广义的Camassa-Holm (CH)方程是由Grayshan和Himonas提出来的[1]。它是完全可积方程并且具有Hamiltonian结构和无穷多的守恒律,所以引起很多数学家和物理学家的关注[2-15]。本文主要研究如下的广义的Camassa-Holm方程:
| $\left\{ {\begin{aligned} &{(1 - \partial _x^2){u_t} \!=\! {u^k}{u_{xxx}} \!+\! b{u^{k - 1}}{u_x}{u_{xx}} \!-\! (b\! +\! 1){u^k}{u_x},}\!\!&\!\!{t \!> \!0,\;x\! \in\! {\mathbb{R}}}\\ &{u(0,x) = {u_0}(x),}&{x\! \in\! {\mathbb{R}}} \end{aligned}} \right.$ | (1) |
这里
利用卷积公式
| $\left\{ {\begin{aligned} & {u_t} +{ {u^k}{u_x} = - {\partial _x}G * \left(\frac{b}{{k + 1}}{u^{k + 1}} + \frac{{3k - b}}{2}{u^{k - 1}}u_x^2\right)}+ \\ & G * \left(\frac{{(k - 1)(k - b)}}{2}{u^{k - 2}}u_x^3\right),\;{t > 0,\;x \in {\mathbb{R}}}\\ & {u(0,x) = {u_0}(x),}{\;\;\;\;\;\;\;\;\;\;\qquad\qquad\qquad x \in {\mathbb{R}}} \end{aligned}} \right.$ | (2) |
当
下面是本文的主要结论:
定理1 给定
| $u \in {Z_T} \equiv C([0,T]:{H^1}) \cap {L^\infty }([0,T]:{W^{1,\infty }}) \cap {C^1}([0,T]:{L^2})$ |
且存在
| $ \begin{aligned} \mathop {\sup }\limits_{t \in [0,T]} {\left\| {u( \cdot ,t)} \right\|_X} =& \mathop {\sup }\limits_{t \in [0,T]} \left({\left\| {u( \cdot ,t)} \right\|_{{H^1}({\mathbb{R}})}} + {\left\| {u( \cdot ,t)} \right\|_{{W^{1,\infty }}({\mathbb{R}})}}\right) \leqslant\\ & \!c{\left\| {{u_0}} \right\|_X} \end{aligned}$ |
此外,在空间
本文运用特征线方法将广义CH方程转变成类似ODE的方程,首先在第1节中证明该新方程解的局部存在唯一性,在第2节和第3节中分别证明了原方程解的局部存在性和唯一性,且给出原方程解对初值的弱连续依赖性。在本文中,为便于书写,
令
| $ \begin{aligned} &{f = \frac{b}{{k + 1}}{u^{k + 1}} + \frac{{3k - b}}{2}{u^{k + 1}}u_x^2}\\ &{g = \frac{{(k - 1)(k - b)}}{2}{u^{k - 2}}u_x^3}\\ &{{R_1} = G * f,\;\;\;{R_2} = G * g}\\ &{{Q_i} = {\partial _x}{R_i},\;\;i = 1,2} \end{aligned} $ |
其中
对Cauchy问题(1)的光滑解
| $\left\{ \begin{aligned} &\frac{{{\rm{d}}x(s,t)}}{{{\rm{d}}t}} = {u^k}(x(s,t),t)\\ & x(s,0) = s \end{aligned} \right.$ | (3) |
利用ODE理论,易知方程(3)有唯一解
对任意的
| $\begin{aligned} &{U(s,t) = u(x(s,t),t)}\\ &{W(s,t) = {u_x}(x(s,t),t)} \end{aligned}$ |
定义
为了简化表达,定义非线性函数
| $ \begin{aligned} &{{M_1}(\omega ) = \frac{b}{{k + 1}}{U^{k + 1}} + \frac{{3k - b}}{2}{U^{k + 1}}{W^2}}\\ &{{M_2}(\omega ) = \frac{{(k - 1)(k - b)}}{2}{U^{k - 2}}{W^3}} \end{aligned} $ |
其中
| ${R_i}(V(s,t))\! \!=\!\!\! \int_{ - \infty }^{ + \infty } \!\!{G(x(s,t) \!\!-\! \!x(\sigma ,t)){M_i}(\omega (\sigma ,t))(1 \!\!+\!\! {\zeta _s}(\sigma ,t)){\rm{d}}\sigma }$ | (4) |
| ${Q_i}(V(s,t)) \!\!=\!\!\! \int_{ - \infty }^{ + \infty } \!\!{{G'}}\! (x(s,t) \!\!- \!\!x(\sigma ,t)){M_i}(\omega (\sigma ,t))(1 \!\!+\! \!{\zeta _s}(\sigma ,t)){\rm{d}}\sigma$ | (5) |
这里
由于
| $\frac{{{\rm{d}}\zeta (s,t)}}{{{\rm{d}}t}} = \frac{{{\rm{d}}x(s,t)}}{{{\rm{d}}t}} = {u^k}(x(s,t),t) = {U^k}(s,t)$ | (6) |
由方程(2),可知满足
| $\frac{{{\rm{d}}U(s,t)}}{{{\rm{d}}t}}\! \!=\!\! \frac{{{\rm{d}}u(x(s,t),t)}}{{{\rm{d}}t}} \!\!=\!\! {u_t} \!+\! {u^k}{u_x} \!=\! -\! {Q_1}(V(s,t)) \!+\! {R_2}(V(s,t))$ | (7) |
根据式(3)和卷积公式
| $\begin{split} \displaystyle &\frac{{{\rm{d}}W(s,t)}}{{{\rm{d}}t}} = \frac{{{\rm{d}}{u_x}(x(s,t),t)}}{{{\rm{d}}t}} = {u^k}{u_{xx}} + {u_{tx}} = \\& - {R_1}(V(s,t)) + {Q_{2}}(V(s,t)) + N(\omega (s,t)) \end{split}$ | (8) |
其中
由式(6)~(8),可得新方程
| $\left\{ \begin{aligned} & \frac{{{\rm{d}}\zeta (s,t)}}{{{\rm{d}}t}} = {U^k}(s,t)\\ & \frac{{{\rm{d}}U(s,t)}}{{{\rm{d}}t}} = - {Q_1}(V(s,t)) + {R_2}(V(s,t))\\ & \frac{{{\rm{d}}W(s,t)}}{{{\rm{d}}t}} = - {R_1}(V(s,t)) + {Q_2}(V(s,t)) + N(\omega (s,t)) \end{aligned} \right.$ | (9) |
其中
| $\left\{ \begin{aligned} & \zeta (s,0) = 0\\ & U(s,0) = {u_0}(s)\\ & W(s,0) = {u_{0,x}}(s) \end{aligned} \right.$ |
为了方便表达,定义
| $\left\{ \begin{aligned} &{F_1} = - {Q_1}(V(s,t)) + {R_2}(V(s,t))\\ &{F_2} = - {R_1}(V(s,t)) + {Q_2}(V(s,t)) + N(\omega (s,t)) \end{aligned} \right.$ |
若令
| $F(V( \cdot ,t)) = (U,{F_1},{F_2})$ | (10) |
则由已知初值
| $V( \cdot ,t) = {V_0}( \cdot ) + \int_0^t {F(V( \cdot ,\tau ))} {\rm{d}}\tau $ | (11) |
其中
下面讨论方程(11)的解的局部存在性和唯一性。
定义1 对任意的
引理1(文献[15]) 如果
| $ \begin{aligned} &\alpha \leqslant {x_s}(s,t) \leqslant 1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}}&a.e.\;\;s \in {\mathbb{R}}\\ &{(1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}})^{ - 1}} \leqslant {\varphi _x}(x,t) \leqslant {\alpha ^{ - 1}}&a.e.\;\;x \in {\mathbb{R}} \end{aligned} $ |
引理2 对任意的
证明:这里只证映射
| $ \begin{aligned} & {R_1}(V(s,t))\! \!=\!\! \frac{1}{2}\!\!\int_{ - \infty }^{ + \infty } \!{{{\rm{e}}^{ -\! \left| {x(s,t) \!- \!x(\sigma ,t)} \right|}}{M_1}(\omega (\sigma ,t))(1 \!\!+ \!\!{\zeta _s}(\sigma ,t))} {\rm{d}}\sigma \!\!= \\ & \frac{1}{2}{{\rm{e}}^{ - \zeta (s,t)}}\!\!\int_{ - \infty }^{ + \infty } {{\chi _{\left\{ {\sigma < s} \right\}}}{{\rm{e}}^{ -\! (s \!-\! \sigma )}}{{\rm{e}}^{\zeta (\sigma ,t)}}{M_1}(\omega (\sigma ,t))(1 \!\!+\!\! {\zeta _s}(\sigma ,t))} {\rm{d}}\sigma\!+ \\ & \frac{1}{2}{{\rm{e}}^{\zeta (s,t)}}\!\!\int_{ - \infty }^{ + \infty } {{\chi _{\left\{ {\sigma > s} \right\}}}{{\rm{e}}^{ -\! (\sigma \! -\! s)}}{{\rm{e}}^{ - \!\zeta (\sigma ,t)}}{M_1}(\omega (\sigma ,t))(1 \!\!+\!\! {\zeta _s}(\sigma ,t))} {\rm{d}}\sigma\! \dot = \\ & {I_1}(V(s,t)) + {I_2}(V(s,t)) \end{aligned}$ |
其中
| $\psi (V(s,t))\dot = {{\rm{e}}^{\zeta (s,t)}}{M_1}(\omega (s,t))(1 + {\zeta _s}(s,t))$ |
则
| $ \begin{aligned} & {I_1}(V(s,t)) = \frac{1}{2}{{\rm{e}}^{ - \zeta (s,t)}}\int_{ - \infty }^{ + \infty } {h(s - \sigma )\psi (V(s,t))} {\rm{d}}\sigma =\\ & \frac{1}{2}{{\rm{e}}^{ - \zeta (s,t)}}h * \psi (V( \cdot ,t))(s) \end{aligned}$ |
因此,
| $ \begin{aligned} & {\left\| {{R_1}({V_1}) \!-\! {R_1}({V_2})} \right\|_Y} \!=\! {\left\| {{I_1}({V_1}) \!+\! {I_2}({V_1}) \!-\! {I_1}({V_2}) \!-\! {I_2}({V_2})} \right\|_Y}\!\leqslant \\ &{\left\| {I{}_1({V_1}) - I{}_1({V_2})} \right\|_Y} + {\left\| {I{}_2({V_1}) - I_2({V_2})} \right\|_Y} \\[-10pt] \end{aligned}$ | (12) |
对于
| $ \begin{aligned} &{\left\| {{I_1}({V_1}) \!-\! {I_1}({V_2})} \right\|_Y} = {\left\| {\frac{1}{2}{{\rm{e}}^{ - {\zeta _1}}}h * \psi (V_1) \!-\! \frac{1}{2}{{\rm{e}}^{ - {\zeta _2}}}h * \psi (V_2)} \right\|_Y} \!\leqslant\\ & \frac{1}{2}{\left\| {{{\rm{e}}^{ - {\zeta _1}}}} \right\|_{{L^\infty }}}{\left\| h \right\|_{{L^1}}}{\left\| {\psi ({V_1}) \!-\! \psi ({V_2})} \right\|_Y} \!+\! \frac{1}{2}{\left\| h \right\|_{{L^1}}}{\left\| {\psi ({V_2})} \right\|_{{L^\infty }}}\\ & \left\| {{\rm{e}}^{ -\! {\zeta _1}}}\! -\!{{\rm{e}}^{ - \zeta_2}} \right\|_Y \!\leqslant\!\frac{1}{2}{{\rm{e}}^A}{\left\| {\psi ({V_1}) \!-\! \psi ({V_2})} \right\|_Y} \!\!+\!\! {C_1}(k,b,A){\left\| {{\zeta _1}\! -\! {\zeta _2}} \right\|_Y} \end{aligned}$ | (13) |
注意到:
| $\begin{split} &\left\| {{M_1}({\omega _1}) - {M_1}({\omega _2})} \right\|{}_Y \leqslant\\ &\left(\frac{{kb}}{{k + 1}} + \frac{{(k - 2)(3k - b)}}{2}\right){A^k}{\left\| {{U_1} - {U_2}} \right\|_Y} + \\ &(3k - b){A^K}{\left\| {{W_1} - {W_2}} \right\|_Y} \end{split} $ | (14) |
| $\begin{split} &{\left\| {{M_2}({\omega _1}) - {M_2}({\omega _2})} \right\|_Y} \leqslant\\ &\frac{{(k - 3)(k - 1)(k - b)}}{2}{A^k}{\left\| {{U_1} - {U_2}} \right\|_Y} +\\ &\frac{{3(k - 1)(k - b)}}{2}{A^k}{\left\| {{W_1} - {W_2}} \right\|_Y} \end{split}$ | (15) |
以及
| $\begin{split} &{\left\| {N({\omega _1}) - N({\omega _2})} \right\|_Y} \leqslant \\ &\left(\frac{{kb}}{{k + 1}} + \frac{{(k - 2)(k - b)}}{2}\right){A^k}{\left\| {{U_1} - {U_2}} \right\|_Y} +\\ &(k - b){A^k}{\left\| {{W_1} - {W_2}} \right\|_Y} \end{split} $ | (16) |
那么
| $ \begin{split} & {\left\| {\psi ({V_1}) - \psi (V{}_2)} \right\|_Y} = \\ &{\left\| {{{\rm{e}}^{{\zeta _1}}}{M_1}({\omega _1})(1 + {\partial _s}{\zeta _1}) - {{\rm{e}}^{{\zeta _2}}}{M_1}({\omega _2})(1 + {\partial _s}{\zeta _2})} \right\|_Y}\leqslant \\ &{\left\| {{{\rm{e}}^{{\zeta _1}}}{M_1}({\omega _1}) - {{\rm{e}}^{{\zeta _2}}}{M_1}({\omega _2})} \right\|_Y} +\\ & {\left\| {{{\rm{e}}^{{\zeta _1}}}{M_1}({\omega _1}){\partial _s}{\zeta _1} - {{\rm{e}}^{{\zeta _2}}}{M_1}({\omega _2}){\partial _s}{\zeta _2}} \right\|_Y}\leqslant \\ &(1 + A)\left(\frac{{kb}}{{k + 1}} + \frac{{(k - 2)(3k - b)}}{2}\right){{\rm{e}}^A}{A^k}{\left\| {{U_1} - {U_2}} \right\|_Y} +\\ & (1 + A)(3k + b) \cdot{{\rm{e}}^A}{A^k}{\left\| {{W_1} - {W_2}} \right\|_Y} + \\ &(1 + A)\left(\frac{b}{{k + 1}} + \frac{{3k - b}}{2}\right){{\rm{e}}^A}{A^{2k + 2}}{\left\| {{\zeta _1} - {\zeta _2}} \right\|_Y}+\\ & \left( {\frac{b}{{k + 1}} + \frac{{3k - b}}{2}} \right){{\rm{e}}^A}{A^{2k + 2}}{\left\| {{\partial _s}{\zeta _1} - {\partial _s}{\zeta _2}} \right\|_Y}\leqslant \\ & {C_2}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar {{J}} }} \end{split}$ | (17) |
结合式(13)和式(17)可得
| $ \begin{split} & \!\!\!{\left\| {{I_1}({V_1})\! -\! {I_1}({V_2})} \right\|_Y}\! \!\leqslant\! \!\frac{1}{2}{{\rm{e}}^A}{\left\| {\psi ({V_1}) \!- \!\psi ({V_2})} \right\|_Y} \!+ \!{C_1}(A){\left\| {{\zeta _1} \!- \!{\zeta _2}} \right\|_Y}\!\leqslant\\ &\displaystyle \frac{1}{2}{{\rm{e}}^A}{C_2}(A){\left\| {{V_1} - {V_2}} \right\|_{{J}}} + {C_1}(A){\left\| {{\zeta _1} - {\zeta _2}} \right\|_Y}\leqslant\\ & {C_3}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar{ {J}}}} \\[-10pt] \end{split}$ | (18) |
同理可得,
| ${\left\| {{I_2}({V_1}) - {I_2}({V_2})} \right\|_Y} \leqslant {C_4}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar{ {J}}}}$ | (19) |
因此,由式(12),(18)和(19)得,
| $\begin{split} {\left\| {{R_1}({V_1}) - {R_1}({V_2})} \right\|_Y} \leqslant {\left\| {{I_1}({V_1}) - {I_1}({V_2})} \right\|_Y} +\\ {\left\| {{I_2}({V_1}) - {I_2}({V_2})} \right\|_Y}\!\leqslant {C_5}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar {{J}} }} \end{split}$ | (20) |
其中常数
根据(4),易得
引理3 令
证明:
| $\begin{split} {\left\| {F({V_1}) - F({V_2})} \right\|_{{J}}} =& {\left\| {{U_1} - {U_2}} \right\|_X} + {\left\| {{F_1}({V_1}) - {F_1}({V_2})} \right\|_X} + {\left\| {{F_2}({V_1}) - {F_2}({V_2})} \right\|_Y}\leqslant{\left\| {{U_1} - {U_2}} \right\|_X} + {\left\| {{Q_1}({V_1}) - {Q_1}({V_2})} \right\|_Y} +\\ & {\left\| {{\partial _s}{Q_1}({V_1}) - {\partial _s}{Q_1}({V_2})} \right\|_Y}+ {\left\| {{R_2}({V_1}) - {R_2}({V_2})} \right\|_Y} + {\left\| {{\partial _s}{R_2}({V_1}) - {\partial _s}{R_2}({V_2})} \right\|_Y} +\\ & {\left\| {{R_1}({V_1}) - {R_1}({V_2})} \right\|_Y}+ {\left\| {{Q_2}({V_1}) - {Q_2}({V_2})} \right\|_Y} + {\left\| {N({\omega _1}) - N({\omega _2})} \right\|_Y} \end{split} $ | (21) |
通过卷积公式
| $ \begin{aligned} & {\left\| {{\partial _s}{R_i}({V_1}) - {\partial _s}{R_i}({V_2})} \right\|_Y} = {\left\| {{\partial _x}{R_i}({V_1}){x_s} - {\partial _x}{R_i}({V_2}){x_s}} \right\|_Y}\leqslant\\ & {\left\| {{x_s}} \right\|_{{L^\infty }}}{\left\| {{Q_i}({V_1}) - {Q_i}({V_2})} \right\|_Y}\leqslant \\ & (1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}}){\left\| {{Q_i}({V_1}) - {Q_i}({V_2})} \right\|_Y} \\[-10pt] \end{aligned}$ | (22) |
和
| $\begin{aligned} &\;\\ & {\left\| {{\partial _s}{Q_i}({V_1}) - {\partial _s}{Q_i}({V_2})} \right\|_Y} = {\left\| {{\partial _x}{Q_i}({V_1}){x_s} - {\partial _x}{Q_i}({V_2}){x_s}} \right\|_Y}\leqslant\\ & {\left\| {{x_s}} \right\|_{{L^\infty }}}{\left\| {\partial _x^2{R_i}({V_1}) - \partial _x^2{R_i}({V_2})} \right\|_Y}\leqslant\\ & (1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}})({\left\| {{R_i}({V_1}) - {R_i}({V_2})} \right\|_Y} + {\left\| {{M_i}({\omega _1}) - {M_i}({\omega _2})} \right\|_Y}) \end{aligned} $ | (23) |
这里
由式(14)~(16),式(22)~(23)和引理2,可将不等式(21)转化为
| $\begin{split} & {\left\| {F({V_1}) - F({V_2})} \right\|_{{J}}} \leqslant \left\| {{U_1} - {U_2}} \right\|{}_X + {\|\| {{Q_1}({V_1})}}- \\ & {Q_1}({V_2}) \|\|_Y + (1 + A)\cdot ({\left\| {{R_1}({V_1}) - {R_1}({V_2})} \right\|_Y} +\\ & {\left\| {{M_1}({\omega _1}) - {M_1}({\omega _2})} \right\|_Y}) + {\left\| {{R_2}({V_1}) - {R_2}({V_2})} \right\|_Y}+ \\ & (1 + A){\left\| {Q{}_2({V_1}) - Q{}_2({V_2})} \right\|_Y} +\\ & {\left\| {{R_1}({V_1}) - {R_1}({V_2})} \right\|_Y}+ \\ & {\left\| {{Q_2}({V_1}) - {Q_2}({V_2})} \right\|_Y} + {\left\| {N({\omega _1}) - N({\omega _2})} \right\|_Y} \leqslant \\ & {C_6}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar {{J}} }} \end{split} $ | (24) |
根据式(10)所定义的
定理2 给定
| $\beta (\alpha ,A) = \{ V = (\zeta ,U,W) \in {{J}}:\zeta \in {\vartheta _\alpha },{\left\| V \right\|_{{J}}} \leqslant A\}$ |
对任意的
| $ V \in {C^1}([0,T]:\beta (\alpha ,A)) $ |
此外,如果
| ${\partial _s}U( \cdot ,t) = W( \cdot ,t)(1 + {\partial _s}\zeta ( \cdot ,t))$ | (25) |
证明:由引理3,得映射
在这节中,本文研究了方程(2)局部解的存在性。首先介绍一些引理,这些引理将用于证明主要结果。
引理4(文献[15]) 定义在式(3)的映射
(i)
(ii)
那么
| $\begin{aligned} &{{\left\| {\phi {\zeta _1} - \phi {\zeta _2}} \right\|_{{L^\infty }}} \leqslant {\alpha ^{ - 1}}{\left\| {{\zeta _1} - {\zeta _2}} \right\|_{{L^\infty }}}}\\ &{{\left\| {\phi {\zeta _1} - \phi {\zeta _2}} \right\|_{{L^2}}} \leqslant C{(1 + {\left\| {{\partial _s}{\zeta _1}} \right\|_{{L^\infty }}})^{\frac{1}{2}}}{\left\| {{\zeta _1} - {\zeta _2}} \right\|_{{L^2}}}} \end{aligned} $ |
(iii) 映射
引理5(文献[15]) 定义集合
现在,证明方程(2)局部解的存在性。
定理3 给定
且
| $ \begin{aligned} \mathop {\sup }\limits_{t \in [0,T]} {\left\| {u( \cdot ,t)} \right\|_{X \times X}} \!\!& = \!\!\mathop {\sup }\limits_{t \in [0,T]} ({\left\| {u( \cdot ,t)} \right\|_{{H^1} \times {H^1}}} \!+\! {\left\| {u( \cdot ,t)} \right\|_{{W^{1,\infty }} \times {W^{1,\infty }}}})\\ & \leqslant c{\left\| {{u_0}} \right\|_{X \times X}}\end{aligned}$ |
证明:给定
由
| $u(s,t) = U(\varphi (x,t),t),\;\;\forall (x,t) \in {\mathbb{R}} \times [0,T]$ |
那么
| $U(s,t) = u(x(s,t),t),\;\;\forall (s,t) \in {\mathbb{R}} \times [0,T]$ |
现在来证明解
| $\begin{aligned} &{\left(\int_{\mathbb{R}} {{u^2}(x,t)} {\rm{d}}x\right)^{\tfrac{1}{2}}}=\\ &{\left(\int_{\mathbb{R}} {{U^2}(\varphi (x,t),t)} {\rm{d}}x\right)^{\tfrac{1}{2}}} = {\left(\int_{\mathbb{R}} {{U^2}(y,t){x_s}(y,t)} {\rm{d}}y\right)^{\tfrac{1}{2}}}\leqslant\\ &\left\| {{x_s}} \right\|_{{L^\infty }}^{1/2}{\left\| {U( \cdot ,t)} \right\|_{{L^2}}} \leqslant {(1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}})^{1/2}}{\left\| {U( \cdot ,t)} \right\|_{{L^2}}}\end{aligned}$ |
即
| $\begin{aligned} {\left\| {u( \cdot ,{t_1}) - u( \cdot ,{t_2})} \right\|_{{L^2}}} \leqslant&{\left\| {U(\varphi ( \cdot ,{t_1}),{t_1}) - U(\varphi ( \cdot ,{t_1}),{t_2})} \right\|_{{L^2}}} +{\left\| {U(\varphi ( \cdot ,{t_1}),{t_2}) - U(\varphi ( \cdot ,{t_2}),{t_2})} \right\|_{{L^2}}}\leqslant\\ & {\left\| {{\partial _t}U( \cdot ,t)} \right\|_{{L^\infty }([0,T]:{L^2})}}\left| {{t_1} - {t_2}} \right| + {\left\| {{\partial _s}U( \cdot ,{t_2})} \right\|_{{L^\infty }}}{\left\| {\phi \zeta ( \cdot ,{t_1}) - \phi \zeta ( \cdot ,{t_2})} \right\|_{{L^2}}}\leqslant\\ & {C_7}(\alpha ,k,b,A)(\left| {{t_1} - {t_2}} \right| + {\left\| {\zeta ( \cdot ,{t_1}) - \zeta ( \cdot ,{t_2})} \right\|_{{L^2}}}) \end{aligned}$ |
由
接下来,验证
| $\begin{aligned} &{u_x}(x,t) = {\partial _s}U(\varphi (x,t),t){\varphi _x}(x,t)=\\ & W(\varphi (x,t),t){x_s}(\varphi (x,t),t){\varphi _x}(x,t) = W(\varphi (x,t),t) \end{aligned}$ |
因为
| $\begin{aligned} &{\left(\int_{\mathbb{R}} {u_x^2(x,t)} {\rm{d}}x\right)^{\tfrac{1}{2}}}=\\ &{\left(\int_{\mathbb{R}} {{W^2}(\varphi (x,t),t)} {\rm{d}}x\right)^{\tfrac{1}{2}}} = {\left(\int_{\mathbb{R}} {{W^2}(y,t){x_s}(y,t)} {\rm{d}}y\right)^{\tfrac{1}{2}}}\leqslant\\ &\left\| {{x_s}} \right\|_{{L^\infty }}^{\frac{1}{2}}{\left\| {W( \cdot ,t)} \right\|_{{L^2}}} \leqslant {(1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}})^{\frac{1}{2}}}{\left\| {W( \cdot ,t)} \right\|_{{L^2}}}\end{aligned}$ |
即
| $\begin{aligned} &{|| {{\partial _x}u( \cdot ,{t_1}) \!-\! {\partial _x}u( \cdot ,{t_2})} ||_{{L^2}}} \!\!\leqslant\! {|| {W(\varphi ( \cdot ,{t_1}),{t_1})}} \!-\!W(\varphi ( \cdot ,{t_1}),{t_2}) ||_{{L^2}} \!+\\ & {|| {W(\varphi ( \cdot ,{t_1}),{t_2}) - W(\varphi ( \cdot ,{t_2}),{t_2})} ||_{{L^2}}} \leqslant {|| {{\partial _t}W} ||_{{L^\infty }([0,T]:{L^2})}} \\ &|| {{t_1} - {t_2}} || + {|| {W(\varphi ( \cdot ,{t_1}),{t_2}) - W(\varphi ( \cdot ,{t_2}),{t_2})} ||_{{L^2}}}\end{aligned}$ |
给定
| ${\left\| {W(\varphi ( \cdot ,{t_1}),{t_2}) - W(\varphi ( \cdot ,{t_2}),{t_2})} \right\|_{{L^2}}} \to 0$ |
因此,当
| $\left\| {{\partial _x}u( \cdot ,{t_1}) - {\partial _x}u( \cdot ,{t_2})} \right\| \to 0$ |
即可得
因为
| ${\left\| {{\partial _x}u( \cdot ,t)} \right\|_{{L^\infty }}} = {\left\| {W(\varphi ( \cdot ,t),t)} \right\|_{{L^\infty }}} \leqslant {\left\| {W( \cdot ,t)} \right\|_{{L^\infty }}} \leqslant A$ |
即可说明
下面证明
| ${\partial _t}\varphi = - {u^k}{\partial _x}\varphi $ | (26) |
通过链锁法则和等式(26),可以推出
| $\begin{aligned} {\partial _t}U(\varphi (x,t),t) &= {U_\varphi }{\varphi _t} + {U_t} = {U_\varphi }( - {u^k}{\varphi _x}) + {U_t}=\\ & {U_t} - {u^k}{U_\varphi }{\varphi _x} = {U_t} - {u^k}{u_x}\end{aligned}$ |
那么
| ${U_t} = {u_t} + {u^k}{u_x}$ | (27) |
因为
| $ \begin{split} {u_t} + {u^k}{u_x}=& - {\partial _x}G * \left(\frac{b}{{k + 1}}{u^{k + 1}} + \frac{{3k - b}}{2}{u^{k - 1}}u_x^2\right) + \\ & G * \left(\frac{{(k - 1)(k - b)}}{2}{u^{k - 2}}u_x^3\right) \end{split} $ | (28) |
因此,
最后,证明
| $\begin{aligned} & {\left\| {{\partial _t}u( \cdot ,{t_1}) - {\partial _t}u( \cdot ,{t_2})} \right\|_{{L^2}}}\leqslant\\ &{\left\| {{u^k}( \cdot ,{t_1}){u_x}( \cdot ,{t_1}) - {u^k}( \cdot ,{t_2}){u_x}( \cdot ,{t_2})} \right\|_{{L^2}}}+ \\ & {\left\| {{\partial _x}G * f( \cdot ,{t_1}) - {\partial _x}G * f( \cdot ,{t_2})} \right\|_{{L^2}}}+\\ & {\left\| {{\partial _x}G * g( \cdot ,{t_1}) - {\partial _x}G * g( \cdot ,{t_2})} \right\|_{{L^2}}}\leqslant \\ &{C_8}(k,b,A){\left\| {u( \cdot ,{t_1}) - u( \cdot ,{t_2})} \right\|_{{H^1}}}\end{aligned}$ |
通过上面的证明,可知
| ${\left\| {{\partial _t}u( \cdot ,{t_1}) - {\partial _t}u( \cdot ,{t_2})} \right\|_{{L^2}}} \to 0$ |
因此,
定理4 令初值
| $u \in {Z_T} \equiv C([0,T]:{H^1}) \cap {L^\infty }([0,T]:{W^{1,\infty }}) \cap {C^1}([0,T]:{L^2})$ |
则解
证明:由于
| ${\partial _t}\zeta (s,t) = u(s + \zeta (s,t),t),\begin{array}{*{20}{c}} {} \end{array}\zeta (s,0) = 0$ | (29) |
有唯一解
| $\begin{aligned} & x(s,t) = s + \zeta (s,t)\\ &U(s,t) = u(x(s,t),t)\\ &W(s,t) = {u_x}(x(s,t),t)\end{aligned}$ |
此外,
| $\begin{split} & {\partial _t}U(s,t) = {u_t}(x(s,t),t) + {u_x}(x(s,t),t){x_t}(s,t)=\\ & ({u_t} + {u^k}{u_x})(x(s,t),t) = - {Q_1}(V(s,t)) + {R_2}(V(s,t))=\\ & {F_1}(V(s,t)) \end{split} $ | (30) |
这里的
由
| $\begin{aligned} &{\partial _s}{F_1}(V(s,t)) = {\partial _s}[ - {Q_1}(V(s,t)) + {R_2}(V(s,t))]=\\ & [ - G'' * {M_1}(\omega (s,t))){\partial _s}x + (G' * {M_2}(\omega (s,t))]{\partial _s}x=\\ & [ - {R_1}(V(s,t)) + {Q_2}(V(s,t)) + N(\omega (s,t))]{\partial _s}x=\\ & [{F_2}(V(s,t)) + k{U^{k - 1}}(s,t){W^2}(s,t)]{\partial _s}x\end{aligned}$ |
其中
| $\begin{split} &{\partial _t}{\partial _s}{U^k} = {\partial _s}(k{U^{k - 1}}{U_t}) = {\partial _s}(k{U^{k - 1}}{F_1}(V(s,t)))=\\ &[k(k - 1){U^{k - 2}}W{F_1}(V(s,t)) + k{U^{k - 1}}\cdot ({F_2}(V(s,t)) +\\ &k{U^{k - 1}}{W^2})]{\partial _s}x \end{split} $ | (31) |
定义:
| $y(s,t) = \exp (\int_0^t {W(s,\tau ) \cdot k{U^{k - 1}}(s,\tau )} {\rm{d}}\tau )$ |
又
| $ {\partial _t}x = {\partial _t}\zeta = {U^k},\;\;\;{\partial _t}y = Wy \cdot k{U^{k - 1}} $ |
由文献[15]中定理3.10的证明,可知
| $W = \frac{{{\partial _t}y}}{{y \cdot k{U^{k - 1}}}} = \frac{{{\partial _t}{\partial _s}x}}{{y \cdot k{U^{k - 1}}}} = \frac{{{\partial _s}{U^k}}}{{y \cdot k{U^{k - 1}}}}$ |
因此,利用式(31),
| $ \begin{split} &{\partial _t}W(s,t) = {\partial _t}\left(\frac{{U_s^k}}{{y \cdot k{U^{k - 1}}}}\right)= \frac{{{\partial _t}{\partial _s}{U^k}}}{{y \cdot k{U^{k - 1}}}} - k{U^{k - 1}}W{}^2 -\\ & \frac{{(k - 1){F_1} \cdot Wy \cdot k{U^{k - 1}}}}{{y \cdot k{U^{k - 1}}}}=\frac{{(k - 1)W{F_1}}}{U} + {F_2} +\\ & k{U^{k - 1}}{W^2} - k{U^{k - 1}}{W^2} - \frac{{(k - 1)W{F_1}}}{U} = F_2(V(s,t)) \end{split} $ | (32) |
由式(29)~(30)和式(32),可知
最后,本文给出解对初值的弱连续依赖性结论。
定理5 对任意的
| ${\left\| {{u_{01}} - {u_{02}}} \right\|_X} \leqslant \delta $ |
方程(2)有相应解
| $ {u_i} \in C([0,{T_i}]:{H^1}) \cap {C^1}([0,{T_i}]:{L^2}), \;\;\;i = 1,2 $ |
且满足
| $\mathop {\sup }\limits_{t \in [0,T]} ({\left\| {{u_1}( \cdot ,t) - {u_2}( \cdot ,t)} \right\|_{{H^1}}} + {\left\| {{\partial _t}{u_1}( \cdot ,t) - {\partial _t}{u_2}( \cdot ,t)} \right\|_{{L^2}}}) < \varepsilon$ |
这里
定理5的证明类似于定理3的证明过程,故这里省略。
定理1的证明:综合定理2、3、4、5,即可得证。
| [1] |
GRAYSHAN K, HIMONAS A A. Equations with peakon traveling wave solutions[J].
Advances in Dynamical Systems and Applications, 2013, 8(2): 217-232.
|
| [2] |
GUAN C X, WANG J M, MENG Y P. Weak well-posedness for a modified two-component Camassa-Holm system[J].
Nonlinear Analysis, 2019, 178: 247-265.
DOI: 10.1016/j.na.2018.07.019. |
| [3] |
GUAN C X, ZHU H. Well-posedness of a class of solutions to an integrable two-component Camassa-Holm system[J].
Journal of Mathematical Analysis and Applications, 2019, 470: 413-433.
DOI: 10.1016/j.jmaa.2018.10.012. |
| [4] |
WEI L, QIAO Z J, WANG Y, ZHOU S M. Conserved quantities, Global existence and blow-up for a generalized CH equation[J].
Discrete and Continuous Dynamical Systems, 2017, 37(3): 1733-1748.
DOI: 10.3934/dcds.2017072. |
| [5] |
TU X, YIN Z Y. Global weak solutions for a generalized Camassa-Holm equation[J].
Mathematische Nachrichten, 2018, 291(16): 2457-2475.
DOI: 10.1002/mana.201700038. |
| [6] |
GUAN C X. Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system[J].
Journal of Evolution Equations, 2018, 18(2): 1003-1024.
DOI: 10.1007/s00028-018-0430-x. |
| [7] |
GUAN C X, KARLSEN K H, YIN Z Y. Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation[J].
Contemporary Mathematics, 2010, 526: 199-220.
|
| [8] |
GUAN C X, YAN K, WEI X M. Lipschitz metric for the modified two-component Camassa-Holm system[J].
Analysis and Applications, 2018, 16(2): 159-182.
DOI: 10.1142/S0219530516500226. |
| [9] |
GUAN C X, YIN Z Y. Global weak solutions for a modified two-component Camassa-Holm equation[J].
Annales de I’Institut Henri poincaré/Analyse Non Linéaire, 2011, 28(4): 623-641.
DOI: 10.1016/j.anihpc.2011.04.003. |
| [10] |
GUAN C X, YIN Z Y. On the global weak solutions for a modified two-component Camassa-Holm equation[J].
Mathematische Nachrichten, 2013, 286(13): 1287-1304.
DOI: 10.1002/mana.201200193. |
| [11] |
BAROSTICHI R F, HIMONAS A A, PETRONILHO G. Global analyticity for a generalized Camassa-Holm equation and decay of the radius of spatical analyticity[J].
Journal of Differential Equations, 2017, 263(1): 732-764.
DOI: 10.1016/j.jde.2017.02.052. |
| [12] |
HIMONAS A A, HOLLIMAN C. The Cauchy problem for a generalized Camassa-Holm equation[J].
Advances in Differential Equations, 2014, 19(1-2): 161-200.
|
| [13] |
YAN W, LI Y S. The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov Space[J].
Annales de I’Institut Henri poincaré/Analyse Non Linéaire, 2015, 32: 443-469.
DOI: 10.1016/j.anihpc.2014.01.003. |
| [14] |
ZHOU S M. The Cauchy problem for a generalized b-equation with higher-order nonlinearities in critical besov spaces and weighted spaces[J].
Discrete and Continuous Dynamical Systems, 2014, 3-4(11): 4967-4986.
|
| [15] |
LINARES F, PONCE G, SIDERIS T C. Properties of solutions to the Camassa-Holm equation on the line in a class containing the peakons[EB/OL]. (2016-12-2) [2019-04-07]. https://arxiv.org/abs/1609.06212.
|
| [16] |
CAMASSA R, HOLM D D. An integrable shallow water equation with peaked solutions[J].
Physical Review Letters, 1993, 71(11): 1661-1664.
DOI: 10.1103/PhysRevLett.71.1661. |
| [17] |
GIUSEPPE G, RAFFAELE V, SEBASTIAN W. Symmetry and Perturbation Theory[M]. Singapore: World Scientific, 1999: 23-37.
|
| [18] |
NOVIKOV V. Generalizations of the Camassa-Holm equation[J].
Journal of Physics A: Mathematical and Theoretical, 2009, 42(34): 2002-2015.
|
2020, Vol. 37

