近年来,随机微分系统在遗传学、生态系统、自动控制等领域都有着广泛的应用[1-3]。目前,关于具有脉冲效应的随机微分方程的研究也吸引了很多学者的关注[4-7]。文献[8]研究了一类随机微分方程解的稳定性,文章首先给出了方程的温和解,并运用压缩映射原理证明了方程的
$ \left\{ { \begin{aligned} & {{\rm{d}}x(t) = f(x(t)){\rm{d}}t + g(x(t)){\rm{d}}w(t),t \ne {t_k},t \geqslant {t_0}}\\& {\Delta x({t_k}) = {I_k}(x({t_k})),k \in N} \end{aligned}} \right. $ |
得到了上述方程解的几乎必然指数稳定性。
本文主要通过运用不动点理论和Lyapunov稳定性定理研究如下的脉冲随机微分方程的稳定性,得到了方程解均方指数稳定的结论。
$\left\{ \begin{aligned} & {\rm{d}}\left[ {x(t) - cx(t - \tau )} \right] = [ - (A + \Delta A(t))x(t) + f(t,x(t),\\&\qquad\quad x(t - \tau )) ]{\rm{d}}t + \sigma (t,x(t),x(t - \tau )){\rm{d}}w(t),t \geqslant 0,t \ne {t_k}\\& x({t_k}) = {I_k}(x(t_k^ - )),k \in N\\& x(s) = \varphi (s) \in D_{{{\cal F}_0}}^b\left( {\left[ {{\rm{ - }}\tau ,0} \right],H} \right) \end{aligned} \right.$ |
设
假设
设
$\left| \Psi \right|_{L_2^0}^2 = tr\left( {\left( {\Psi {Q^{{1 / 2}}}} \right){{\left( {\Psi {Q^{{1 / 2}}}} \right)}^*}} \right),\Psi \in L_2^0$ |
考虑如下的脉冲随机微分方程解的稳定性,
$\tag{DW}\left\{ \begin{aligned} & {\rm{d}}\left[ {x(t) \!-\! cx(t \!- \!\tau )} \right]\! \!= \!\!\left[ { \!- \!(A\! + \!\Delta A(t))x(t) \!+\! f(t,x(t),x(t \!-\! \tau ))} \right]{\rm{d}}t \!+ \\&\qquad\qquad\qquad\quad \sigma (t,x(t),x(t - \tau )){\rm{d}}w(t),t\geqslant0,t \ne {t_k}\\& x({t_k}) = {I_k}(x(t_k^ - )),k \in N\\& x(s) = \varphi (s) \in D_{{{\cal F}_0}}^b\left( {\left[ {{\rm{ - }}\tau ,0} \right],H} \right) \end{aligned} \right.$ |
其中
定义1 如果方程(DW)存在解
$E{\left| {x(t)} \right|^2} \leqslant \mu E{\left\| \varphi \right\|^2}{{\rm{e}}^{ - \eta t}},t\geqslant0$ |
则称方程(DW)的解是均方指数稳定的。
定义2 随机过程
(1)
(2) 对任何
$ \begin{split} x(t) = &S(t)\left[ {\varphi (0) - c\varphi ( - \tau )} \right] + cx(t - \tau ) + \\&\int_0^t {(A + \Delta A(s))} S(t - s)cx(s - \tau ){\rm{d}}s+\\& \int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} + \\&\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} + \\& \sum\limits_{0 < {t_k} < t} {S(t - {t_k})} {I_k}(x(t_k^ - )) \end{split}$ | (1) |
引入如下条件:
(H1)
(H2) 函数
${\left| {f(t,x,y) - f(t,\bar x,\bar y)} \right|^2} \leqslant {K_1}({\left| {x - \bar x} \right|^2} + {\left| {y - \bar y} \right|^2}),{K_1} > 0 $ | (2) |
${\left| {\sigma (t,x,y) - \sigma (t,\bar x,\bar y)} \right|^2} \leqslant {K_2}({\left| {x - \bar x} \right|^2} + {\left| {y - \bar y} \right|^2}),{K_2} > 0 $ | (3) |
(H3) 存在
$\begin{split} & {\left| {{{\left[ { - (A + \Delta A(s))} \right]}^\alpha }cx(t - \tau ) - {{\left[ { - (A + \Delta A(s))} \right]}^\alpha }cy(t - \tau )} \right|_H} \leqslant \\& \qquad\qquad\qquad\qquad{K_3}{\left| {x - y} \right|_H},{K_3} > 0\\[-10pt] \end{split}$ | (4) |
(H4)
${\left| {{I_k}(x) - {I_k}(y)} \right|_H} \leqslant {q_k}{\left| {x - y} \right|_H} $ | (5) |
引理1[12] 对任意
$\begin{split} & \mathop {\sup }\limits_{s \in \left[ {0,t} \right]} E\left\| {\int_0^s {\Phi \left( u \right){\rm{d}}w\left( u \right)} } \right\|_H^{2r} \leqslant\\&\qquad {\left( {r\left( {2r - 1} \right)} \right)^r}{\left( {\int_0^t {{{\left( {E\left\| {\Phi \left( s \right)} \right\|_{L_2^0}^{2r}} \right)}^{{1 / r}}}{\rm{d}}s} } \right)^r} \end{split} $ |
引理2[13] 假设条件(H1)成立,则对任意
(ⅰ)
(ⅱ) 存在正常数
$\left\| {{{( - A)}^\beta }S(t)} \right\| \leqslant {M_\beta }{t^{ - \beta }}{{\rm{e}}^{ - \gamma t}},t > 0 $ |
定理1 假设条件(H1)~(H4)成立,且对
$\begin{split} & \left| c \right| + K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma \left( {2\alpha - 1} \right) + \int_0^t {{K_1}} {M^2}{{\rm{e}}^{ - 2\gamma \left( {t - s} \right)}}{\rm{d}}s + \\&\qquad\int_0^t {{K_2}} {M^2}{{\rm{e}}^{ - 2\gamma \left( {t - s} \right)}}{\rm{d}}s + \tilde L < \frac{1}{6} \end{split} $ | (6) |
则方程(DW)是均方指数稳定的,其中
证明 定义算子
当
$ \begin{split} \Phi (x)(t): = &S(t)\left[ {\varphi (0) - c\varphi ( - \tau )} \right] + cx(t - \tau ) + \\&\int_0^t {(A + \Delta A(s))} S\left( {t - s} \right)cx(s - \tau ){\rm{d}}s + \\& \int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} + \\&\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} + \\& \sum\limits_{0 < {t_k} < t} {S(t - {t_k})} {I_k}(x(t_k^ - )): = \sum\limits_{i = 1}^6 {{F_i}} (t) \end{split}$ | (7) |
先证
$\begin{split} & E\left| {\Phi (x)({t_1} + r) - \Phi (x)({t_1})} \right|_H^2 \leqslant \\&\qquad\qquad 6\sum\limits_{i = 1}^6 {E\left| {{F_i}({t_1} + r) - {F_i}({t_1})} \right|_H^2} \end{split} $ | (8) |
易证当
$ E\left| {{F_i}({t_1} + r) - {F_i}({t_1})} \right|_H^2 \to 0,i = 1,2,3,4,6 $ | (9) |
$ \begin{split} & E\left| {{F_5}({t_1} + r) - {F_5}({t_1})} \right|_H^2 \leqslant\\& 2\int_0^{{t_1}} {E\left| {(S({t_1} + r - s) - S({t_1} - s))\sigma (s,x(s),x(s - \tau ))} \right|} _H^2{\rm{d}}s + \\& 2\int_{{t_1}}^{{t_1} + r} {E\left| {S({t_1} + r - s)\sigma (s,x(s),x(s - \tau ))} \right|} _H^2{\rm{d}}s \\ &{\text{因此当}}r \to 0{\text{时}},E\left| {{F_5}({t_1} + r) - {F_5}({t_1})} \right|_H^2 \to 0\\[-10pt] \end{split}$ | (10) |
下证
$ \begin{split} & E\left| {\Phi (x)(t)} \right|_H^2 \leqslant 6E\left| {S(t)\left[ {\varphi (0) - c\varphi ( - \tau )} \right]} \right|_H^2 + 6E\left| {cx(t - \tau )} \right|_H^2 + \\&\qquad 6E\left| {\int_0^t {(A + \Delta A(s))S(t - s)cx(s - \tau ){\rm{d}}s} } \right|_H^2 + \\&\qquad6E\left| {\int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} } \right|_H^2 + \\&\qquad 6E\left| {\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} } \right|_H^2 + \\&\qquad6\sum\limits_{0 < {t_k} < t} {E\left| {S(t - {t_k}){I_k}(x(t_k^ - ))} \right|_H^2} = \\&\qquad {J_1} + {J_2} + {J_3} + {J_4} + {J_5} + {J_6}\\[-10pt] \end{split}$ | (11) |
由条件(H1)有,当
$ {J_1} \leqslant 6{M^2}{{\rm{e}}^{ - 2\gamma t}}{(1 + c)^2}\left\| \varphi \right\|_D^2 \to 0 $ | (12) |
由
$ \;{J_2} \leqslant 6\left| c \right|E\left| {x(t - \tau )} \right|_H^2 \to 0 $ | (13) |
由条件(H3)和引理2得
$\begin{split} & {J_3} = 6E\left| {\int_0^t {(A + \Delta A(s))S(t - s)cx(s - \tau ){\rm{d}}s} } \right|_H^2\leqslant\\& 6E\left[ \int_0^t \left| {{\left[ { - (A + \Delta A(s))} \right]}^{1 - \alpha }}S(t - s){{\left[ { - (A + \Delta A(s))} \right]}^\alpha } \right.\right.\\&\left.\left.cx(s - \tau ) \right|_H{\rm{d}}s \right]^2\leqslant 6E{\left[ {\int_0^t {{K_3}\frac{{{M_{1 - \alpha }}{{\rm{e}}^{ - \gamma (t - s)}}}}{{{{(t - s)}^{1 - \alpha }}}}{{\left| {x(s - \tau )} \right|}_H}{\rm{d}}s} } \right]^2}\leqslant\\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_0^t {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s \end{split} $ |
由于
$ \begin{split} & 6E\left| {\int_0^t {(A + \Delta A(s))} S(t - s)cx(s - \tau ){\rm{d}}s} \right|_H^2 \leqslant \\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_0^{{t_1}} {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s +\\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_{{t_1}}^t {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s \leqslant \\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_0^{{t_1}} {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s +\\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma (2\alpha - 1)\varepsilon \end{split}$ |
当
$\begin{split} & 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_0^{{t_1}} {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s \leqslant\\&\qquad\qquad \varepsilon - 6K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma (2\alpha - 1)\varepsilon \end{split}$ |
因此,对任意
$6E\left| {\int_0^t {(A + \Delta A(s))S(t - s)cx(s - \tau ){\rm{d}}s} } \right|_H^2 < \varepsilon $ |
也就是当
$ 6E\left| {\int_0^t {(A + \Delta A(s))S(t - s)cx(s - \tau ){\rm{d}}s} } \right|_H^2 \to 0 $ | (14) |
$ \begin{split} & {J_4} = 6E\left| {\int_0^t {S(t - s)} f(s,x(s),x(s - \tau )){\rm{d}}s} \right|_H^2 \leqslant \\& \;\;\;\;\;6E\int_0^{{t_1}} {{M^2}} {{\rm{e}}^{ - 2\gamma (t - s)}}{K_1}(\left| {x(s)} \right|_H^2 + \left| {x(s - \tau )} \right|_H^2){\rm{d}}s{\rm{ + }}\\& \;\;\;\;\;6E\int_{{t_1}}^t {{M^2}} {{\rm{e}}^{ - 2\gamma (t - s)}}{K_1}(\left| {x(s)} \right|_H^2 + \left| {x(s - \tau )} \right|_H^2){\rm{d}}s\leqslant \\& \;\;\;\;\; 6E(\mathop {\sup }\limits_{ - \tau \leqslant s \leqslant {t_1}} {\left| {x(s)} \right|^2}){M^2}{K_1}\int_0^{{t_1}} {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s +\\& \;\;\;\;\;6\varepsilon {M^2}{K_1}\int_{{t_1}}^t {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \end{split} $ | (15) |
由条件(6)得,存在
$\begin{split} & 6E(\mathop {\sup }\limits_{ - \tau \leqslant s \leqslant {t_1}} {\left| {x(s)} \right|^2}){M^2}{K_1}\int_0^{{t_1}} {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s <\\&\qquad\qquad \varepsilon - 6\varepsilon {M^2}{K_1}\int_{{t_1}}^t {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \end{split}$ | (16) |
根据式(15)和式(16)可知,对任意
$6E\left| {\int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} } \right|_H^2 < \varepsilon $ |
所以当
$ 6E\left| {\int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} } \right|_H^2 \to 0 $ | (17) |
同理对任意
$ \begin{split} & {J_5} = 6E\left| {\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} } \right|_H^2 \leqslant \\& \;\;\;\;\;\;6E\int_0^{{t_1}} {{M^2}} {{\rm{e}}^{^{ - 2\gamma (t - s)}}}{K_2}(\left| {x(s)} \right|_H^2 + \left| {x(s - \tau )} \right|_H^2){\rm{d}}s+ \\& \;\;\;\;\;\; 6E\int_{{t_1}}^t {{M^2}} {{\rm{e}}^{^{ - 2\gamma (t - s)}}}{K_2}(\left| {x(s)} \right|_H^2 + \left| {x(s - \tau )} \right|_H^2){\rm{d}}s\leqslant\\& \;\;\;\;\;\; 6E(\mathop {\sup }\limits_{ - \tau \leqslant s \leqslant {t_1}} {\left| {x(s)} \right|^2}){M^2}{K_2}\int_0^{{t_1}} {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s + \\& \;\;\;\;\;\;6\varepsilon {M^2}{K_2}\int_{{t_1}}^t {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \end{split} $ |
所以存在
$\begin{split} & 6E(\mathop {\sup }\limits_{ - \tau \leqslant s \leqslant {t_1}} {\left| {x(s)} \right|^2}){M^2}{K_2}\int_0^{{t_1}} {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \leqslant \\&\qquad \varepsilon - 6\varepsilon {M^2}{K_2}\int_{{t_1}}^t {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \end{split}$ |
因此当
$ 6E\left| {\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} } \right|_H^2 \to 0 $ | (18) |
$ \begin{split} & {J_6} = 6\sum\limits_{0 < {t_k} < t} {E\left| {S(t - {t_k}){I_k}(x(t_k^ - ))} \right|_H^2} \leqslant \\ &\qquad 6{M^2}{e^{ - 2\gamma t}}\left(\sum\limits_{k = 1}^m {\left| {{q_k}} \right|_H^2} \right)E\left| {x(t_k^ - )} \right|_H^2 \end{split} $ |
所以当
$ {J_6} = 6\sum\limits_{0 < {t_k} < t} {E\left| {S(t - {t_k}){I_k}(x(t_k^ - ))} \right|_H^2} \to 0 $ | (19) |
综上,当
最后证明映射
$\begin{split} & \mathop {\sup }\limits_{s \in \left[ {0,T} \right]} E\left| {\Phi (x)(t) - \Phi (y)(t)} \right|_H^2\leqslant \\& 5\mathop {\sup }\limits_{s \in \left[ {0,T} \right]} \Big\{ \left| c \right|E\left| {x(t - \tau ) - y(t - \tau )} \right|_H^2 +\Big. \\& K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma (2\alpha - 1)E\left| {x(s - \tau ) - y(s - \tau )} \right|_H^2 +\\& \int_0^t {{K_1}} {M^2}{{\rm{e}}^{ - 2\gamma (t - s)}}E(\left| {x(s) - y(s)} \right|_H^2 + \\&\left| {x(s - \tau ) - y(s - \tau )} \right|_H^2){\rm{d}}s + \\& \int_0^t {{K_2}} {M^2}{{\rm{e}}^{ - 2\gamma (t - s)}}E(\left| {x(s) - y(s)} \right|_H^2 +\\& \left| {x(s - \tau ) - y(s - \tau )} \right|_H^2){\rm{d}}s+\\& \Big. { {M^2}{{\rm{e}}^{ - 2\gamma t}}\left(\sum\limits_{k = 1}^m {\left| {{q_k}} \right|_H^2} \right)E\left| {x(t_k^ - ) - y(t_k^ - )} \right|_H^2} \Big\} \leqslant\\& 5(\mathop {\sup }\limits_{s \in \left[ {0,T} \right]} E\left| {x(t) - y(t)} \right|_H^2)\Big\{ \left| c \right| + K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma (2\alpha - 1) +\Big.\\& \int_0^t {{K_1}} {M^2}{{\rm{e}}^{ - 2\gamma (t - s)}}{\rm{d}}s + \\& \Big. { \int_0^t {{K_2}} {M^2}{{\rm{e}}^{ - 2\gamma (t - s)}}{\rm{d}}s + \tilde L} \Big\} \end{split} $ |
这里
假定
$ \begin{split} & LV(x,y,t) = {V_t}(x - cy,t) + {V_x}(x - cy,t)[ - (A + \Delta A(t))x(t) + \\& f(t,x,y) ] + \frac{1}{2} {\rm{trace}}\left[ {{\sigma ^{\rm{T}}}(t,x,y){V_{xx}}(x - cy,t)\sigma (t,x,y)} \right] \end{split} $ |
其中
$ {V_t} = \frac{{\partial V}}{{\partial t}},\;{V_x} = \left( {\frac{{\partial V}}{{\partial {x_1}}},\frac{{\partial V}}{{\partial {x_2}}},\cdots,\frac{{\partial V}}{{\partial {x_n}}}} \right),\;{V_{xx}} = {\left( {\frac{{{\partial ^2}V}}{{\partial {x_i}\partial {x_j}}}} \right)_{n \times n}} $ |
引理3[14] 设
${\left| {a + b} \right|^2} \leqslant \frac{{{{\left| a \right|}^2}}}{{1 - \varepsilon }} + \frac{{{{\left| b \right|}^2}}}{\varepsilon }$ |
引理4[15] 假设
$ \begin{split} & E{\left| {cx(t - \tau )} \right|^2} \leqslant h\mathop {\sup }\limits_{ - \tau \leqslant \theta \leqslant 0} E{\left| {x(t + \theta )} \right|^2}\\& E{\left| {x(t) - cx(t - \tau )} \right|^2} \leqslant \lambda {{\rm{e}}^{ - \beta t}},t\geqslant0 \end{split} $ | (20) |
则
$ E{\left| {x(t)} \right|^2} \leqslant N{{\rm{e}}^{ - (\beta \wedge \alpha )t}} $ | (21) |
其中
$N = \left( {\frac{\lambda }{{{{(1 - \varepsilon )}^2}}}{{\rm{e}}^{\beta \tau }} + \frac{h}{\varepsilon }{{\rm{e}}^{(\beta \wedge \alpha )\tau }}{\varphi _0}} \right){\left( {1 - \frac{h}{\varepsilon }{{\rm{e}}^{(\beta \wedge \alpha )\tau }}} \right)^{ - 1}}$ |
$ \alpha = \frac{1}{\tau }\ln \frac{\varepsilon }{h},\;{\varphi _0} = \mathop {\sup }\limits_{ - \tau \leqslant t \leqslant 0} {\left| {x(t)} \right|^2}\qquad\qquad\qquad $ |
定理2 若存在函数
1)
2)
3)
4)
5)
6)
则方程(DW)的解均方指数稳定。
证明 假设
$ Ew(t) \leqslant {c_2}M{\left\| \varphi \right\|^2},\;t\geqslant{t_0} $ | (22) |
$ \begin{split} Ew({t_0}) = & EV(x({t_0}) - cx({t_0} - \tau ),{t_0}) \leqslant\\& {c_2}{\left| {x({t_0}) - cx({t_0} - \tau )} \right|^2} \leqslant\\& {c_2}\left[ {\frac{{{{\left| {x({t_0})} \right|}^2}}}{{1 - \varepsilon }} + \frac{{{{\left| {cx({t_0} - \tau )} \right|}^2}}}{\varepsilon }} \right] \leqslant\\& {c_2}(\frac{{{{\left\| \varphi \right\|}^2}}}{{1 - \varepsilon }} + \frac{{\tilde c{{\left\| \varphi \right\|}^2}}}{\varepsilon })= \\& {c_2}M{\left\| \varphi \right\|^2} \end{split} $ |
其中
下面证明
$ Ew(t) \leqslant {c_2}M{\left\| \varphi \right\|^2},\;t \in ({t_0},{t_1}) $ | (23) |
运用反证法,假若存在
对任意
$ \begin{split} ELw(t) =& \lambda {{\rm{e}}^{\lambda (t - {t_0})}}V(x(t) - cx(t - \tau ),t) + \\&{{\rm{e}}^{\lambda (t - {t_0})}}ELV(x(t) - cx(t - \tau ),t) \leqslant \\& (\lambda + {\beta ^*})Ew(t) \end{split} $ |
由
$ \begin{split} Ew({t_1}) \leqslant& {d_1}{{\rm{e}}^{\lambda ({t_1} - {t_0})}}EV(x(t_1^ - ) - cx(t_1^ - - \tau ),t_1^ - ) \leqslant\\& {d_1}{c_2}M{\left\| \varphi \right\|^2} \end{split} $ | (24) |
下证当
$ Ew(t) \leqslant {d_1}{c_2}M{\left\| \varphi \right\|^2} $ | (25) |
反证,假若存在
$\begin{split} & Ew({t^*}) \leqslant Ew({t^{**}}){{\rm{e}}^{\int_{{t^{**}}}^{{t^*}} {(\lambda + {\beta ^*}){\rm{d}}s} }} \leqslant\\&\quad\quad \frac{1}{q}{d_1}{c_2}M{\left\| \varphi \right\|^2}{{\rm{e}}^{(\lambda + \tilde \beta )\rho }} \leqslant {d_1}{c_2}M{\left\| \varphi \right\|^2} \end{split}$ |
这是个矛盾,所以式(25)成立。
$ \begin{split} Ew({t_1} + \tau ) \leqslant & {u_1}{d_1}{{\rm{e}}^{\lambda ({t_1} + \tau - {t_0})}}EV(x(t_1^ - + \tau ) - cx(t_1^ - ),t_1^ - + \tau )\leqslant \\& {u_1}d_1^2{c_2}M{\left\| \varphi \right\|^2} \end{split} $ | (26) |
当
$ Ew(t) \leqslant {u_1}d_1^2{c_2}M{\left\| \varphi \right\|^2} $ | (27) |
当
$ Ew({t_2}) \leqslant {d_2}{u_1}d_1^2{c_2}M{\left\| \varphi \right\|^2} $ | (28) |
假设当
$ Ew({t_k}) \leqslant {d_k}\prod\limits_{i = 1}^{k - 1} {{u_i}} \prod\limits_{i = 1}^{k - 1} {d_i^2} {c_2}M{\left\| \varphi \right\|^2} $ | (29) |
当
$ Ew(t) \leqslant {d_k}\prod\limits_{i = 1}^{k - 1} {{u_i}} \prod\limits_{i = 1}^{k - 1} {d_i^2} {c_2}M{\left\| \varphi \right\|^2} $ | (30) |
$ \begin{split} Ew({t_k} + \tau ) \leqslant & {u_k}{d_k}{{\rm{e}}^{\lambda ({t_k} + \tau - {t_0})}}EV(x(t_k^ - + \tau ) - cx(t_k^ - ),t_k^ - + \tau ) \leqslant \\& \prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2} \end{split} $ | (31) |
当
定义
${t^{**}} = \sup \Bigg\{ t \in \left[ {{t_k} + \tau ,{t^{\rm{*}}}} \right]:Ew(t) \leqslant \dfrac{1}{q}\prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{{\left\| \varphi \right\|}^2} \Bigg\} $ |
则
$ \begin{split} Ew({t^*}) \leqslant & Ew({t^{**}}){{\rm{e}}^{\int_{{t^{**}}}^{{t^*}} {(\lambda + {\beta ^*}){\rm{d}}s} }} \leqslant\\& \frac{1}{q}\prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2}{{\rm{e}}^{(\lambda + \tilde \beta )\rho }} \leqslant \\& \prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2} \end{split} $ |
这是个矛盾,所以
$ Ew(t) \leqslant \prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2},\;t \in \left[ {{t_k} + \tau ,{t_{k + 1}}} \right) $ | (32) |
综上,有
所以
由条件1)可得
故由引理4可得
其中
$A = \left( {\frac{{{c_2}M{{\left\| \varphi \right\|}^2}{{\rm{e}}^{\lambda {t_0}}}}}{{{c_1}{{(1 - \varepsilon )}^2}}}{{\rm{e}}^{\lambda \tau }} + \frac{{\tilde c}}{\varepsilon }{{\rm{e}}^{(\lambda \wedge \alpha )\tau }}{\varphi _0}} \right){\left( {1 - \frac{{\tilde c}}{\varepsilon }{{\rm{e}}^{(\lambda \wedge \alpha )\tau }}} \right)^{ - 1}},$ |
$0 < \tilde c < 1,\alpha = \frac{1}{\tau }\ln \frac{\varepsilon }{{\tilde c}},{\varphi _0} = \mathop {\sup }\limits_{ - \tau \leqslant t \leqslant 0} E{\left| {x(t)} \right|^2}$ |
最后,由定义1得出方程(DW)的平凡解是均方指数稳定的,所以定理2得证。
定理3 若存在函数
(1)
(2)
(3)
(4)
则方程(DW)的解均方指数稳定。
证明 取
$V(x(t) \!-\! cx(t \!-\! \tau ),t) \!=\! {{\rm{e}}^{{\beta _0}t}}{(x(t) \!-\! cx(t\! -\! \tau ))^{\rm{T}}}{{Q}}(x(t) \!-\! cx(t \!-\! \tau ))$ |
当
$ \begin{split} & LV(x(t) - cx(t - \tau ),t) \leqslant \\& ({\beta _0} + {\beta ^*}){{\rm{e}}^{{\beta _0}t}}{(x(t) - cx(t - \tau ))^{\rm{T}}}{{Q}}(x(t) - cx(t - \tau ))= \\& ({\beta _0} + {\beta ^*})V(x(t) - cx(t - \tau ),t) \end{split} $ |
故
由条件(2)可得
$ ELV(x(t) - cx(t - \tau ),t) \leqslant 0,\;t \in \left[ {{t_0}} \right.,\left. {{t_1}} \right) $ | (33) |
对任意的
$\begin{split} & EV(x(t) - cx(t - \tau ),t) - EV(x({t^*}) - cx({t^*} - \tau ),{t^*}) = \\&\qquad\int_{{t^*}}^t {ELV(x(s) - cx(s - \tau ),s)} {\rm{d}}s \leqslant 0 \end{split}$ |
因此,
$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x({t^*}) - cx({t^*} - \tau ),{t^*}) $ | (34) |
当
$ \begin{split} & V(x({t_1}) - cx({t_1} - \tau ),{t_1}) =\\& {{\rm{e}}^{{\beta _0}{t_1}}}{(x({t_1}) - cx({t_1} - \tau ))^{\rm{T}}}{{Q}}(x({t_1}) - cx({t_1} - \tau )) \leqslant\\& {{\rm{e}}^{{\beta _0}{t_1}}}d_1^2{(x(t_1^ - ) - cx(t_1^ - - \tau ))^{\rm{T}}}{{Q}}(x(t_1^ - ) - cx(t_1^ - - \tau )) \leqslant\\& V(x(t_1^ - ) - cx(t_1^ - - \tau ),t_1^ - ) \end{split} $ | (35) |
当
$ELV(x(t) - cx(t - \tau ),t) \leqslant 0,t \in \left[ {{t_1},{t_1} + \tau } \right)$ |
对任意的
$\begin{split} & EV(x(t) - cx(t - \tau ),t) - EV(x(t') - cx(t' - \tau ),t') =\\& \qquad\int_{t'}^t {ELV(x(s) - cx(s - \tau ),s)} {\rm{d}}s \leqslant 0 \end{split}$ |
因此,
$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x(t') - cx(t' - \tau ),t') $ | (36) |
当
$ \begin{split} & V(x({t_1}{\rm{ + }}\tau ) - cx({t_1}),{t_1} + \tau ) =\\& {{\rm{e}}^{{t_1}{\rm{ + }}\tau }}{(x({t_1}{\rm{ + }}\tau ) - cx({t_1}))^{\rm{T}}}{{Q}}(x({t_1}{\rm{ + }}\tau ) - cx({t_1})) \leqslant\\& u_1^2d_1^2{{\rm{e}}^{{t_1}{\rm{ + }}\tau }}{(x(t_1^ - {\rm{ + }}\tau ) - cx(t_1^ - ))^{\rm{T}}}{{Q}}(x(t_1^ - {\rm{ + }}\tau ) - cx(t_1^ - )) \leqslant \\& V(x(t_1^ - + \tau ) - cx(t_1^ - ),t_1^ - + \tau ) \end{split} $ | (37) |
当
$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x({t^*}) - cx({t^*} - \tau ),{t^*}) $ | (38) |
当
$ V(x({t_2}) - cx({t_2} - \tau ),{t_2}) \leqslant V(x(t_2^ - ) - cx(t_2^ - - \tau ),t_2^ - ) $ | (39) |
假设当
则当
$ \begin{split} & V(x({t_k}) - cx({t_k} - \tau ),{t_k}) \leqslant \\& {{\rm{e}}^{{\beta _0}{t_k}}}d_k^2{(x(t_k^ - ) - cx(t_k^ - - \tau ))^{\rm{T}}}{{Q}}(x(t_k^ - ) - cx(t_k^ - - \tau )) \leqslant\\& V(x(t_k^ - ) - cx(t_k^ - - \tau ),t_k^ - ) \end{split} $ | (40) |
当
$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x(t') - cx(t' - \tau ),t') $ | (41) |
当
$ V(x({t_k}{\rm{ + }}\tau ) - cx({t_k}),{t_k}{\rm{ + }}\tau ) \leqslant V(x(t_k^ - {\rm{ + }}\tau ) - cx(t_k^ - ),t_k^ - {\rm{ + }}\tau ) $ | (42) |
当
$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x({t^*}) - cx({t^*} - \tau ),{t^*}) $ | (43) |
所以综上有
$ \begin{split} & EV(x({t_k}) - cx({t_k} - \tau ),{t_k}) \leqslant \\& \qquad EV(x(t_k^ - ) - cx(t_k^ - - \tau ),t_k^ - )\leqslant\\& \qquad EV(x({t_{k - 1}} + \tau ) - cx({t_{k - 1}}),{t_{k - 1}} + \tau )\leqslant \\& \qquad \cdots \leqslant\\& \qquad EV(x(0) - cx( - \tau ),0) \end{split} $ | (44) |
所以
$ \begin{split} & {{\rm{e}}^{{\beta _0}t}}({\lambda _{\min }}({{Q}}))E{\left| {x(t) - cx(t - \tau )} \right|^2} \leqslant \\&\qquad EV(x(t) - cx(t - \tau ),t) \leqslant \\&\qquad EV(x(0) - cx( - \tau ),0) \end{split} $ | (45) |
又由
$EV(x(0) - cx( - \tau ),0) \leqslant ({\lambda _{\max }}({{Q}}))E{\left| {x(0) - cx( - \tau )} \right|^2}$ |
所以
因此,由引理4得出
其中
$\begin{split} M = &\left( \frac{{{{\rm{e}}^{{\beta _0}\tau }}{{{\lambda _{\max }}({{Q}})}}}}{{{{(1 - \varepsilon )}^2}}{{{\lambda _{\min }}({{Q}})}}}E{{\left| {x(0) - cx( - \tau )} \right|}^2} +\right.\\& \left.\frac{{\tilde c}}{\varepsilon }{{\rm{e}}^{({\beta _0} \wedge \alpha )\tau }}{\varphi _0} \right){\left( {1 - \frac{{\tilde c}}{\varepsilon }{{\rm{e}}^{({\beta _0} \wedge \alpha )\tau }}} \right)^{ - 1}} \end{split}$ |
$0 < \tilde c < 1,\alpha = \frac{1}{\tau }\ln \frac{\varepsilon }{{\tilde c}},{\varphi _0} = \mathop {\sup }\limits_{ - \tau \leqslant t \leqslant 0} E{\left| {x(t)} \right|^2}$ |
所以由定义1可得,定理3得证。
[1] |
LIU K. Stability of infinite dimensional stochastic differential equations with applications[M]. London: Chapman & Hall/CRC, 2005.
|
[2] |
MAO X R. Exponential stability in mean square of neutral stochastic differential functional equations[J].
Systems and Control Letters, 1995, 26(4): 245-251.
DOI: 10.1016/0167-6911(95)00018-5. |
[3] |
GUO C J, O’REGAN D, DENG F Q. Fixed points and exponential stability for a stochastic neutral cellular network[J].
Applied Mathematics Letters, 2013, 26(8): 849-853.
DOI: 10.1016/j.aml.2013.03.011. |
[4] |
LI D S, FAN X M. Exponential stability of impulsive stochastic partial differential equations with delays[J].
Statistics and Probability Letters, 2017, 126: 185-192.
DOI: 10.1016/j.spl.2017.03.016. |
[5] |
HU W, ZHU Q X. Moment exponential stability of stochastic nonlinear delay systems with impulse effects at random times[J].
International Journal of Robust and Nonlinear Control, 2009, 29: 3809-3820.
|
[6] |
FU X Z, ZHU Q X, GUO Y X. Stabilization of stochastic functional differential systems with delayed impulses[J].
Applied Mathematics and Computation, 2019, 346: 776-789.
DOI: 10.1016/j.amc.2018.10.063. |
[7] |
YU G S, YANG W Q, XU L. Pth moment and almost sure exponential stability of impulsive neutral stochastic functional differential equations with markovian switching[J].
International Journal of Systems Science, 2018, 49(6): 1164-1177.
DOI: 10.1080/00207721.2018.1441467. |
[8] |
LUO J W. Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays[J].
Journal of Mathematical Analysis and Applications, 2008, 342(2): 753-760.
DOI: 10.1016/j.jmaa.2007.11.019. |
[9] |
徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J].
广东工业大学学报, 2015, 32(1): 128-132.
XU L, SONG C X. Stability and boundedness of a class of third-order delay differential equations[J]. Journal of Guangdong University of Technology, 2015, 32(1): 128-132. DOI: 10.3969/j.issn.1007-7162.2015.01.026. |
[10] |
CHENGUP, DENG F Q. Global exponential stability of impulsive stochastic functional Differential systems[J].
Statistics and Probability Letters, 2010, 80(23-24): 1854-1862.
DOI: 10.1016/j.spl.2010.08.011. |
[11] |
CHENGUP, DENGUF Q, YAOUF Q. Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects[J].
Nonlinear Analysis Hybrid Systems, 2018, 30: 106-117.
DOI: 10.1016/j.nahs.2018.05.003. |
[12] |
CUI J, YAN L T. Asymptotic behavior for neutral stochastic partial differential equations with infinite delays[J].
Electronic Communications in Probability, 2013, 18(45): 1-12.
|
[13] |
CHEN G L, GAANS O V, LUNEL S V. Existence and exponential stability of a class of impul- sive neutral stochastic partial differential equations with delays and Poisson jumps[J].
Statistics and Probability Letters, 2018, 141: 7-18.
DOI: 10.1016/j.spl.2018.05.017. |
[14] |
MAO X R. Stochastic differential equations and applications[M]. Chichestic: Horwood Publishing Limited, 2007.
|
[15] |
XU Y, HE Z M. Exponential stability of neutral stochastic delay differential equations with Markovian switching[J].
Applied Mathematics Letters, 2016, 52: 64-73.
DOI: 10.1016/j.aml.2015.08.019. |