广东工业大学学报  2020, Vol. 37Issue (6): 56-62.  DOI: 10.12052/gdutxb.190160.
0

引用本文 

黄慧敏, 郭承军. 一类脉冲随机微分方程解的稳定性[J]. 广东工业大学学报, 2020, 37(6): 56-62. DOI: 10.12052/gdutxb.190160.
Huang Hui-min, Guo Cheng-jun. Stability of Solutions for a Class of Impulsive Stochastic Differential Equations[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2020, 37(6): 56-62. DOI: 10.12052/gdutxb.190160.

基金项目:

广东省自然科学基金资助项目(2018A030313871)

作者简介:

黄慧敏(1995–),女,硕士研究生,主要研究方向为泛函微分方程。

通信作者

郭承军(1977–),男,教授,主要研究方向为泛函微分方程,E-mail:guochj817@163.com

文章历史

收稿日期:2019-12-19
一类脉冲随机微分方程解的稳定性
黄慧敏, 郭承军    
广东工业大学 应用数学学院,广东 广州 510520
摘要: 通过运用不动点理论方法和Lyapunov稳定性定理, 研究了一类脉冲随机微分方程解的稳定性, 得到了该方程均方指数稳定的充分条件。
关键词: 不动点理论    Lyapunov泛函    脉冲    稳定性    
Stability of Solutions for a Class of Impulsive Stochastic Differential Equations
Huang Hui-min, Guo Cheng-jun    
School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
Abstract: The stability of solutions of a class of impulsive stochastic differential equations was studied by using the fixed point theory and Lyapunov stability theorem and sufficient conditions for the exponential stability in the mean square of the equation are obtained.
Key words: fixed point theory    Lyapunov functional    impulsive    stability    

近年来,随机微分系统在遗传学、生态系统、自动控制等领域都有着广泛的应用[1-3]。目前,关于具有脉冲效应的随机微分方程的研究也吸引了很多学者的关注[4-7]。文献[8]研究了一类随机微分方程解的稳定性,文章首先给出了方程的温和解,并运用压缩映射原理证明了方程的 $p$ 阶矩指数稳定,该文章没有考虑脉冲作用。文献[9]通过构造Lyapunov泛函,研究了一类三阶时滞微分方程解的渐进稳定性和有界性,得到了该方程渐进稳定和所有解有界的充分性条件。文献[10]利用Razumikhin技巧和Lyapunov函数研究了一类脉冲随机微分系统的全局指数稳定性。文献[11]研究了下列形式的脉冲随机微分方程

$ \left\{ { \begin{aligned} & {{\rm{d}}x(t) = f(x(t)){\rm{d}}t + g(x(t)){\rm{d}}w(t),t \ne {t_k},t \geqslant {t_0}}\\& {\Delta x({t_k}) = {I_k}(x({t_k})),k \in N} \end{aligned}} \right. $

得到了上述方程解的几乎必然指数稳定性。

本文主要通过运用不动点理论和Lyapunov稳定性定理研究如下的脉冲随机微分方程的稳定性,得到了方程解均方指数稳定的结论。

$\left\{ \begin{aligned} & {\rm{d}}\left[ {x(t) - cx(t - \tau )} \right] = [ - (A + \Delta A(t))x(t) + f(t,x(t),\\&\qquad\quad x(t - \tau )) ]{\rm{d}}t + \sigma (t,x(t),x(t - \tau )){\rm{d}}w(t),t \geqslant 0,t \ne {t_k}\\& x({t_k}) = {I_k}(x(t_k^ - )),k \in N\\& x(s) = \varphi (s) \in D_{{{\cal F}_0}}^b\left( {\left[ {{\rm{ - }}\tau ,0} \right],H} \right) \end{aligned} \right.$
1 预备知识

$\left\{ {\varOmega ,{\cal F},P} \right\}$ 是一个具有 $\sigma $ ${\left\{ {{{\cal F}_t}} \right\}_{t\geqslant0}}$ 的完备概率空间,满足通常的条件,即右连续和 ${{\cal F}_0}$ 包含所有的 $P - $ 零测集。设 $H,K$ 是两个实值可分的希尔伯特空间,它们的范数分别记作 ${\left| \cdot \right|_H}$ ${\left| \cdot \right|_K}$ $L\left( {K,H} \right)$ 是从空间 $K$ $H$ 的所有有界线性算子的集合。 $D: = D_{{{\cal F}_0}}^b\left( {\left[ { - \tau ,0} \right];H} \right)$ 表示从 $\left[ { - \tau ,0} \right]$ $H$ 的所有有界 ${{\cal F}_0}$ 可测函数的全体, ${\left\| \varphi \right\|_D} = \mathop {\sup }\limits_{ - \tau \leqslant \theta \leqslant 0} E{\left| {\varphi (\theta )} \right|_H}{\text{。}}$

假设 $\left\{ {W(t),t\geqslant0} \right\}$ 是定义在 $\left\{ {\varOmega ,{\cal F},P} \right\}$ 空间的一个 $K - $ $\rm Wiener$ 过程,并且具有协方差算子 $Q$ 。对任意 $x,y \in K$ $E{\left\langle {W(t),x} \right\rangle _K}{\left\langle {W(s),y} \right\rangle _K} = \left( {t \wedge s} \right){\left\langle {Qx,y} \right\rangle _K}$ 。令 $W(t) =\displaystyle \sum\nolimits_{i = 1}^\infty {\sqrt {{\lambda _i}} } B_t^i{e_i}$ ,这里 ${\lambda _i}\geqslant0,i \in N$ $Q$ 的特征值; ${e_i}\geqslant0,i \in N$ 是相应的特征向量; $B_t^i\geqslant0,i \in N$ 是独立的布朗运动序列。希尔伯特空间 $K$ 的子空间 ${K_0} = {Q^{{1 / 2}}}\left( K \right)$ ,其内积为 ${\left\langle {u,v} \right\rangle _{{K_0}}} = {\left\langle {{Q^{{{ - 1} / 2}}}u,{Q^{{{ - 1} / 2}}}v} \right\rangle _K}$

$L_2^0 = {L_2}\left( {{K_0},H} \right)$ 表示所有从 ${K_0}$ $H$ 的希尔伯特-施密茨算子空间,具有范数:

$\left| \Psi \right|_{L_2^0}^2 = tr\left( {\left( {\Psi {Q^{{1 / 2}}}} \right){{\left( {\Psi {Q^{{1 / 2}}}} \right)}^*}} \right),\Psi \in L_2^0$

考虑如下的脉冲随机微分方程解的稳定性,

$\tag{DW}\left\{ \begin{aligned} & {\rm{d}}\left[ {x(t) \!-\! cx(t \!- \!\tau )} \right]\! \!= \!\!\left[ { \!- \!(A\! + \!\Delta A(t))x(t) \!+\! f(t,x(t),x(t \!-\! \tau ))} \right]{\rm{d}}t \!+ \\&\qquad\qquad\qquad\quad \sigma (t,x(t),x(t - \tau )){\rm{d}}w(t),t\geqslant0,t \ne {t_k}\\& x({t_k}) = {I_k}(x(t_k^ - )),k \in N\\& x(s) = \varphi (s) \in D_{{{\cal F}_0}}^b\left( {\left[ {{\rm{ - }}\tau ,0} \right],H} \right) \end{aligned} \right.$

其中 $f:{R_ + } \times H \times H \to H,\sigma :{R_ + } \times H \times H \to L\left( {K,H} \right)$ 是希尔伯特空间中的 $\rm Borel$ 可测函数, $\left| c \right| < 1$ 是常数, $A$ 是有界线性算子半群 $S(t),t\geqslant0$ 的无穷小生成元。 $x(t)$ 代表在 $t$ 时刻的细胞数量, $x(t) > 0$ 。脉冲时刻 ${t_k}$ 满足 $0{\rm{ = }}{t_0} < {t_1} < {t_2} < \cdots < {t_k} < \cdots $ $\mathop {\lim }\limits_{k \to \infty } {t_k} = \infty $ ${I_k}:H \to H$ 表示 $x(t)$ ${t_k}$ 时刻的脉冲扰动, $x(t_k^ - )$ 代表 $x(t)$ $t = {t_k}$ 时的左极限。

定义1  如果方程(DW)存在解 $x(t)$ ,且存在一对正常数 $\mu $ $\eta $ ,使得

$E{\left| {x(t)} \right|^2} \leqslant \mu E{\left\| \varphi \right\|^2}{{\rm{e}}^{ - \eta t}},t\geqslant0$

则称方程(DW)的解是均方指数稳定的。

定义2  随机过程 $\left\{ {x(t),t \in \left[ {0,T} \right],0 \leqslant T < \infty } \right\}$ 称为方程(DW)的温和解,如果下列条件满足:

(1) $x(t)$ ${{\cal F}_t},t\geqslant0$ 适应的;

(2) 对任何 $t \in \left[ {0,T} \right]$ $x(t)$ 都满足积分方程

$ \begin{split} x(t) = &S(t)\left[ {\varphi (0) - c\varphi ( - \tau )} \right] + cx(t - \tau ) + \\&\int_0^t {(A + \Delta A(s))} S(t - s)cx(s - \tau ){\rm{d}}s+\\& \int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} + \\&\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} + \\& \sum\limits_{0 < {t_k} < t} {S(t - {t_k})} {I_k}(x(t_k^ - )) \end{split}$ (1)

引入如下条件:

(H1) $A$ 是希尔伯特空间 $H$ 中有界线性算子半群 $\left\{ {S(t),t\geqslant0} \right\}$ 的无穷小生成元,且对一些常数 $\gamma > 0$ $M\geqslant1$ ,有 ${\left\| {S(t)} \right\|_H} \leqslant M{e^{ - \gamma t}},t \geqslant 0 $

(H2) 函数 $f$ $\sigma $ 满足利普希茨条件,即存在常数 ${K_1},{K_2}$ ,对任意 $x,\bar x,y,\bar y \in H$ $t\geqslant0$ ,有

${\left| {f(t,x,y) - f(t,\bar x,\bar y)} \right|^2} \leqslant {K_1}({\left| {x - \bar x} \right|^2} + {\left| {y - \bar y} \right|^2}),{K_1} > 0 $ (2)
${\left| {\sigma (t,x,y) - \sigma (t,\bar x,\bar y)} \right|^2} \leqslant {K_2}({\left| {x - \bar x} \right|^2} + {\left| {y - \bar y} \right|^2}),{K_2} > 0 $ (3)

$f(t,0,0) = \sigma (t,0,0) = 0$ ,且 ${I_k}(0) = 0,\left( {k = 1,2, \cdots } \right)$ ,则方程(DW)有平凡解 $x(t) \equiv 0$

(H3) 存在 $\alpha \in \left[ {0,1} \right]$ ,使得对任意 $t\geqslant0$ ,有

$\begin{split} & {\left| {{{\left[ { - (A + \Delta A(s))} \right]}^\alpha }cx(t - \tau ) - {{\left[ { - (A + \Delta A(s))} \right]}^\alpha }cy(t - \tau )} \right|_H} \leqslant \\& \qquad\qquad\qquad\qquad{K_3}{\left| {x - y} \right|_H},{K_3} > 0\\[-10pt] \end{split}$ (4)

(H4) ${I_k} \in C\left( {H,H} \right)$ ,且存在常数 ${q_k}$ ,使得

${\left| {{I_k}(x) - {I_k}(y)} \right|_H} \leqslant {q_k}{\left| {x - y} \right|_H} $ (5)

引理1[12]  对任意 $r\geqslant1$ $L_2^0$ -值可料过程 $\Phi ( \cdot )$

$\begin{split} & \mathop {\sup }\limits_{s \in \left[ {0,t} \right]} E\left\| {\int_0^s {\Phi \left( u \right){\rm{d}}w\left( u \right)} } \right\|_H^{2r} \leqslant\\&\qquad {\left( {r\left( {2r - 1} \right)} \right)^r}{\left( {\int_0^t {{{\left( {E\left\| {\Phi \left( s \right)} \right\|_{L_2^0}^{2r}} \right)}^{{1 / r}}}{\rm{d}}s} } \right)^r} \end{split} $

引理2[13]  假设条件(H1)成立,则对任意 $\beta \geqslant0$ ,有

(ⅰ) $S(t){( - A)^\beta }x = {( - A)^\beta }S(t)x$

(ⅱ) 存在正常数 ${M_\beta } > 0$ ,使得

$\left\| {{{( - A)}^\beta }S(t)} \right\| \leqslant {M_\beta }{t^{ - \beta }}{{\rm{e}}^{ - \gamma t}},t > 0 $
2 主要结果

定理1  假设条件(H1)~(H4)成立,且对 $\alpha \in \left( {{1 / {2,1}}} \right)$ ,满足

$\begin{split} & \left| c \right| + K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma \left( {2\alpha - 1} \right) + \int_0^t {{K_1}} {M^2}{{\rm{e}}^{ - 2\gamma \left( {t - s} \right)}}{\rm{d}}s + \\&\qquad\int_0^t {{K_2}} {M^2}{{\rm{e}}^{ - 2\gamma \left( {t - s} \right)}}{\rm{d}}s + \tilde L < \frac{1}{6} \end{split} $ (6)

则方程(DW)是均方指数稳定的,其中 $\Gamma ( \cdot )$ 是伽马函数, $\tilde L = {M^2}{{\rm{e}}^{ - 2\gamma T}}E\Bigg(\displaystyle \sum\limits_{k = 1}^m {\left| {{q_k}} \right|_H^2} \Bigg)$

证明  定义算子 $\Phi :H \!\to\! H$ ,当 $t \!\in \!\left[ { - \tau ,0} \right]$ 时, $\Phi (x)(t) = \varphi (t)$ ${\left\| x \right\|_H}: = \mathop {\sup }\limits_{t\geqslant0} E\left| {x(t)} \right|_{_H}^2$ ,且存在常数 ${M^*} > 0,\eta > 0$ ,使得 $E\left| {x(t)} \right|_{_H}^2 < {M^*}E\left| \varphi \right|_D^2{{\rm{e}}^{ - \eta t}},t > 0$

$t\geqslant0$ 时,

$ \begin{split} \Phi (x)(t): = &S(t)\left[ {\varphi (0) - c\varphi ( - \tau )} \right] + cx(t - \tau ) + \\&\int_0^t {(A + \Delta A(s))} S\left( {t - s} \right)cx(s - \tau ){\rm{d}}s + \\& \int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} + \\&\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} + \\& \sum\limits_{0 < {t_k} < t} {S(t - {t_k})} {I_k}(x(t_k^ - )): = \sum\limits_{i = 1}^6 {{F_i}} (t) \end{split}$ (7)

先证 $\Phi $ 是均方连续的,令 $x \in H,{t_1}\geqslant0$ ,且 $\left| r \right|$ 足够小。

$\begin{split} & E\left| {\Phi (x)({t_1} + r) - \Phi (x)({t_1})} \right|_H^2 \leqslant \\&\qquad\qquad 6\sum\limits_{i = 1}^6 {E\left| {{F_i}({t_1} + r) - {F_i}({t_1})} \right|_H^2} \end{split} $ (8)

易证当 $r \to 0$ 时,

$ E\left| {{F_i}({t_1} + r) - {F_i}({t_1})} \right|_H^2 \to 0,i = 1,2,3,4,6 $ (9)
$ \begin{split} & E\left| {{F_5}({t_1} + r) - {F_5}({t_1})} \right|_H^2 \leqslant\\& 2\int_0^{{t_1}} {E\left| {(S({t_1} + r - s) - S({t_1} - s))\sigma (s,x(s),x(s - \tau ))} \right|} _H^2{\rm{d}}s + \\& 2\int_{{t_1}}^{{t_1} + r} {E\left| {S({t_1} + r - s)\sigma (s,x(s),x(s - \tau ))} \right|} _H^2{\rm{d}}s \\ &{\text{因此当}}r \to 0{\text{时}},E\left| {{F_5}({t_1} + r) - {F_5}({t_1})} \right|_H^2 \to 0\\[-10pt] \end{split}$ (10)

下证 $\Phi (H) \subset H$ ,令 $x \in H$ ,有

$ \begin{split} & E\left| {\Phi (x)(t)} \right|_H^2 \leqslant 6E\left| {S(t)\left[ {\varphi (0) - c\varphi ( - \tau )} \right]} \right|_H^2 + 6E\left| {cx(t - \tau )} \right|_H^2 + \\&\qquad 6E\left| {\int_0^t {(A + \Delta A(s))S(t - s)cx(s - \tau ){\rm{d}}s} } \right|_H^2 + \\&\qquad6E\left| {\int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} } \right|_H^2 + \\&\qquad 6E\left| {\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} } \right|_H^2 + \\&\qquad6\sum\limits_{0 < {t_k} < t} {E\left| {S(t - {t_k}){I_k}(x(t_k^ - ))} \right|_H^2} = \\&\qquad {J_1} + {J_2} + {J_3} + {J_4} + {J_5} + {J_6}\\[-10pt] \end{split}$ (11)

由条件(H1)有,当 $ t \to \infty $ 时,

$ {J_1} \leqslant 6{M^2}{{\rm{e}}^{ - 2\gamma t}}{(1 + c)^2}\left\| \varphi \right\|_D^2 \to 0 $ (12)

$ x(t) \in H$ 得,当 $ t \to \infty $ 时,

$ \;{J_2} \leqslant 6\left| c \right|E\left| {x(t - \tau )} \right|_H^2 \to 0 $ (13)

由条件(H3)和引理2得

$\begin{split} & {J_3} = 6E\left| {\int_0^t {(A + \Delta A(s))S(t - s)cx(s - \tau ){\rm{d}}s} } \right|_H^2\leqslant\\& 6E\left[ \int_0^t \left| {{\left[ { - (A + \Delta A(s))} \right]}^{1 - \alpha }}S(t - s){{\left[ { - (A + \Delta A(s))} \right]}^\alpha } \right.\right.\\&\left.\left.cx(s - \tau ) \right|_H{\rm{d}}s \right]^2\leqslant 6E{\left[ {\int_0^t {{K_3}\frac{{{M_{1 - \alpha }}{{\rm{e}}^{ - \gamma (t - s)}}}}{{{{(t - s)}^{1 - \alpha }}}}{{\left| {x(s - \tau )} \right|}_H}{\rm{d}}s} } \right]^2}\leqslant\\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_0^t {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s \end{split} $

由于 $x(t) \in H$ ,对任意 $\varepsilon > 0$ ,存在 ${t_1} > 0$ ,使得 $t\geqslant{t_1}$ 时,则有 $E{\left| {x(t)} \right|^2} < \varepsilon $ $E\left| {x(t - \tau )} \right|_H^2 < \varepsilon $

$ \begin{split} & 6E\left| {\int_0^t {(A + \Delta A(s))} S(t - s)cx(s - \tau ){\rm{d}}s} \right|_H^2 \leqslant \\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_0^{{t_1}} {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s +\\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_{{t_1}}^t {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s \leqslant \\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_0^{{t_1}} {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s +\\& 6K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma (2\alpha - 1)\varepsilon \end{split}$

$t \to \infty $ 时, ${{\rm{e}}^{ - \gamma t}} \to 0$ ,结合条件(6),存在 ${t_2} > {t_1}$ ,使得对任意 $t\geqslant{t_2}$ ,有

$\begin{split} & 6K_3^2M_{1 - \alpha }^2{\gamma ^{1 - 2\alpha }}\Gamma (2\alpha - 1)\int_0^{{t_1}} {{{\rm{e}}^{ - \gamma (t - s)}}} E\left| {x(s - \tau )} \right|_H^2{\rm{d}}s \leqslant\\&\qquad\qquad \varepsilon - 6K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma (2\alpha - 1)\varepsilon \end{split}$

因此,对任意 $t\geqslant{t_2}$ ,有

$6E\left| {\int_0^t {(A + \Delta A(s))S(t - s)cx(s - \tau ){\rm{d}}s} } \right|_H^2 < \varepsilon $

也就是当 $t \to \infty $ 时,

$ 6E\left| {\int_0^t {(A + \Delta A(s))S(t - s)cx(s - \tau ){\rm{d}}s} } \right|_H^2 \to 0 $ (14)
$ \begin{split} & {J_4} = 6E\left| {\int_0^t {S(t - s)} f(s,x(s),x(s - \tau )){\rm{d}}s} \right|_H^2 \leqslant \\& \;\;\;\;\;6E\int_0^{{t_1}} {{M^2}} {{\rm{e}}^{ - 2\gamma (t - s)}}{K_1}(\left| {x(s)} \right|_H^2 + \left| {x(s - \tau )} \right|_H^2){\rm{d}}s{\rm{ + }}\\& \;\;\;\;\;6E\int_{{t_1}}^t {{M^2}} {{\rm{e}}^{ - 2\gamma (t - s)}}{K_1}(\left| {x(s)} \right|_H^2 + \left| {x(s - \tau )} \right|_H^2){\rm{d}}s\leqslant \\& \;\;\;\;\; 6E(\mathop {\sup }\limits_{ - \tau \leqslant s \leqslant {t_1}} {\left| {x(s)} \right|^2}){M^2}{K_1}\int_0^{{t_1}} {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s +\\& \;\;\;\;\;6\varepsilon {M^2}{K_1}\int_{{t_1}}^t {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \end{split} $ (15)

由条件(6)得,存在 ${t_2} > {t_1}$ ,使得 $t\geqslant{t_2}$ 时,有

$\begin{split} & 6E(\mathop {\sup }\limits_{ - \tau \leqslant s \leqslant {t_1}} {\left| {x(s)} \right|^2}){M^2}{K_1}\int_0^{{t_1}} {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s <\\&\qquad\qquad \varepsilon - 6\varepsilon {M^2}{K_1}\int_{{t_1}}^t {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \end{split}$ (16)

根据式(15)和式(16)可知,对任意 $t\geqslant{t_2}$ ,有

$6E\left| {\int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} } \right|_H^2 < \varepsilon $

所以当 $t \to \infty $ 时,

$ 6E\left| {\int_0^t {S(t - s)f(s,x(s),x(s - \tau )){\rm{d}}s} } \right|_H^2 \to 0 $ (17)

同理对任意 $x(t) \in H$ ,利用条件(H2)及引理1,有

$ \begin{split} & {J_5} = 6E\left| {\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} } \right|_H^2 \leqslant \\& \;\;\;\;\;\;6E\int_0^{{t_1}} {{M^2}} {{\rm{e}}^{^{ - 2\gamma (t - s)}}}{K_2}(\left| {x(s)} \right|_H^2 + \left| {x(s - \tau )} \right|_H^2){\rm{d}}s+ \\& \;\;\;\;\;\; 6E\int_{{t_1}}^t {{M^2}} {{\rm{e}}^{^{ - 2\gamma (t - s)}}}{K_2}(\left| {x(s)} \right|_H^2 + \left| {x(s - \tau )} \right|_H^2){\rm{d}}s\leqslant\\& \;\;\;\;\;\; 6E(\mathop {\sup }\limits_{ - \tau \leqslant s \leqslant {t_1}} {\left| {x(s)} \right|^2}){M^2}{K_2}\int_0^{{t_1}} {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s + \\& \;\;\;\;\;\;6\varepsilon {M^2}{K_2}\int_{{t_1}}^t {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \end{split} $

所以存在 ${t_2} > {t_1}$ ,使得 $t\geqslant{t_2}$ 时,有

$\begin{split} & 6E(\mathop {\sup }\limits_{ - \tau \leqslant s \leqslant {t_1}} {\left| {x(s)} \right|^2}){M^2}{K_2}\int_0^{{t_1}} {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \leqslant \\&\qquad \varepsilon - 6\varepsilon {M^2}{K_2}\int_{{t_1}}^t {{{\rm{e}}^{ - 2\gamma (t - s)}}} {\rm{d}}s \end{split}$

因此当 $t \to \infty $ 时,

$ 6E\left| {\int_0^t {S(t - s)\sigma (s,x(s),x(s - \tau )){\rm{d}}w(s)} } \right|_H^2 \to 0 $ (18)
$ \begin{split} & {J_6} = 6\sum\limits_{0 < {t_k} < t} {E\left| {S(t - {t_k}){I_k}(x(t_k^ - ))} \right|_H^2} \leqslant \\ &\qquad 6{M^2}{e^{ - 2\gamma t}}\left(\sum\limits_{k = 1}^m {\left| {{q_k}} \right|_H^2} \right)E\left| {x(t_k^ - )} \right|_H^2 \end{split} $

所以当 $t \to \infty $ 时,

$ {J_6} = 6\sum\limits_{0 < {t_k} < t} {E\left| {S(t - {t_k}){I_k}(x(t_k^ - ))} \right|_H^2} \to 0 $ (19)

综上,当 $t \to \infty $ 时, $E\left| {\Phi (x)(t)} \right|_H^2 \to 0$ ,所以 $\Phi (H) \subset H$

最后证明映射 $\Phi :H \to H$ 是压缩的,对任意 $x,y \in H$ $s \in \left[ {0,T} \right]$ ,有

$\begin{split} & \mathop {\sup }\limits_{s \in \left[ {0,T} \right]} E\left| {\Phi (x)(t) - \Phi (y)(t)} \right|_H^2\leqslant \\& 5\mathop {\sup }\limits_{s \in \left[ {0,T} \right]} \Big\{ \left| c \right|E\left| {x(t - \tau ) - y(t - \tau )} \right|_H^2 +\Big. \\& K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma (2\alpha - 1)E\left| {x(s - \tau ) - y(s - \tau )} \right|_H^2 +\\& \int_0^t {{K_1}} {M^2}{{\rm{e}}^{ - 2\gamma (t - s)}}E(\left| {x(s) - y(s)} \right|_H^2 + \\&\left| {x(s - \tau ) - y(s - \tau )} \right|_H^2){\rm{d}}s + \\& \int_0^t {{K_2}} {M^2}{{\rm{e}}^{ - 2\gamma (t - s)}}E(\left| {x(s) - y(s)} \right|_H^2 +\\& \left| {x(s - \tau ) - y(s - \tau )} \right|_H^2){\rm{d}}s+\\& \Big. { {M^2}{{\rm{e}}^{ - 2\gamma t}}\left(\sum\limits_{k = 1}^m {\left| {{q_k}} \right|_H^2} \right)E\left| {x(t_k^ - ) - y(t_k^ - )} \right|_H^2} \Big\} \leqslant\\& 5(\mathop {\sup }\limits_{s \in \left[ {0,T} \right]} E\left| {x(t) - y(t)} \right|_H^2)\Big\{ \left| c \right| + K_3^2M_{1 - \alpha }^2{\gamma ^{ - 2\alpha }}\Gamma (2\alpha - 1) +\Big.\\& \int_0^t {{K_1}} {M^2}{{\rm{e}}^{ - 2\gamma (t - s)}}{\rm{d}}s + \\& \Big. { \int_0^t {{K_2}} {M^2}{{\rm{e}}^{ - 2\gamma (t - s)}}{\rm{d}}s + \tilde L} \Big\} \end{split} $

这里 $\tilde L = {M^2}{{\rm{e}}^{ - 2\gamma T}}E\Bigg(\displaystyle \sum\limits_{k = 1}^m {\left| {{q_k}} \right|_H^2} \Bigg)$ 。因此映射 $\Phi $ 是压缩的,由压缩映射原理得, $\Phi $ 在空间 $H$ 中有不动点 $x(t)$ ,它是方程(DW)的解,且当 $s \in \left[ { - \tau ,0} \right]$ 时, $x(s) = \varphi (s)$ $t \to \infty $ 时, $E\left| {x(t)} \right|_H^2 \to 0$ ,所以定理1得证。

假定 ${C^{2,1}}({R^n} \times {R_ + };{R_ + })$ 表示所有非负函数族 $V(x,t)$ ${R^n} \times {R_ + }$ 上关于 $x$ 是连续两次可微分的,对 $t$ 是一次可微分的。若 $V(x,t) \in {C^{2,1}}({R^n} \times {R_ + };{R_ + })$ ,定义算子 $LV:{R^n} \times {R^n} \times {R_ + } \to R$

$ \begin{split} & LV(x,y,t) = {V_t}(x - cy,t) + {V_x}(x - cy,t)[ - (A + \Delta A(t))x(t) + \\& f(t,x,y) ] + \frac{1}{2} {\rm{trace}}\left[ {{\sigma ^{\rm{T}}}(t,x,y){V_{xx}}(x - cy,t)\sigma (t,x,y)} \right] \end{split} $

其中

$ {V_t} = \frac{{\partial V}}{{\partial t}},\;{V_x} = \left( {\frac{{\partial V}}{{\partial {x_1}}},\frac{{\partial V}}{{\partial {x_2}}},\cdots,\frac{{\partial V}}{{\partial {x_n}}}} \right),\;{V_{xx}} = {\left( {\frac{{{\partial ^2}V}}{{\partial {x_i}\partial {x_j}}}} \right)_{n \times n}} $

引理3[14]  设 $a,b \in {R^n}$ $0 < \varepsilon < 1$ ,则

${\left| {a + b} \right|^2} \leqslant \frac{{{{\left| a \right|}^2}}}{{1 - \varepsilon }} + \frac{{{{\left| b \right|}^2}}}{\varepsilon }$

引理4[15]  假设 $\;\beta > 0,0 < h < \varepsilon < 1,\lambda > 0,x(t), - \tau \leqslant t < \infty $ 是一个满足 $\mathop {\sup }\limits_{ - \tau \leqslant t < \infty } E{\left| {x(t)} \right|^2} < \infty $ $n$ 维随机过程且满足

$ \begin{split} & E{\left| {cx(t - \tau )} \right|^2} \leqslant h\mathop {\sup }\limits_{ - \tau \leqslant \theta \leqslant 0} E{\left| {x(t + \theta )} \right|^2}\\& E{\left| {x(t) - cx(t - \tau )} \right|^2} \leqslant \lambda {{\rm{e}}^{ - \beta t}},t\geqslant0 \end{split} $ (20)

$ E{\left| {x(t)} \right|^2} \leqslant N{{\rm{e}}^{ - (\beta \wedge \alpha )t}} $ (21)

其中

$N = \left( {\frac{\lambda }{{{{(1 - \varepsilon )}^2}}}{{\rm{e}}^{\beta \tau }} + \frac{h}{\varepsilon }{{\rm{e}}^{(\beta \wedge \alpha )\tau }}{\varphi _0}} \right){\left( {1 - \frac{h}{\varepsilon }{{\rm{e}}^{(\beta \wedge \alpha )\tau }}} \right)^{ - 1}}$
$ \alpha = \frac{1}{\tau }\ln \frac{\varepsilon }{h},\;{\varphi _0} = \mathop {\sup }\limits_{ - \tau \leqslant t \leqslant 0} {\left| {x(t)} \right|^2}\qquad\qquad\qquad $

定理2  若存在函数 $V \in {C^{2,1}}({R^n} \times {R_ + };{R_ + })$ ,正常数 ${c_1},{c_2},\lambda ,q$ ,常数 ${\beta ^*}$ 以及非负常数 $\tilde \beta $ ,且存在函数 ${u_1},{u_2},\cdots,{u_i},\cdots$ ,其中 ${u_i} > 1$ $i \in N$ ,使得下列条件成立:

1) ${c_1}{\left| {x(t) \!- \!cx(t\! - \!\tau )} \right|^2} \leqslant V(x(t) \!- \!cx(t \!-\! \tau ),t) \leqslant {c_2}\left| x(t) \!\!-\! \right. \left. cx(t - \tau ) \right|^2$

2) $E{\left| {cx(t - \tau )} \right|^2} \leqslant \tilde c{\left\| \varphi \right\|^2}$ ,其中 $0 < \tilde c < 1$ $\left\| \varphi \right\| =$ $\mathop {\sup }\limits_{ - \tau \leqslant \theta \leqslant 0} E\left| {x(t + \theta )} \right| $

3) $ELV(x(t) - cx(t - \tau ),t) \leqslant {\beta ^*}EV(x(t) - cx(t - \tau ),t)$

4) $EV(x({t_i})\! - \!cx({t_i} \!-\! \tau ),{t_i}) \leqslant {d_i}EV(x(t_i^ -\! ) \!-\! cx(t_i^ - \! \!- \!\tau ),t_i^ - \!)$ ,其中 $0 < {d_i} < 1$

5) $EV(x({t_i} + \tau ) - cx({t_i}),{t_i} + \tau ) \leqslant {u_i}{d_i}EV(x(t_i^ - + \tau ) - cx(t_i^ - ), t_i^ - + \tau )$ ,其中 $\;0 < {u_i}{d_i} < 1$

6) $q \!>\! {{\rm{e}}^{(\lambda + \tilde \beta )\rho }}$ $\tilde \beta \rho \!\geqslant\!\mathop {\sup }\limits_{t\geqslant{t_0}} \int_t^{t + \rho } {{\beta ^*}} {\rm{d}}s$ ,这里 $\rho = \mathop {\sup }\limits_{k \in N} \left\{ {t_k}- \right. \left.{t_{k - 1}} \right\}$

则方程(DW)的解均方指数稳定。

证明  假设 ${t_k} - {t_{k - 1}} > \tau $ $k = 1,2,\cdots,$ $w(t) ={{\rm{e}}^{\lambda (t - {t_0})}} V(x(t) - cx(t - \tau ),t)$ 。下面将证明

$ Ew(t) \leqslant {c_2}M{\left\| \varphi \right\|^2},\;t\geqslant{t_0} $ (22)
$ \begin{split} Ew({t_0}) = & EV(x({t_0}) - cx({t_0} - \tau ),{t_0}) \leqslant\\& {c_2}{\left| {x({t_0}) - cx({t_0} - \tau )} \right|^2} \leqslant\\& {c_2}\left[ {\frac{{{{\left| {x({t_0})} \right|}^2}}}{{1 - \varepsilon }} + \frac{{{{\left| {cx({t_0} - \tau )} \right|}^2}}}{\varepsilon }} \right] \leqslant\\& {c_2}(\frac{{{{\left\| \varphi \right\|}^2}}}{{1 - \varepsilon }} + \frac{{\tilde c{{\left\| \varphi \right\|}^2}}}{\varepsilon })= \\& {c_2}M{\left\| \varphi \right\|^2} \end{split} $

其中 $M = \left(\dfrac{1}{{1 - \varepsilon }} + \dfrac{{\tilde c}}{\varepsilon }\right)$

下面证明

$ Ew(t) \leqslant {c_2}M{\left\| \varphi \right\|^2},\;t \in ({t_0},{t_1}) $ (23)

运用反证法,假若存在 $t \in ({t_0},{t_1})$ ,使得 $Ew(t)\geqslant {c_2}M{\left\| \varphi \right\|^2}$ 。定义 ${t^*} = \inf \{ {t \in \left[ {{t_0},{t_1}} \right):Ew(t)\geqslant{c_2}M{{\left\| \varphi \right\|}^2}} \}$ 。因为 $Ew(t)$ $t \in ({t_0},{t_1})$ 上连续,所以有 ${t^*} \in ({t_0},{t_1})$ $Ew({t^*}) = {c_2}M{\left\| \varphi \right\|^2}$ 。定义 ${t^{**}} = \sup \{ {t \in \left[ {{t_0},{t^*}} \right]:Ew(t) \leqslant \frac{1}{q}{c_2}M{{\left\| \varphi \right\|}^2}} \}$ ,故 ${t^{**}} \in ({t_0},{t^*})$ $Ew({t^{**}}) = \frac{1}{q}{c_2}M{\left\| \varphi \right\|^2}$

对任意 $t \in \left[ {{t^{**}},{t^*}} \right]$ ,由 ${\rm{It}}\mathop {\rm{o}}\limits^ \wedge $ 微分公式和条件3)得

$ \begin{split} ELw(t) =& \lambda {{\rm{e}}^{\lambda (t - {t_0})}}V(x(t) - cx(t - \tau ),t) + \\&{{\rm{e}}^{\lambda (t - {t_0})}}ELV(x(t) - cx(t - \tau ),t) \leqslant \\& (\lambda + {\beta ^*})Ew(t) \end{split} $

$\rm Gronwall$ 不等式可得 $Ew({t^*}) \leqslant Ew({t^{**}}) {{\rm{e}}^{\int_{{t^{**}}}^{{t^*}} {(\lambda + {\beta ^*}){\rm{d}}s} }} \leqslant \dfrac{1}{q}{c_2}M{\left\| \varphi \right\|^2}{{\rm{e}}^{(\lambda + \tilde \beta )\rho }} \leqslant {c_2}M{\left\| \varphi \right\|^2}$ 。得出矛盾,所以式(23)成立。

$ \begin{split} Ew({t_1}) \leqslant& {d_1}{{\rm{e}}^{\lambda ({t_1} - {t_0})}}EV(x(t_1^ - ) - cx(t_1^ - - \tau ),t_1^ - ) \leqslant\\& {d_1}{c_2}M{\left\| \varphi \right\|^2} \end{split} $ (24)

下证当 $t \in ({t_1},{t_1} + \tau )$ 时,

$ Ew(t) \leqslant {d_1}{c_2}M{\left\| \varphi \right\|^2} $ (25)

反证,假若存在 $t \in ({t_1},{t_1} + \tau )$ ,使得 $Ew(t) \geqslant {d_1}{c_2}M{\left\| \varphi \right\|^2}$ 。定义 ${t^*} = \inf \{ {t \in \left[ {{t_1},{t_1} + \tau } \right):Ew(t)\geqslant{d_1}{c_2}M{{\left\| \varphi \right\|}^2}} \}$ 。因为 $Ew(t)$ $t \in ({t_1},{t_1} + \tau )$ 上连续,故 ${t^*} \in ({t_1},{t_1} + \tau )$ $Ew({t^*}) = {d_1}{c_2}M{\left\| \varphi \right\|^2}$ 。定义 ${t^{**}} \!\!=\!\! \sup \{\! {t \!\in \!\left[ {{t_1},{t^*}} \right]\!:\!Ew(t)\! \leqslant\! \dfrac{1}{q}{d_1}{c_2}M{{\left\| \varphi \right\|}^2}} \!\}$ ,则 ${t^{**}} \in ({t_1},{t^*})$ $Ew({t^{**}}) = \dfrac{1}{q}{d_1}{c_2}M{\left\| \varphi \right\|^2}$ 。因为对任意 $t \in \left[ {{t^{**}},{t^*}} \right]$ ,由 ${\rm{It}}\mathop {\rm{o}}\limits^ \wedge $ 微分公式和条件3)有 $ELw(t) \leqslant (\lambda + {\beta ^*}) Ew(t)$ ,则由 $\;\;\;\rm Gronwall$ 不等式可得

$\begin{split} & Ew({t^*}) \leqslant Ew({t^{**}}){{\rm{e}}^{\int_{{t^{**}}}^{{t^*}} {(\lambda + {\beta ^*}){\rm{d}}s} }} \leqslant\\&\quad\quad \frac{1}{q}{d_1}{c_2}M{\left\| \varphi \right\|^2}{{\rm{e}}^{(\lambda + \tilde \beta )\rho }} \leqslant {d_1}{c_2}M{\left\| \varphi \right\|^2} \end{split}$

这是个矛盾,所以式(25)成立。

$ \begin{split} Ew({t_1} + \tau ) \leqslant & {u_1}{d_1}{{\rm{e}}^{\lambda ({t_1} + \tau - {t_0})}}EV(x(t_1^ - + \tau ) - cx(t_1^ - ),t_1^ - + \tau )\leqslant \\& {u_1}d_1^2{c_2}M{\left\| \varphi \right\|^2} \end{split} $ (26)

$t \in ({t_1} + \tau ,{t_2})$ 时,运用反证法同理可证得

$ Ew(t) \leqslant {u_1}d_1^2{c_2}M{\left\| \varphi \right\|^2} $ (27)

$t = {t_2}$ 时,利用条件4)可得

$ Ew({t_2}) \leqslant {d_2}{u_1}d_1^2{c_2}M{\left\| \varphi \right\|^2} $ (28)

假设当 $t\! \in\! ({t_{k\! -\! 1}} \!+\! \tau ,{t_k})$ 时, $Ew(t) \leqslant \displaystyle\prod\limits_{i = 1}^{k - 1} {{u_i}} \displaystyle\prod\limits_{i = 1}^{k - 1} {d_i^2} {c_2}M{\left\| \varphi \right\|^2}$ 成立,则可证得

$ Ew({t_k}) \leqslant {d_k}\prod\limits_{i = 1}^{k - 1} {{u_i}} \prod\limits_{i = 1}^{k - 1} {d_i^2} {c_2}M{\left\| \varphi \right\|^2} $ (29)

$t \in ({t_k},{t_k} + \tau )$ 时,运用反证法可证得

$ Ew(t) \leqslant {d_k}\prod\limits_{i = 1}^{k - 1} {{u_i}} \prod\limits_{i = 1}^{k - 1} {d_i^2} {c_2}M{\left\| \varphi \right\|^2} $ (30)
$ \begin{split} Ew({t_k} + \tau ) \leqslant & {u_k}{d_k}{{\rm{e}}^{\lambda ({t_k} + \tau - {t_0})}}EV(x(t_k^ - + \tau ) - cx(t_k^ - ),t_k^ - + \tau ) \leqslant \\& \prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2} \end{split} $ (31)

$t \in ({t_k} + \tau ,{t_{k + 1}})$ 时,假若存在 $t \in ({t_k} + \tau ,{t_{k + 1}})$ ,使得 $Ew(t)\geqslant\displaystyle\prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2}$ 。定义 ${t^*}\!\! =\! \inf \Bigg\{ t \in \left[ {{t_k} \!+\! \tau ,{t_{k + 1}}} \right): \Bigg. \Bigg. Ew(t)\! \geqslant \! \displaystyle\prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{{\left\| \varphi \right\|}^2} \Bigg\}$ 。因为 $Ew(t)$ $t \!\in\! ({t_k} + \tau ,{t_{k + 1}})$ 上连续,故 $Ew({t^*}) =\displaystyle \prod\limits_{i = 1}^k {{u_i}}\displaystyle \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2}$

定义

${t^{**}} = \sup \Bigg\{ t \in \left[ {{t_k} + \tau ,{t^{\rm{*}}}} \right]:Ew(t) \leqslant \dfrac{1}{q}\prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{{\left\| \varphi \right\|}^2} \Bigg\} $

${t^{**}} \in ({t_k} + \tau ,{t^*})$ $Ew({t^{**}}) = \dfrac{1}{q}\displaystyle\prod\limits_{i = 1}^k {{u_i}}\displaystyle \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2}$ 。因为对任意 $t \in \left[ {{t^{**}},{t^*}} \right]$ ,有 $ELw(t) \leqslant (\lambda + {\beta ^*})Ew(t)$ ,则由 $\rm Gronwall$ 不等式可得

$ \begin{split} Ew({t^*}) \leqslant & Ew({t^{**}}){{\rm{e}}^{\int_{{t^{**}}}^{{t^*}} {(\lambda + {\beta ^*}){\rm{d}}s} }} \leqslant\\& \frac{1}{q}\prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2}{{\rm{e}}^{(\lambda + \tilde \beta )\rho }} \leqslant \\& \prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2} \end{split} $

这是个矛盾,所以

$ Ew(t) \leqslant \prod\limits_{i = 1}^k {{u_i}} \prod\limits_{i = 1}^k {d_i^2} {c_2}M{\left\| \varphi \right\|^2},\;t \in \left[ {{t_k} + \tau ,{t_{k + 1}}} \right) $ (32)

综上,有 $Ew(t) \leqslant {c_2}M{\left\| \varphi \right\|^2}$ $t\geqslant{t_0}$

所以 $EV(x(t) - cx(t - \tau ),t) \leqslant {c_2}M{\left\| \varphi \right\|^2}{{\rm{e}}^{ - \lambda (t - {t_0})}}$

由条件1)可得 $E{\left| {x(t) \!-\! cx(t \!- \!\tau )} \right|^2} \!\leqslant \!\dfrac{1}{{{c_1}}}{c_2}M{\left\| \varphi \right\|^2}{{\rm{e}}^{ \!- \!\lambda (t\! -\! {t_0})}}$

故由引理4可得 $E{\left| {x(t)} \right|^2} \leqslant A{{\rm{e}}^{ - (\lambda \wedge \alpha )t}}$

其中

$A = \left( {\frac{{{c_2}M{{\left\| \varphi \right\|}^2}{{\rm{e}}^{\lambda {t_0}}}}}{{{c_1}{{(1 - \varepsilon )}^2}}}{{\rm{e}}^{\lambda \tau }} + \frac{{\tilde c}}{\varepsilon }{{\rm{e}}^{(\lambda \wedge \alpha )\tau }}{\varphi _0}} \right){\left( {1 - \frac{{\tilde c}}{\varepsilon }{{\rm{e}}^{(\lambda \wedge \alpha )\tau }}} \right)^{ - 1}},$
$0 < \tilde c < 1,\alpha = \frac{1}{\tau }\ln \frac{\varepsilon }{{\tilde c}},{\varphi _0} = \mathop {\sup }\limits_{ - \tau \leqslant t \leqslant 0} E{\left| {x(t)} \right|^2}$

最后,由定义1得出方程(DW)的平凡解是均方指数稳定的,所以定理2得证。

定理3  若存在函数 $V \in {C^{2,1}}({R^n} \times {R_ + };{R_ + })$ ${\beta _0}$ 是固定的正常数,存在对称正定矩阵 ${{Q}}$ 以及常数 ${\;\beta ^*}$ ,且存在函数 ${u_1},{u_2},\cdots,{u_i},\cdots$ ,其中 ${u_i} > 1$ $i \in N$ ,使得下列条件成立:

(1) $2{(x(t) - cx(t - \tau ))^{\rm{T}}}{{Q}}[ - (A + \Delta A(t))x(t) + f(t,x(t), x(t - \tau )) ]$ $+ {\rm{trace}}[ {{\sigma ^{\rm{T}}}(t,x(t),x(t - \tau )){{Q}}\sigma (t,x(t),x(t - \tau ))} ]\leqslant$

${\beta ^*}{(x(t) - cx(t - \tau ))^{\rm{T}}}{{Q}}(x(t) - cx(t - \tau ))$

(2) ${\;\beta _0} + {\beta ^*} < 0$

(3) ${(x({t_i}) - cx({t_i} - \tau ))^{\rm{T}}}{{Q}}(x({t_i}) - cx({t_i} - \tau )) \leqslant$

$d_i^2{(x(t_i^ - )\! -\! cx(t_i^ - \!-\! \tau ))^{\rm{T}}}{{Q}}(x(t_i^ - )\! -\! cx(t_i^ - \! -\! \tau ))$ $0 < d_i^2 < 1$

(4) ${(x({t_i} + \tau ) - cx({t_i}))^{\rm{T}}}{{Q}}(x({t_i} + \tau ) - cx({t_i}))\leqslant$

$u_i^2d_i^2{(x(t_i^ - + \tau ) - cx(t_i^ - ))^{\rm{T}}}{{Q}}(x(t_i^ - + \tau ) - cx(t_i^ - ))$

$0 < u_i^2d_i^2 < 1$

则方程(DW)的解均方指数稳定。

证明  取 ${I_k}(\mu ) = {d_k}\mu $ $k = 1,2,\cdots ,$ ${t_k} - {t_{k - 1}} > \tau $ ,构造如下Lyapunov - Krasovskii泛函:

$V(x(t) \!-\! cx(t \!-\! \tau ),t) \!=\! {{\rm{e}}^{{\beta _0}t}}{(x(t) \!-\! cx(t\! -\! \tau ))^{\rm{T}}}{{Q}}(x(t) \!-\! cx(t \!-\! \tau ))$

$t \in \left[ {{t_0}} \right.,\left. {{t_1}} \right)$ 时,由方程(DW)和条件(1)得到

$ \begin{split} & LV(x(t) - cx(t - \tau ),t) \leqslant \\& ({\beta _0} + {\beta ^*}){{\rm{e}}^{{\beta _0}t}}{(x(t) - cx(t - \tau ))^{\rm{T}}}{{Q}}(x(t) - cx(t - \tau ))= \\& ({\beta _0} + {\beta ^*})V(x(t) - cx(t - \tau ),t) \end{split} $

$ELV(x(t) \!\!-\!\! cx(t\! \!-\! \!\tau ),t) \!\!\leqslant \!\!(\!{\beta _0} \!\!+\!\! {\beta ^*})EV(x(t) \!-\! cx(t\! -\! \tau ),t)$

由条件(2)可得

$ ELV(x(t) - cx(t - \tau ),t) \leqslant 0,\;t \in \left[ {{t_0}} \right.,\left. {{t_1}} \right) $ (33)

对任意的 $t,{t^*} \in \left[ {{t_0},{t_1}} \right)$ ,且 $t > {t^*}$ ,运用 $\rm Dynkin's$ 公式得

$\begin{split} & EV(x(t) - cx(t - \tau ),t) - EV(x({t^*}) - cx({t^*} - \tau ),{t^*}) = \\&\qquad\int_{{t^*}}^t {ELV(x(s) - cx(s - \tau ),s)} {\rm{d}}s \leqslant 0 \end{split}$

因此,

$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x({t^*}) - cx({t^*} - \tau ),{t^*}) $ (34)

$t = {t_1}$ 时,由条件(3)得到

$ \begin{split} & V(x({t_1}) - cx({t_1} - \tau ),{t_1}) =\\& {{\rm{e}}^{{\beta _0}{t_1}}}{(x({t_1}) - cx({t_1} - \tau ))^{\rm{T}}}{{Q}}(x({t_1}) - cx({t_1} - \tau )) \leqslant\\& {{\rm{e}}^{{\beta _0}{t_1}}}d_1^2{(x(t_1^ - ) - cx(t_1^ - - \tau ))^{\rm{T}}}{{Q}}(x(t_1^ - ) - cx(t_1^ - - \tau )) \leqslant\\& V(x(t_1^ - ) - cx(t_1^ - - \tau ),t_1^ - ) \end{split} $ (35)

$t \in \left[ {{t_1},{t_1} + \tau } \right)$ 时,由方程(DW)和条件(1)、(2)有

$ELV(x(t) - cx(t - \tau ),t) \leqslant 0,t \in \left[ {{t_1},{t_1} + \tau } \right)$

对任意的 $t,t' \in \left[ {{t_1},{t_1} + \tau } \right)$ ,且 $t > t'$ ,由 $\rm Dynkin's$ 公式得

$\begin{split} & EV(x(t) - cx(t - \tau ),t) - EV(x(t') - cx(t' - \tau ),t') =\\& \qquad\int_{t'}^t {ELV(x(s) - cx(s - \tau ),s)} {\rm{d}}s \leqslant 0 \end{split}$

因此,

$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x(t') - cx(t' - \tau ),t') $ (36)

$t = {t_1}{\rm{ + }}\tau $ 时,由条件有

$ \begin{split} & V(x({t_1}{\rm{ + }}\tau ) - cx({t_1}),{t_1} + \tau ) =\\& {{\rm{e}}^{{t_1}{\rm{ + }}\tau }}{(x({t_1}{\rm{ + }}\tau ) - cx({t_1}))^{\rm{T}}}{{Q}}(x({t_1}{\rm{ + }}\tau ) - cx({t_1})) \leqslant\\& u_1^2d_1^2{{\rm{e}}^{{t_1}{\rm{ + }}\tau }}{(x(t_1^ - {\rm{ + }}\tau ) - cx(t_1^ - ))^{\rm{T}}}{{Q}}(x(t_1^ - {\rm{ + }}\tau ) - cx(t_1^ - )) \leqslant \\& V(x(t_1^ - + \tau ) - cx(t_1^ - ),t_1^ - + \tau ) \end{split} $ (37)

$t \in \left[ {{t_1} + \tau ,{t_2}} \right)$ 时,可证得对任意的 $t,{t^*} \in \left[ {{t_1} + \tau ,{t_2}} \right)$ ,且 $t > {t^*}$ ,有

$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x({t^*}) - cx({t^*} - \tau ),{t^*}) $ (38)

$t = {t_2}$ 时,由条件(3)可得到

$ V(x({t_2}) - cx({t_2} - \tau ),{t_2}) \leqslant V(x(t_2^ - ) - cx(t_2^ - - \tau ),t_2^ - ) $ (39)

假设当 $t \in \left[ {{t_{k - 1}} + \tau ,{t_k}} \right)$ 时,对任意的 $t,{t^*} \in \left[ {{t_{k - 1}} + \tau ,{t_k}} \right)$ ,且 $t > {t^*}$ 时, $EV(x(t) - cx(t - \tau ),t) \leqslant EV(x({t^*}) - cx({t^*} - \tau ),{t^*})$ 成立。

则当 $t = {t_k}$ 时,由条件(3)得到

$ \begin{split} & V(x({t_k}) - cx({t_k} - \tau ),{t_k}) \leqslant \\& {{\rm{e}}^{{\beta _0}{t_k}}}d_k^2{(x(t_k^ - ) - cx(t_k^ - - \tau ))^{\rm{T}}}{{Q}}(x(t_k^ - ) - cx(t_k^ - - \tau )) \leqslant\\& V(x(t_k^ - ) - cx(t_k^ - - \tau ),t_k^ - ) \end{split} $ (40)

$t \in \left[ {{t_k},{t_k} + \tau } \right)$ 时,对任意的 $t,t' \in \left[ {{t_k},{t_k} + \tau } \right)$ ,且 $t > t'$ 时,运用Dynkin's公式,同理可证

$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x(t') - cx(t' - \tau ),t') $ (41)

$t = {t_k}{\rm{ + }}\tau $ 时,由条件(4)可知

$ V(x({t_k}{\rm{ + }}\tau ) - cx({t_k}),{t_k}{\rm{ + }}\tau ) \leqslant V(x(t_k^ - {\rm{ + }}\tau ) - cx(t_k^ - ),t_k^ - {\rm{ + }}\tau ) $ (42)

$t \in \left[ {{t_k} + \tau ,{t_{k + 1}}} \right)$ 时,对任意的 $t,{t^*} \in \left[ {{t_k} + \tau ,{t_{k + 1}}} \right)$ ,且 $t > {t^*}$ ,可证得

$ EV(x(t) - cx(t - \tau ),t) \leqslant EV(x({t^*}) - cx({t^*} - \tau ),{t^*}) $ (43)

所以综上有

$ \begin{split} & EV(x({t_k}) - cx({t_k} - \tau ),{t_k}) \leqslant \\& \qquad EV(x(t_k^ - ) - cx(t_k^ - - \tau ),t_k^ - )\leqslant\\& \qquad EV(x({t_{k - 1}} + \tau ) - cx({t_{k - 1}}),{t_{k - 1}} + \tau )\leqslant \\& \qquad \cdots \leqslant\\& \qquad EV(x(0) - cx( - \tau ),0) \end{split} $ (44)

所以

$ \begin{split} & {{\rm{e}}^{{\beta _0}t}}({\lambda _{\min }}({{Q}}))E{\left| {x(t) - cx(t - \tau )} \right|^2} \leqslant \\&\qquad EV(x(t) - cx(t - \tau ),t) \leqslant \\&\qquad EV(x(0) - cx( - \tau ),0) \end{split} $ (45)

又由 $V(x(0) - cx( - \tau ),0)$ 的定义,得

$EV(x(0) - cx( - \tau ),0) \leqslant ({\lambda _{\max }}({{Q}}))E{\left| {x(0) - cx( - \tau )} \right|^2}$

所以 $E{\left| {x(t) \!-\! cx(t \!- \!\tau )} \right|^2} \leqslant \left( {\dfrac{{{\lambda _{\max }}({{Q}})}}{{{\lambda _{\min }}({{Q}})}}} \right)E{\left| {x(0) \!-\! cx( \!-\! \tau )} \right|^2} {{\rm{e}}^{ - {\beta _0}t}}$

因此,由引理4得出 $ E{\left| {x(t)} \right|^2}M{{\rm{e}}^{ - \left( {{\beta _0} \wedge \alpha } \right)t}} $

其中

$\begin{split} M = &\left( \frac{{{{\rm{e}}^{{\beta _0}\tau }}{{{\lambda _{\max }}({{Q}})}}}}{{{{(1 - \varepsilon )}^2}}{{{\lambda _{\min }}({{Q}})}}}E{{\left| {x(0) - cx( - \tau )} \right|}^2} +\right.\\& \left.\frac{{\tilde c}}{\varepsilon }{{\rm{e}}^{({\beta _0} \wedge \alpha )\tau }}{\varphi _0} \right){\left( {1 - \frac{{\tilde c}}{\varepsilon }{{\rm{e}}^{({\beta _0} \wedge \alpha )\tau }}} \right)^{ - 1}} \end{split}$
$0 < \tilde c < 1,\alpha = \frac{1}{\tau }\ln \frac{\varepsilon }{{\tilde c}},{\varphi _0} = \mathop {\sup }\limits_{ - \tau \leqslant t \leqslant 0} E{\left| {x(t)} \right|^2}$

所以由定义1可得,定理3得证。

参考文献
[1]
LIU K. Stability of infinite dimensional stochastic differential equations with applications[M]. London: Chapman & Hall/CRC, 2005.
[2]
MAO X R. Exponential stability in mean square of neutral stochastic differential functional equations[J]. Systems and Control Letters, 1995, 26(4): 245-251. DOI: 10.1016/0167-6911(95)00018-5.
[3]
GUO C J, O’REGAN D, DENG F Q. Fixed points and exponential stability for a stochastic neutral cellular network[J]. Applied Mathematics Letters, 2013, 26(8): 849-853. DOI: 10.1016/j.aml.2013.03.011.
[4]
LI D S, FAN X M. Exponential stability of impulsive stochastic partial differential equations with delays[J]. Statistics and Probability Letters, 2017, 126: 185-192. DOI: 10.1016/j.spl.2017.03.016.
[5]
HU W, ZHU Q X. Moment exponential stability of stochastic nonlinear delay systems with impulse effects at random times[J]. International Journal of Robust and Nonlinear Control, 2009, 29: 3809-3820.
[6]
FU X Z, ZHU Q X, GUO Y X. Stabilization of stochastic functional differential systems with delayed impulses[J]. Applied Mathematics and Computation, 2019, 346: 776-789. DOI: 10.1016/j.amc.2018.10.063.
[7]
YU G S, YANG W Q, XU L. Pth moment and almost sure exponential stability of impulsive neutral stochastic functional differential equations with markovian switching[J]. International Journal of Systems Science, 2018, 49(6): 1164-1177. DOI: 10.1080/00207721.2018.1441467.
[8]
LUO J W. Fixed points and exponential stability of mild solutions of stochastic partial differential equations with delays[J]. Journal of Mathematical Analysis and Applications, 2008, 342(2): 753-760. DOI: 10.1016/j.jmaa.2007.11.019.
[9]
徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132.
XU L, SONG C X. Stability and boundedness of a class of third-order delay differential equations[J]. Journal of Guangdong University of Technology, 2015, 32(1): 128-132. DOI: 10.3969/j.issn.1007-7162.2015.01.026.
[10]
CHENGUP, DENG F Q. Global exponential stability of impulsive stochastic functional Differential systems[J]. Statistics and Probability Letters, 2010, 80(23-24): 1854-1862. DOI: 10.1016/j.spl.2010.08.011.
[11]
CHENGUP, DENGUF Q, YAOUF Q. Almost sure exponential stability and stochastic stabilization of stochastic differential systems with impulsive effects[J]. Nonlinear Analysis Hybrid Systems, 2018, 30: 106-117. DOI: 10.1016/j.nahs.2018.05.003.
[12]
CUI J, YAN L T. Asymptotic behavior for neutral stochastic partial differential equations with infinite delays[J]. Electronic Communications in Probability, 2013, 18(45): 1-12.
[13]
CHEN G L, GAANS O V, LUNEL S V. Existence and exponential stability of a class of impul- sive neutral stochastic partial differential equations with delays and Poisson jumps[J]. Statistics and Probability Letters, 2018, 141: 7-18. DOI: 10.1016/j.spl.2018.05.017.
[14]
MAO X R. Stochastic differential equations and applications[M]. Chichestic: Horwood Publishing Limited, 2007.
[15]
XU Y, HE Z M. Exponential stability of neutral stochastic delay differential equations with Markovian switching[J]. Applied Mathematics Letters, 2016, 52: 64-73. DOI: 10.1016/j.aml.2015.08.019.