begin{split}& \sum\limits_{{1\leqslant j}_{1}<\cdots <{j}_{m}\leqslant n}\alpha \Bigg({{\lambda}}-\sum\limits_{k=1}^{m}{{\xi}}_{{{\lambda}}}^{{{j}}_{{k}}}\Bigg)=\\ &\qquad \sum\limits_{\begin{smallmatrix} {1\leqslant {j}_{1}<\cdots <{j}_{m-1}\leqslant n}\\ {j}_{k}\ne j \end{smallmatrix}} \alpha \Bigg({{\lambda}}-\sum\limits_{k=1}^{m-1}{{\xi}}_{{{\lambda}}}^{{{j}}_{{k}}}\Bigg)+\\&\qquad \sum\limits_{\begin{smallmatrix}1\leqslant {j}_{1}<\cdots <{j}_{m}\leqslant n\\ {j}_{k}\ne j\end{smallmatrix}}\alpha \Bigg({{\lambda}}-\sum\limits_{k=1}^{m}{{\xi}}_{{{\lambda}}}^{{{j}}_{{k}}}\Bigg),(1<m <n)\\& \sum\limits_{{1\leqslant j}_{1}<\cdots <{j}_{m}\leqslant n}\alpha \Bigg({{\lambda}}-\sum\limits_{k=1}^{m}{{\xi}}_{{{\lambda}}}^{{{j}}_{{k}}}\Bigg)=\alpha \Bigg({{\lambda}}-\sum\limits_{k=1}^{n-1}{{\xi}}_{{{\lambda}}}^{{{j}}_{{k}}}\Bigg),(m=n)\\ & \sum\limits_{{1\leqslant j}_{1}<\cdots <{j}_{m}\leqslant n}\alpha \Bigg({{\lambda}}-\sum\limits_{k=1}^{m}{{\xi}}_{{{\lambda}}}^{{{j}}_{{k}}}\Bigg)=\\&\qquad \alpha ({{\lambda}})+\sum\limits_{\begin{smallmatrix}1\leqslant j_1\leqslant n\\j_1\ne j\end{smallmatrix}}\alpha \Bigg({{\lambda}}-\sum\limits_{k=1}^{m}{{\xi}}_{{{\lambda}}}^{{{j_k}}}\Bigg),(m=1) \end{split} $ |
所以
| $ \begin{aligned} & {\sum\limits_{m=1}^{n}}{\left(-1\right)}^{m}\left[\sum\nolimits_{{1\leqslant j}_{1} < \cdots < {j}_{m}\leqslant n}\alpha \Bigg({{\lambda}}-\sum\limits_{k=1}^{m}{\rm{e}}_{{{\lambda}}}^{j_k}\Bigg)\right]= -\alpha \left({{\lambda}}\right)\\&{\alpha }_{0}\left({{\lambda}}\right)=\alpha \left({{\lambda}}\right)+{\alpha }^{*}\left({{\lambda}}\right)=0 \end{aligned} $ |
此外,
| $ \sum\nolimits_{\left[{{u}},{{v}}\right]\in D}g\left({{\xi}}_{{{u}}{{v}}}\right)\Delta (\alpha , [{{u}},{{v}}])= \sum\nolimits_{\left[{{u}},{{v}}\right]\in D}g\left({{\xi}}_{{{u}}{{v}}}\right)\Delta \left({\alpha }_{0},\left[{{u}},{{v}}\right]\right) $ |
其中
引理3 若
| ${\displaystyle \int }_{\left[{\bf{0}},\;{{\varLambda}}\right]}g{\rm{d}}\alpha ={\displaystyle \int }_{\left[{\bf{0}},\;{{\varLambda}}\right]} g{\rm{d}}{\mu }_{{{\varLambda}}}$ |
且对
证明 关于R-S积分,有以下估计(见文献[1],定理6.3.5),
又因为
注意到
| $ \begin{aligned} & {\int }_{[{\bf{0}},\;{{\varLambda}}]}{\phi }_{m}{\rm{d}}\alpha = {\int }_{{Q}_{m+1}\cap [{\bf{0}},\;{{\varLambda}}]}{\phi }_{m}{\rm{d}}\alpha +{\int }_{({Q}_{m}\setminus {Q}_{m+1}^{{\rm{o}}})\cap [{\bf{0}},\;{{\varLambda}}]}{\phi }_{m}{\rm{d}}\alpha +\\& {\int }_{\overline{{Q}_{m}^{c}}\cap [{\bf{0}},\;{{\varLambda}}]}{\phi }_{m}{\rm{d}}\alpha ={\int_ {{Q}_{m+1}\cap [{\bf{0}},\;{{\varLambda}}]}}{\rm{d}}\alpha +{\int_{({Q}_{m}\setminus {Q}_{m+1}^{{\rm{o}}})\cap [{\bf{0}},\;{{\varLambda}}]} }{\phi }_{m}{\rm{d}}\alpha =\\& \Delta (\alpha ,{Q}_{m+1}\cap [{\bf{0}},{{\varLambda}}])+ {{\int_{({Q}_{m}\setminus {Q}_{m+1}^{{\rm{o}}})\cap [{\bf{0}},\;{{\varLambda}}]} }}{\phi }_{m}{\rm{d}}\alpha \end{aligned} $ |
由此得到
| $\begin{split} &\left|{\int }_{\left[{\bf{0}},\;{{\varLambda}}\right]}{\phi }_{m}{\rm{d}}\alpha -\Delta \alpha \left({{\lambda}}\right)\right|\leqslant \left|\Delta \left(\alpha ,{Q}_{m+1} \cap \left[{\bf{0}},{{\varLambda}}\right]\right)- \Delta \alpha \left({{\lambda}}\right)\right|+\\&\Big|{\int }_{\left({Q}_{m}\setminus {Q}_{m+1}^{{\rm{o}}}\right)\cap \left[{\bf{0}},\;{{\varLambda}}\right]}{\phi }_{m}{\rm{d}}\alpha \Big|\end{split}$ |
对等号右边的第一项,由
| $ \underset{m\to \infty }{\lim}\Delta \left(\alpha ,{Q}_{m+1}\cap \left[{\bf{0}},{{\varLambda}}\right]\right)=\underset{m\to \infty }{\lim}\Delta \left(\alpha ,{Q}_{m+1}\cap \left[\left.{\bf{0}},\infty \right)\right.\right)=\Delta \alpha \left({{\lambda}}\right) $ |
对第二项有以下估计,
| $\begin{split} &\Big|{\displaystyle\int }_{\left({Q}_{m}\setminus {Q}_{m+1}^{{\rm{o}}}\right)\cap \left[{\bf{0}},\;{{\varLambda}}\right]}{\phi }_{m}{\rm{d}}\alpha \Big|\leqslant {\rm{var}}\left(\alpha ,\left({Q}_{m}\setminus {Q}_{m+1}^{{\rm{o}}}\right)\cap \left[{\bf{0}},{{\varLambda}}\right]\right)\\&{||{\phi }_{m}||}_{u}\leqslant {\rm{var}}\left(\alpha ,\left({Q}_{m}\setminus {Q}_{m+1}^{{\rm{o}}}\right)\cap \left[{\bf{0}},{{\varLambda}}\right]\right)= {\rm{var}}\left(\alpha ,{Q}_{m}\cap \left[{\bf{0}},{{\varLambda}}\right]\right)- \\&{\rm{var}}\left({\alpha ,Q}_{m+1}\cap \left[{\bf{0}},{{\varLambda}}\right]\right)\end{split}$ |
这是由于在构成
令
此外,假设
定理1 若对给定的
| ${\lim}_{{{T}}\to \infty }\Bigg[{(\prod\nolimits_{1}^{n}{T}_{j})}^{-1} {\displaystyle \int }_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha } \left({{\sigma }}+{{{\rm{i}}}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}\Bigg]={{\rm{e}}}^{-{{{\lambda}}}_{0}\cdot{{\sigma }}}\Delta \alpha \left({{{\lambda}}}_{0}\right), $ |
其中,
证明 当
| $ \lim\limits_{{{\varLambda}}\to \infty }\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-{{\lambda}}\cdot{{\sigma }}}{1}_{\left\{{{{\lambda}}}_{0}\right\}}{\rm{d}}{\mu }_{{{\varLambda}}}={{\rm{e}}}^{-{{{\lambda}}}_{0}\cdot{{\sigma }}}\Delta \alpha \left({{{\lambda}}}_{0}\right) \qquad\;\,\,$ | (1) |
令
| $\quad\quad {g}_{j}\left({{\lambda}};{{T}}\right)=\left\{\begin{aligned} & \frac{{T}_{j}-{T}_{0j}}{{T}_{j}}{{\rm{e}}}^{-{\lambda }_{0j}{\sigma }_{j}},{\lambda }_{j}={\lambda }_{0j}\\& \frac{{{\rm{e}}}^{{\rm{{i}}}\left({\lambda }_{0j}-{\lambda }_{j}\right){T}_{j}}-{{\rm{e}}}^{{\rm{i}}\left({\lambda }_{0j}-{\lambda }_{j}\right){T}_{0j}}}{{\rm{i}}\left({\lambda }_{0j}-{\lambda }_{j}\right){T}_{j}}{{\rm{e}}}^{-{{\lambda }_{j}\sigma }_{j}},{\lambda }_{j}\ne {\lambda }_{0j} \end{aligned}\right. $ |
从而
注意到,当
| $ \begin{aligned} &\left|{g}_{j}\left({{\lambda}};{{T}}\right)\right|= {T}_{j}^{-1}\left|{\int }_{{T}_{0j}}^{{T}_{j}}{{\rm{e}}}^{-{\rm{i}}{\lambda }_{0j}{t}_{j}}{{\rm{e}}}^{-{\lambda }_{j}\left({\sigma }_{j}+{\rm{i}}{t}_{j}\right)}{\rm{d}}{t}_{j}\right|\leqslant \\& \frac{{T}_{j}-{T}_{0j}}{{T}_{j}}{{\rm{e}}}^{-{{\lambda }_{j}\sigma }_{j}}\leqslant \left(1+\left|{T}_{0j}\right|\right){{\rm{e}}}^{-{{\lambda }_{j}\sigma }_{j}} \end{aligned}$ |
由控制收敛定理得
| $ \begin{aligned} & \underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\int\nolimits_{[{{{T}}}_{0},\;{{T}}]} }}{{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{{\rm{e}}}^{-\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}}{{t}}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\lambda}}\right)\right]=\\ & \underset{{{T}}\to \infty }{\lim}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{\prod }_{1}^{n}{g}_{j}{\rm{d}}{\mu }_{{{\varLambda}}}= \int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-{{\lambda}}\cdot{{\sigma }}}{1}_{\left\{{{{\lambda}}}_{0}\right\}}{\rm{d}}{\mu }_{{{\varLambda}}} \end{aligned}$ | (2) |
由Fubini定理得
| $ \begin{split} & \int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}\int\nolimits_{[{{{T}}}_{0},\;{{T}}]}{{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{{\rm{e}}}^{-({{\sigma }}+{{\rm{i}}}{{t}})\cdot{{\lambda}}}{\rm{d}}{{t}}{\rm{d}}{\mu }_{{{\varLambda}}}({{\lambda}})=\\ &\int\nolimits_{[{{{T}}}_{0},\;{{T}}]}\int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}{{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{{\rm{e}}}^{-({{\sigma }}+{{\rm{i}}}{{t}})\cdot{{\lambda}}}{\rm{d}}{\mu }_{{{\varLambda}}}({{\lambda}}){\rm{d}}{{t}}\qquad\qquad \end{split}$ | (3) |
根据引理3,
| $ \begin{split} & \int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}\int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}{{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{{\rm{e}}}^{-\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\lambda}}\right){\rm{d}}{{t}}=\\ & \int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}\left[{{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}\int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}{{\rm{e}}}^{-\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}}\alpha \left({{\lambda}}\right)\right]{\rm{d}}{{t}} \end{split}\qquad\qquad $ | (4) |
令
| $ {\varphi }_{{{\varLambda}}}\left({{\sigma }}+{\rm{i}}{{t}}\right)=\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-\left({{\sigma }}+{\rm{i}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}}\alpha \left({{\lambda}}\right)\qquad\qquad\qquad$ |
由该定理的假设,
| $ \begin{aligned} & \bigg|{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{\rm{i}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}-\\ & {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{\rm{i}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}\bigg|\leqslant\\ & {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}\left|{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{\rm{i}}{{t}}\right)-{L}_{\alpha }\left({{\sigma }}+{\rm{i}}{{t}}\right)\right|{\rm{d}}{{t}}\leqslant\\ & \prod\limits_{1}^{n}\frac{{T}_{j}-{T}_{0j}}{{T}_{j}}\underset{{{t}}\in {\mathbb{R}}^{n}}{\sup}\left|{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{\rm{i}}{{t}}\right)-{L}_{\alpha }\left({{\sigma }}+{\rm{i}}{{t}}\right)\right|\leqslant \\ & \prod\limits_{1}^{n}\left(1+\left|{T}_{0j}\right|\right)\underset{{{t}}\in {\mathbb{R}}^{n}}{\sup}\left|{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{\rm{i}}{{t}}\right)-{L}_{\alpha }\left({{\sigma }}+{\rm{i}}{{t}}\right)\right| \end{aligned} $ |
所以
| $ \begin{split} & {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{\rm{i}}{{t}}\right){{\rm{e}} }^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}} \rightrightarrows\\ & {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{\rm{i}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}} \end{split} \qquad\quad $ | (5) |
此外,由式(3)、式(4)得
| $ \begin{split} & {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{\phi }_{{{\varLambda}}}\left({{\sigma }}+{\rm{i}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}=\\& {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{{\rm{e}}}^{-\left({{\sigma }}+{\rm{i}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}}\alpha \left({{\lambda}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}\qquad\qquad \end{split}$ |
再由式(2)得
| $ \begin{split} & \underset{{{\varLambda}}\to \infty }{\lim}\underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{{\rm{i}}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}\right]=\\& \underset{{{T}}\to \infty }{\lim}\underset{{{\varLambda}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{\rm{i}}{{t}}\right){{\rm{e}}}^{{{\rm{i}}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}\right] \end{split} $ | (6) |
最后,由式(1)~(6)得
| $ \begin{aligned} & {{\rm{e}}}^{-{{{\lambda}}}_{0}\cdot{{\sigma }}}\Delta \alpha \left({{{\lambda}}}_{0}\right)\underset{\left(1\right)}{=}\underset{{{\varLambda}}\to \infty }{\lim}\int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}{{\rm{e}}}^{-{{\lambda}}\cdot{{\sigma }}}{1}_{\left\{{{{\lambda}}}_{0}\right\}}{\rm{d}}{\mu }_{{{\varLambda}}}\underset{\left(2\right)}{=}\\& \underset{{{\varLambda}}\to \infty }{\lim}\underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{e}}^{-\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}}{{t}}{{\rm{d}}}{\mu }_{{\bf{\Lambda}}}\left({{\lambda}}\right)\right]\underset{\left(3\right)}{=}\\& \underset{{{\varLambda}}\to \infty }{\lim}\underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}\int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}{{{\rm{e}}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{{\rm{e}}}^{-\left({{\sigma }}+{{{{\rm{i}}}}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}}{\mu }_{{\bf{\varLambda}}}\left({{\lambda}}\right){\rm{d}}{{t}}\right]\underset{\left(4\right)}{=}\\& \underset{{{\varLambda}}\to \infty }{\lim}\underset{{{T}}\to \infty }{\lim}\left\{{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}\left[{{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}\int\nolimits_{[{\bf{0}},{{\varLambda}}]}{{\rm{e}}}^{-\left({{\sigma }}+{{{{\rm{i}}}}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}}\alpha \left({{\lambda}}\right)\right]{\rm{d}}{{t}}\right\} =\\& \underset{{{\varLambda}}\to \infty }{\lim}\underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{{{{\rm{i}}}}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}\right] \underset{\left(6\right)}{=}\\& \underset{{{T}}\to \infty }{\lim}\underset{{{\varLambda}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{\varphi }_{{{\varLambda}}}\left({{\sigma }}+{{{{\rm{i}}}}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}\right] \underset{\left(5\right)}{=}\\& \underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{{{\rm{i}}}}}{{t}}\right){{\rm{e}}}^{{{{\rm{i}}}}{{{\lambda}}}_{0}\cdot{{t}}}{\rm{d}}{{t}}\right] \end{aligned} $ |
定理2 若对给定的
| $ \sum\limits_{{{\lambda}}\in \left[\left.{\bf{0}},\infty \right)\right.}{{\rm{e}}}^{-2{{\lambda}}\cdot{{\sigma }}}\left|\Delta \alpha \left({{\lambda}}\right)\Delta \beta \left({{\lambda}}\right)\right|< \infty $ |
根据引理3,该和式的意义是自明的,则对任意的
| $ \begin{aligned} & \underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\overline{{L}_{\beta }}\left({{\sigma }}+{{\rm{i}}}{{t}}\right){\rm{d}}{{t}}\right]=\\& \sum\limits_{{{\lambda}}\in \left[\left.{\bf{0}},\infty \right)\right.}{{\rm{e}}}^{-2{{\lambda}}\cdot{{\sigma }}}\Delta \alpha \left({{\lambda}}\right)\overline{\Delta \beta }\left({{\lambda}}\right) \end{aligned} $ |
其中,
证明 令
由定理假设,
| $\begin{split} & {\sup}_{{{t}}\in {\mathbb{R}}^{n}}\left|{\varphi }_{{{{\varLambda}}}_{0}}\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\right|={\sup}_{{{t}}\in {\mathbb{R}}^{n}}\left|{\displaystyle \int }_{\left[{\bf{0}},\;{{{\varLambda}}}_{0}\right]} {{\rm{e}}}^{-\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\cdot{{\eta}}} {\rm{d}}\alpha \left({{\eta}}\right)\right| \leqslant \\& {\sup}_{{{\eta}}\in \left[{\bf{0}},\;{{{\varLambda}}}_{0}\right]}\left\{{{\rm{e}}}^{-{{{\eta}}\cdot{\sigma }}}\right\}{\rm{var}}\left(\alpha ,\left[{\bf{0}},\;{{{\varLambda}}}_{0}\right]\right) <\infty{\text{。}} \end{split} $ |
从而
| $\begin{split} & {\left(\displaystyle \prod\nolimits_{1}^{n}{T}_{j}\right)}^{-1}\left|{\displaystyle \int }_{[{{{T}}}_{0},{{T}}]} {L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\overline{{\psi }_{{{\varLambda}}}}\left({{\sigma }}+{{\rm{i}}}{{t}}\right){\rm{d}}{{t}}-\right.\\&\left.{\displaystyle \int }_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\overline{{L}_{\beta }}\left({{\sigma }}+{{\rm{i}}}{{t}}\right){\rm{d}}{{t}}.\right|\leqslant \\& \displaystyle \prod\nolimits_{1}^{n}\left(1+\left|{T}_{0j}\right|\right){\sup}_{{{t}}\in {\mathbb{R}}^{n}}\left|{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\right|{\sup}_{{{t}}\in {\mathbb{R}}^{n}}\left|\left(\overline{{\psi }_{{{\varLambda}}}}-\overline{{L}_{\beta }}\right)\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\right|, \end{split} $ |
所以
| $ \begin{split} & {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\overline{{\psi }_{{{\varLambda}}}}\left({\sigma }+{{\rm{i}}}{{t}}\right){\rm{d}}{{t}}\rightrightarrows\\& {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\overline{{L}_{\beta }}\left({{\sigma }}+{{\rm{i}}}{{t}}\right){\rm{d}}{{t}} \end{split} $ | (7) |
在
| $ \overline{{\psi }_{{{\varLambda}}}}\left({{\sigma }}+{{\rm{i}}}{{t}}\right)=\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}\overline{\beta }\left({{\eta}}\right)=\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{d}{\mu }_{{{\varLambda}}}\left({{\eta}}\right) $ | (8) |
根据Fubini定理
| $ \begin{split} & \int\nolimits_{[{\bf{0}},\;{{\varLambda}}]}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}{{t}}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)=\\& \int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\left[\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)\right]{\rm{d}}{{t}} \end{split}\qquad $ | (9) |
对
| $ \begin{aligned} & \underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}{{t}}\right] =\\& {{\rm{e}}}^{-{{\eta}}\cdot{{\sigma }}}\underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right){{\rm{e}}}^{{\rm{i}}{{\eta}}\cdot{{t}}}{\rm{d}}{{t}}\right]={{\rm{e}}}^{-2{{\eta}}\cdot{{\sigma }}}\Delta \alpha \left({{\eta}}\right) \end{aligned} $ |
注意到
| $ \begin{aligned} & \underset{\begin{smallmatrix} {{t}}\in {{\mathbb{R}}^{n}} \\ {{\eta}} \in [{\bf{0}},\;{{\varLambda}} ] \end{smallmatrix}}{\mathop{\sup }}\left|{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}{{t}}\right|\leqslant \\[-3pt]& \prod\limits_{1}^{n}\left(1+\left|{T}_{0j}\right|\right)\underset{{{t}}\in {\mathbb{R}}^{n}}{\sup}\left|{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\right|\underset{{{\eta}}\in \left[{\bf{0}},\;{{\varLambda}}\right]}{\sup}\left\{{{\rm{e}}}^{-{{\eta}}\cdot{{\sigma }}}\right\}< \infty \end{aligned} $ |
再利用控制收敛定理,得
| $ \begin{split} & \underset{{{T}}\to \infty }{\lim}\Bigg[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }({{\sigma }}+\Bigg.\\&\Bigg. {{\rm{i}}}{{t}}){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}{{t}}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)\Bigg] =\\& \underset{{{T}}\to \infty }{\lim}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}\Bigg[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }({{\sigma }}+\Bigg.\\&\Bigg. {{\rm{i}}}{{t}}){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}{{t}}\Bigg]{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right) =\\& \int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-2{{\eta}}\cdot{{\sigma }}}\Delta \alpha \left({{\eta}}\right){\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)\\[-13pt] \end{split} $ | (10) |
此外,由式(8)~(10)得,
| $ \begin{split} & \left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}{{t}}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)\right]\rightrightarrows\\& {\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\overline{{L}_{\beta }}\left({{\sigma }}+{{\rm{i}}}{{t}}\right){\rm{d}}{{t}}\\[-20pt] \end{split} $ | (11) |
这样就满足了累次极限存在且可交换的条件(见参考文献[14], 16.3.2, 定理1),所以
| $ \begin{split} & \mathop {\lim }\limits_{{{T}} \to \infty } \mathop {\lim }\limits_{{{\varLambda }} \to \infty } \Bigg[ {{\bigg( {\mathop \prod\limits_1^n {T_j}} \bigg)}^{ - 1}}\int\nolimits_{\left[ {{\bf{0}},\;{{\varLambda }}} \right]} \int\nolimits_{[ {{{{T}}_{\bf{0}}},\;{{T}}} ]}{L_\alpha }( {{\sigma}} +\Bigg.\\&\Bigg. {{{\rm{i}}t}} ){{\rm{e}}^{ - {{\eta}} \cdot\left( {{{\sigma}} - {{{\rm{i}}t}}} \right)}}{\rm{d}}{{t}}{\rm{d}}{\mu _{{\varLambda }}}\left( {{\eta}} \right) \Bigg] =\\& \underset{{{\varLambda}}\to \infty }{\lim}\underset{{{T}}\to \infty }{\lim}\Bigg[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }({{\sigma }}+\Bigg.\\&\Bigg.{{\rm{i}}}{{t}}){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{\rm{i}}}{{t}}\right)}{\rm{d}}{{t}}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)\Bigg] \end{split} $ | (12) |
由引理3得
| $ \begin{split} & \lim _{k \rightarrow \infty} \int\nolimits_{[{\bf{0}},\; {{\varLambda}}_{k}]} {\rm{e}}^{-2 {{\eta}} \cdot {{\sigma}}} \Delta \alpha(\boldsymbol{\eta}) {\rm{d}} {{\mu}}_{{{\varLambda}}_{k}}(\boldsymbol{\eta})= \\& \lim _{k \rightarrow \infty} \int\nolimits_{[{\bf{0}},\; {{\varLambda}}_{k}]} \left[\sum_{\lambda \in[{\bf{0}},\; {{\varLambda}}_{k})} {\rm{e}}^{-2 {{\lambda}} \cdot {{\sigma}}} \Delta \alpha({{\lambda}}) 1_{\{{{\lambda}}\}}(\boldsymbol{\eta})\right] {\rm{d}} {{\mu}}_{{{\varLambda}}_{k}}(\boldsymbol{\eta}) =\\& \lim _{k \rightarrow \infty} \sum_{\lambda \in[{\bf{0}},\; {{\varLambda}}_{k})} {\rm{e}}^{-2 {{\lambda}} \cdot {{\sigma}}} \Delta \alpha({{\lambda}}) \overline{\Delta \beta}(\boldsymbol{\lambda}) =\\& \sum_{\lambda \in[{\bf{0}}, \infty)} {\rm{e}}^{-2 {{\lambda}} \cdot {{\sigma}}} \Delta \alpha({{\lambda}}) \overline{\Delta \beta}({{\lambda}}) \end{split} $ | (13) |
最后,由式(10)~(13)得
| $ \begin{aligned} & \underset{{{T}}\to \infty }{\lim}\left[{\left(\prod\limits_{1}^{n}{T}_{j}\right)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{\rm{i}}{{t}}\right)\overline{{L}_{\beta }}\left({{\sigma }}+{\rm{i}}{{t}}\right){\rm{d}}{{t}}\right]\underset{\left(11\right)}{=}\\& \underset{{{T}}\to \infty }{\lim}\underset{{{\varLambda}}\to \infty }{\lim} \Bigg[{\left(\prod\limits_{1}^{n}{T}_{j}\right)}^{-1}\int\nolimits_{\left[{\bf{0}},\;{{\varLambda}}\right]}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }({{\sigma }}+\Bigg.\\&\Bigg. {{{\rm{i}}}}{{t}}){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{{\rm{i}}}}{{t}}\right)}{\rm{d}}{{t}}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)\Bigg]\underset{\left(12\right)}{=} \\& \underset{{{\varLambda}}\to \infty }{\lim}\underset{{{T}}\to \infty }{\lim}\Bigg[{\left(\prod\limits_{1}^{n}{T}_{j}\right)}^{-1}{\int_{\left[{\bf{0}},\;{{\varLambda}}\right]}}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }({{\sigma }}+\Bigg.\\&\Bigg. {{{\rm{i}}}}{{t}}){{\rm{e}}}^{-{{\eta}}\cdot\left({{\sigma }}-{{{\rm{i}}}}{{t}}\right)} {\rm{d}}{{t}}{\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)\Bigg]\underset{\left(10\right)}{=}\\& \underset{{{\varLambda}}\to \infty }{\lim}\int_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-2{{\eta}}\cdot{{\sigma }}}\Delta \alpha \left({{\eta}}\right){\rm{d}}{\mu }_{{{\varLambda}}}\left({{\eta}}\right)=\\& \underset{k\to \infty }{\lim}{{\int_{\left[{\bf{0}},\;{{{\varLambda}}}_{{k}}\right]} }}{{\rm{e}}}^{-2{{\eta}}\cdot{{\sigma }}}\Delta \alpha \left({{\eta}}\right){\rm{d}}{\mu }_{{{{\varLambda}}}_{{k}}}\left({{\eta}}\right)\underset{\left(13\right)}{=}\\& \sum\limits_{{{\lambda}}\in \left[\left.0,\infty \right)\right.}{{\rm{e}}}^{-2{{\lambda}}\cdot{{\sigma }}}\Delta \alpha \left({{\lambda}}\right)\overline{\Delta \beta }\left({{\lambda}}\right) \end{aligned} $ |
推论1 若对给定的
| $\begin{aligned} & {\lim}_{{{T}}\to \infty } \left[{\left( \prod\nolimits_{1}^{n}{T}_{j}\right)}^{-1}{{ \int }}_{[{{{T}}}_{0},{{T}}]}{\left|{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\right|}^{2}{\rm{d}}{{t}}\right]= \\&\sum\nolimits_{{{\lambda}}\in \left[\left.{\bf{0}},\infty \right)\right.}{\left({{\rm{e}}}^{-{{\lambda}}\cdot{{\sigma }}}\left|\Delta \alpha \left({{\lambda}}\right)\right|\right)}^{2} \end{aligned} $ |
其中,
证明 根据定理2的证明过程,利用同样的记号,可得
| $ \begin{aligned} & \underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int\nolimits_{[{{{T}}}_{0},{{T}}]}{\left|{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\right|}^{2}{\rm{d}}{{t}}\right] =\\& \underset{k\to \infty }{\lim}\sum\limits_{{{\lambda}}\in \left[\left.{\bf{0}},\;{{{\varLambda}}}_{{k}}\right)\right.}{\left({{\rm{e}}}^{-{{\lambda}}\cdot{{\sigma }}}\left|\Delta \alpha \left({{\lambda}}\right)\right|\right)}^{2}= \\& \sum\limits_{{{\lambda}}\in \left[\left.{\bf{0}},\;\infty \right)\right.}{\left({{\rm{e}}}^{-{{\lambda}}\cdot{{\sigma }}}\left|\Delta \alpha \left({{\lambda}}\right)\right|\right)}^{2} \end{aligned} $ |
注3 令
| ${\int }_{\left[{\bf{0}},\;{{\varLambda}}\right]}{{\rm{e}}}^{-\left({{\sigma }}+{{{\rm{i}}}}{{t}}\right)\cdot{{\lambda}}} {\rm{d}}\beta \left({{\lambda}}\right)= {{\rm{e}}}^{-{{{\lambda}}}_{0}\cdot\left({{\sigma }}+{{{\rm{i}}}}{{t}}\right)} $ |
所以定义
| $ \begin{aligned} & \underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int_{[{{{T}}}_{0},{{T}}]}{L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right){\rm{{e}}}^{-{{{\lambda}}}_{0}\cdot\left({{\sigma }}-{{{\rm{i}}}}{{t}}\right)}{\rm{d}}{{t}}\right]=\\&{{\rm{e}}}^{-2{{{\lambda}}}_{0}\cdot{{\sigma }}}\Delta \alpha \left({{{\lambda}}}_{0}\right) \end{aligned}$ |
约去
注4 令
| $ \begin{aligned} & {L}_{\alpha }\left({{\sigma }}+{{\rm{i}}}{{t}}\right)=\underset{{{\varLambda}}\to \infty }{\lim}{{\int_{\left[{\bf{0}},\;{{\varLambda}}\right]} }}{{\rm{e}}}^{-\left({{\sigma }}+{{\rm{i}}}{{t}}\right)\cdot{{\lambda}}}{\rm{d}} \alpha \left({{\lambda}}\right) =\\& \underset{{{\varLambda}}\to \infty }{\lim}\sum\limits_{{{{\lambda}}}_{{m}}\in \left[\left.{\bf{0}},\;{{\varLambda}}\right)\right.}{a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{m}}\cdot\left({{\sigma }}+{{\rm{i}}}{{t}}\right)} =\sum\limits_{{{m}}\in {\mathbb{Z}}_{+}^{n}}{a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{{m}}}\cdot\left({{\sigma }}+{{\rm{i}}}{{t}}\right)} \end{aligned} $ |
即
| $ \underset{{{T}}\to \infty }{\lim}\left[{\bigg(\prod\limits_{1}^{n}{T}_{j}\bigg)}^{-1}\int_{[{{{T}}}_{0},{{T}}]}{{\rm{e}}}^{{\rm{i}}{{{\lambda}}}_{{m}}\cdot{{t}}}\sum\limits_{{{m}}\in {\mathbb{Z}}_{+}^{n}}{a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{m}}\cdot\left({{\sigma }}+{{\rm{i}}}{{t}}\right)}{\rm{d}}{{t}}\right]={a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{m}}\cdot{{\sigma }}}$ |
这样重新得到了Dirichlet级数中的相应结论(见文献[5]的定理2.3和文献[15]的定理2.1.1),这是研究Dirichlet级数增长性的基础之一。
注5 令
| $\langle{L}_{\alpha },{L}_{\beta }\rangle:={\lim}_{{{T}}\to \infty }\left[{\left( \prod\nolimits_{1}^{n}{T}_{j}\right)}^{-1}{ \int }_{\left[{\bf{0}},\;{{T}}\right]}{L}_{\alpha } \left({{\sigma }}+{{\rm{i}}}{{t}}\right)\overline{{L}_{\beta }}\left({{\sigma }}+{{\rm{i}}}{{t}}\right){\rm{d}}{{t}}\right] $ |
此外,
| $ \left\langle\sum\limits_{{{m}}\in {\mathbb{Z}}_{+}^{n}}{a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{m}}\cdot{{s}}} ,{{\rm{e}}}^{{{\lambda}}\cdot{{\sigma }}}{{\rm{e}}}^{-{{\lambda}}\cdot{{s}}}\right\rangle =\left\{\begin{array}{l}{a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{{m}}}\cdot{{\sigma }}}, \exists {{m}}\in {\mathbb{Z}}_{+}^{n}\left({{\lambda}}={{{\lambda}}}_{{m}}\right)\\ 0 ,\forall {{m}}\in {\mathbb{Z}}_{+}^{n}\left({{\lambda}}\ne {{{\lambda}}}_{{m}}\right)\end{array}\right. $ |
在这个意义下,推论1就是Parseval等式:
| $ \begin{aligned} & \left\langle\sum\limits_{{{m}}\in {\mathbb{Z}}_{+}^{n}}{a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{{m}}}\cdot{{s}}},\sum\limits_{{{m}}\in {\mathbb{Z}}_{+}^{n}}{a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{m}}\cdot{{s}}}\right\rangle=\\& \sum\limits_{{{\lambda}}\in {\mathbb{R}}_{+}^{n}}{\left|\left\langle\sum\limits_{{{m}}\in {\mathbb{Z}}_{+}^{n}}{a}_{{{m}}}{{\rm{e}}}^{-{{{\lambda}}}_{{m}}\cdot{{s}}},{{\rm{e}}}^{{{\lambda}}\cdot{{\sigma }}}{{\rm{e}}}^{-{{\lambda}}\cdot{{s}}}\right\rangle\right|}^{2} \end{aligned}$ |
| [1] |
LEE T Y. Henstock-kurzweil Integration on euclidean Spaces[M]. Singapore :World Scientific, 2011:180-181.
|
| [2] |
DURAÑONA Y VEDIA A, TREJO C A. Recintos de convergencia de las integrales dobles de Laplace-Stieltjes[J].
Publicaciones de la Facultad de Ciencias Fisicomatematicas, Universidad Nacional de la Plata, Contribucional Estudio de las Ciencias Fisicasy Matematicas, Series Matematica, 1937, 109: 315-327.
|
| [3] |
BERNSTEIN D L. The double Laplace integral[J].
Duke Mathematics Journal, 1941, 8(3): 460-496.
DOI: 10.1215/S0012-7094-41-00839-6. |
| [4] |
余家荣. 二重Dirichlet级数与二重Laplace变换的收敛性[J].
武汉大学学报(自然科学版), 1962, 1(1): 1-16.
YU J R. On the convergence of the double Dirichlet series and the double Laplace transform[J]. Wuhan University Journal of Natural Sciences, 1962, 1(1): 1-16. |
| [5] |
LIANG M L, GAO Z S. On convergence and growth of multiple dirichlet series[J].
Mathematical Notes, 2010, 88(5): 732-740.
|
| [6] |
KONG Y Y, HONG Y. On the growth of Laplace-Stieltjes transforms and the singular direction of complex analysis[M]. Guangzhou:Jinan University Press, 2010.
|
| [7] |
陈青远, 霍颖莹. Dirichlet级数的广义级[J].
广东工业大学学报, 2019, 36(4): 52-58.
CHEN Q Y, HUO Y Y. The generalized order of Dirichlet series[J]. Journal of Guangdong University of Technology, 2019, 36(4): 52-58. |
| [8] |
CUI Y Q, XU H Y, LI N. The growth on the maximum modulus of double dirichlet series[J].
Journal of Function Spaces, 2019: 1-12.
|
| [9] |
LIANG M L, HUO Y Y. On order and type of multiple Dirichlet series[J].
Acta Mathematica Scientia(English Series), 2017, 37(1): 131-138.
|
| [10] |
XU H Y, WANG H. The growth and approximation for an analytic function represented by Laplace-Stieltjes transforms with generalized order converging in the half plane[J].
Journal of Inequalities and Applications, 2018(1): 1-16.
|
| [11] |
FOLLAND G B. Real analysis: modern techniques and their applications[M]. 2nd ed.New York: Wiley Interscience, 1999: 223.
|
| [12] |
RUDIN W. Real and complex analysis[M]. 3rd ed.New York: Tata McGraw-hill education, 1987: 130.
|
| [13] |
MUNKRES J R. Topology[M]. 2nd ed. New Jersey :Prenctice Hall, 2000: 130.
|
| [14] |
ZORICH V A. Mathematical analysis II[M]. 2nd ed. Berlin: Springer, 2016: 381.
|
| [15] |
余家荣, 丁晓庆, 田范基. Dirichlet级数与随机Dirichlet级数的值分布[M]. 武汉: 武汉大学出版社, 2004.
|
| [16] |
张恭庆, 林源渠. 泛函分析讲义(上)[M]. 北京: 北京大学出版社, 2001: 59-62.
|
2021, Vol. 38

