2. 华南理工大学 广州学院,广东 广州 510800
2. Guangzhou College, South China University of Technology, Guangzhou 510800, China
拓扑压作为拓扑熵的延伸,于1973年由Ruelle[1]首次提出,后又由Walters[2]进一步将其推广到紧致度量空间上,并对连续映射的拓扑压进行研究,其反映动力系统的复杂程度,是分形几何与动力系统方向非常重要的研究内容。随着研究问题的深入,传统拓扑熵与拓扑压的研究被打破,越来越多新的研究出现。例如,1984年,Pesin[3]利用Carathéodory 结构研究了非紧致子集的拓扑压和变分原理,1996年,L. Barreira[4]在Pesin[3]研究基础上给出了紧致度量空间中任意子集的任意函数系列的拓扑压,胡超杰,马东魁[5]对一些紧致系统的拓扑序列熵和广义specification性质进行了研究。Biś[6]和Bufetov[7]分别给出了紧致度量空间上有限个连续映射构成的半群的拓扑熵的定义,在此基础上, Ma等[8]和Lin等[9]分别推广了紧致度量空间上有限个连续映射构成的自由半群的拓扑压. 另一方面,
首先给出真映射、可容许覆盖和可容许度量的概念,这些是由
设
设
(1) 若对每一个
(2)
易知当
下面回顾一下真映射生成半群的拓扑压的概念:
设
$ {d_\omega }({x_1},{x_2}) = \mathop {\max }\limits_{\omega ' \leqslant \omega } d({f_{\omega '}}({x_1}),{f_{\omega '}}({x_2})) $ |
对任意的
$\begin{array}{l} {Q_\omega }(G_1^{'},\varphi ,X,\varepsilon ) = \\ \inf \left\{ {\sum\limits_{x \in F} {{{\rm{e}}^{({S_\omega }\varphi )(x)}}|F{\text{是}}X{\text{的一个}}(\omega ,\varepsilon, X,G_1^{'} ){\text{张成集}}} } \right\} \end{array}$ |
$ {Q_n}(G_1^{'},\varphi ,X,\varepsilon ) = \frac{1}{{{m^n}}}\sum\limits_{|\omega | = n} {{Q_\omega }(G_1^{'},\varphi ,X,\varepsilon )} $ |
$ Q(G_1^{'},\varphi ,X,\varepsilon ) = \mathop {\lim {\rm{sup}}}\limits_{n \to \infty } \frac{1}{n}\log {Q_n}(G_1^{'},\varphi ,X,\varepsilon ) $ |
定义1 真映射生成半群拓扑压定义为
$ {P_1}(G_1^{'},\varphi ) = \mathop {\lim }\limits_{\varepsilon \to 0} Q(G_1^{'},\varphi ,X,\varepsilon ) $ |
基于Biś意义下的定义, 设
$d_{\max }^n(x,y) = \max \{ d(g(x),g(y)):g \in {G_n}\} $ |
对任意的
设
$\begin{array}{l} {Q_n}({G_1},\varphi ,X,\varepsilon ) =\\ \inf \left\{ {\sum\limits_{x \in E} {{{\rm{e}}^{({S_\omega }\varphi )(x)}}|E{\text{是}}X{\text{的一个}}(n,\varepsilon, X,G_1 ){\text{张成集}}} } \right\} \end{array}$ |
注:若
定义2 Biś[3]意义下真映射生成半群拓扑压定义为
$ {P_2}({G_1},\varphi ) = \mathop {\lim }\limits_{\varepsilon \to 0} Q({G_1},\varphi ,X,\varepsilon ) $ |
注:当
下面证明局部紧致可分度量空间上有限个真映射生成的自由半群作用的拓扑压和它的一点紧化空间上对应的拓扑压相等,以Biś[6]意义下真映射半群拓扑压为例。
令
$ {\tilde f_i}(\tilde x) = \left\{ \begin{array}{l} {f_i}(\tilde x),\;\;\;\tilde x \ne \infty \\ \infty ,\;\;\;\;\;\;\;\;\tilde x{\rm{ = }}\infty \end{array} \right. $ |
则
定理1 设
$ \eta = \sup\left\{ |\varphi (x) - \varphi (y)|:\tilde d(x,y) < \frac{\varepsilon }{2}\right\} $ |
则
${P_2}({G_{\rm{1}}},\varphi ) = {\tilde P_2}({\tilde G_{\rm{1}}},\tilde \varphi ) = P({\tilde G_{\rm{1}}},\tilde \varphi )$ |
其中
由文献[10]中性质可知d是可容许度量,首先说明对任意的
$d_{\max }^n(x,{x_i}) \leqslant \tilde d_{\max }^n(x,{\tilde x_i}) + \tilde d_{\max }^n({\tilde x_i},{x_i}) < \frac{\varepsilon }{2} + \frac{\varepsilon }{2} = \varepsilon $ |
故
$r(n,\varepsilon ,X,{G_1}) \leqslant r\left(n,\frac{\varepsilon }{2},{\tilde X},{\tilde G_1}\right) < \infty $ |
由于
$ \begin{array}{l} {\sum\limits_{^{{x_i} \in S}} {\rm{e}} ^{\left( {{S_n}\varphi } \right)}}^{\left( {{x_i}} \right)} = {\sum\limits_{^{\mathop {^{{x_i} \in S}}\limits_{{{\tilde x}_i} \in S} }} {\rm{e}} ^{\left( {{S_n}\varphi } \right)}}^{\left( {{x_i}} \right) - \left( {{S_n}\varphi } \right)\left( {{{\tilde x}_i}} \right) + \left( {{S_n}\varphi } \right)\left( {{{\tilde x}_i}} \right)}\leqslant \\ {{\rm{e}}^{\eta \cdot n}}\sum\limits_{{{\tilde x}_i} \in \tilde S} {{{\rm{e}}^{\left( {{S_n}\varphi } \right)\left( {{{\tilde x}_i}} \right)}}} \end{array}$ |
所以,
$Q\left( {{{\tilde G}_1},\tilde \varphi ,\frac{\varepsilon }{2}} \right) \geqslant {Q_n}\left( {{G_1},\varphi ,\varepsilon } \right) - \eta $ |
令
${\tilde P_2}\left( {{{\tilde G}_1},\tilde \varphi } \right) \geqslant {P_2}\left( {{G_1},\varphi } \right)$ |
反之,令
由
于是
$\tilde d_{\max }^n(\tilde x,{x_i}) \leqslant \tilde d_{\max }^n(\tilde x,x) + d_{\max }^n(x,{x_i}) < \frac{\varepsilon }{2} + \frac{\varepsilon }{2} = \varepsilon $ |
若选取
${Q_n}\left({G_{\rm{1}}},\varphi ,\frac{\varepsilon }{2}\right) \geqslant {Q_n}\left({\tilde G_{\rm{1}}},\tilde \varphi ,\varepsilon \right)$ |
两边同时取log,除以
$Q\left({G_{\rm{1}}},\varphi ,\frac{\varepsilon }{2}\right) \geqslant Q\left({\tilde G_{\rm{1}}},\tilde \varphi ,\varepsilon \right)$ |
令
$ {P_2}({G_{\rm{1}}},\varphi ) \geqslant {\tilde P_{\rm{2}}}({\tilde G_{\rm{1}}},\tilde \varphi ) $ |
因此,
下面利用定理1给出局部紧致可分度量空间上由真映射生成的半群的拓扑压的性质。
定理2 令
(1)
(2)
特别的,
(3)
(4) 若
(5) 若
(6)
(7)
(8) 若
(9)
下面比较这两种定义下有限个真映射构成的半群的拓扑压的大小关系。
定理3 设
${P_2}({G_{\rm{1}}},\varphi ) \geqslant {P_{\rm{1}}}({G'_{\rm{1}}},\varphi )$ |
证明对任意的
$d_{^{_{\max }}}^n(x,y) < \varepsilon $ |
由上式可推出
${Q_n}({G_{\rm{1}}},\varphi ,X,\varepsilon ) \geqslant {Q_n}({G'_{\rm{1}}},\varphi ,X,\varepsilon )$ |
两边同时取log,除以n及取上极限可得
$Q({G_{\rm{1}}},\varphi ,X,\varepsilon ) \geqslant Q({G'_{\rm{1}}},\varphi ,X,\varepsilon )$ |
令
${P_2}({G_{\rm{1}}},\varepsilon ) \geqslant {P_{\rm{1}}}({G'_{\rm{1}}},\varphi )$ |
证毕。
[1] |
RUELLE D. Statistical mechanics on a compact set with ZpAction satisfying expansiveness and specification[J].
Transactions of the American Mathematical Society, 1973, 185: 237-251.
|
[2] |
WALTERS P. An introduction to ergodic theory [M]. New York: Springer-Verlag, Heidelberg, Berlin, 1982.
|
[3] |
PESIN Y B , PITSKEL B S. Topological pressure and the variational principle for noncompact sets[J].
Functional Analysis and Its Applications, 1984, 18(4): 307-318.
|
[4] |
BARREIRA, LUIS M. A non-additive thermodynamic formalism and applications to dimension theory of hyperbolic dynamical systems[J].
Ergodic Theory and Dynamical Systems, 1996, 16(5): 871-927.
DOI: 10.1017/S0143385700010117. |
[5] |
胡超杰, 马东魁. 一些紧致系统的拓扑序列熵和广义specification性质[J].
广东工业大学学报, 2007, 24(2): 24-26.
HU C J, MA D K. Topological sequence entropy of some compact systems and generalized Specification property[J]. Journal of Guangdong University of Technology, 2007, 24(2): 24-26. DOI: 10.3969/j.issn.1007-7162.2007.02.007. |
[6] |
BIŚ A. Entropies of a semigroup of maps[J].
Discrete and Continuous Dynamical Systems, 2004, 11(2-3): 639-648.
DOI: 10.3934/dcds.2004.11.639. |
[7] |
BUFETOV A. Topological entropy of free semigroup actions and skew-product transformations[J].
Journal of Dynamical and Control Systems, 1999, 5(1): 137-143.
|
[8] |
MA D K, LIU S H. Some properties of topological pressure of a semigroup of continuous maps[J].
Dynamical System, 2014, 29(1): 1-17.
|
[9] |
LIN X G, MA D K, WANG Y P. On the measure-theoretic entropy and topological pressure of free semigroup actions[J].
Ergodic Theory and Dynamical Systems, 2016, 38(2): 1-37.
|
[10] |
PATRÃO, MAURO. Entropy and its variational principle for non-compact metric spaces[J].
Ergodic Theory and Dynamical Systems, 2010, 30(5): 1529-1542.
DOI: 10.1017/S0143385709000674. |