广东工业大学学报  2020, Vol. 37Issue (2): 80-86.  DOI: 10.12052/gdutxb.190053.
0

引用本文 

陈荣宁, 卫雪梅. 广义的Camassa-Holm方程的弱适定性[J]. 广东工业大学学报, 2020, 37(2): 80-86. DOI: 10.12052/gdutxb.190053.
Chen Rong-ning, Wei Xue-mei. Weak Well-posedness for the Generalized Camassa-Holm Equation[J]. JOURNAL OF GUANGDONG UNIVERSITY OF TECHNOLOGY, 2020, 37(2): 80-86. DOI: 10.12052/gdutxb.190053.

基金项目:

国家自然科学基金资助项目(11101095);广东省高校特色创新类项目(2016KTSCX028)

作者简介:

陈荣宁(1996–),男,硕士研究生,主要研究方向为偏微分方程。

通信作者

卫雪梅(1972–),女,教授,主要研究方向为偏微分方程,E-mail:wxm_gdut@163.com

文章历史

收稿日期:2019-04-10
广义的Camassa-Holm方程的弱适定性
陈荣宁, 卫雪梅    
广东工业大学 应用数学学院,广东 广州 510520
摘要: 本文主要研究广义的Camassa-Holm方程Cauchy问题当初值 ${u_0}$ 在空间 ${H^1}({\mathbb{R}}) \cap {W^{1,\infty }}({\mathbb{R}})$ 时解的弱适定性。首先运用特征线把广义的Camassa-Holm方程转化成类似常微分方程(Ordinary Differential Equation,ODE)的方程。其次运用ODE理论证明新方程解的局部存在唯一性。最后利用新方程与原方程的关系, 证明原方程解的局部存在唯一性并且给出解对初值的弱连续依赖性。
关键词: 广义的Camassa-Holm方程    特征线    弱连续依赖性    
Weak Well-posedness for the Generalized Camassa-Holm Equation
Chen Rong-ning, Wei Xue-mei    
School of Applied Mathematics, Guangdong University of Technology, Guangzhou, 510520, China
Abstract: The weak well-posedness for the generalized Camassa-Holm equation with initial data ${u_0} \in $ ${H^1}({\mathbb{R}}) \cap {W^{1,\infty }}({\mathbb{R}})$ is mainly considered. First, by introducing the characteristics, the generalized Camassa-Holm equation is transformed into an ODE(Ordinary Differential Equation)-similar equation. Then applying the ODE theory, the local existence and uniqueness of the solution to the new equation are proved. Finally, by using the relationship between the new equation and the original equation, the local existence and uniqueness of the solution are investigated, deriving the conclusion of the weak continuous dependence on initial data for the original equation.
Key words: Generalized Camassa-Holm equation    characteristics    weak continuous dependence    

广义的Camassa-Holm (CH)方程是由Grayshan和Himonas提出来的[1]。它是完全可积方程并且具有Hamiltonian结构和无穷多的守恒律,所以引起很多数学家和物理学家的关注[2-15]。本文主要研究如下的广义的Camassa-Holm方程:

$\left\{ {\begin{aligned} &{(1 - \partial _x^2){u_t} \!=\! {u^k}{u_{xxx}} \!+\! b{u^{k - 1}}{u_x}{u_{xx}} \!-\! (b\! +\! 1){u^k}{u_x},}\!\!&\!\!{t \!> \!0,\;x\! \in\! {\mathbb{R}}}\\ &{u(0,x) = {u_0}(x),}&{x\! \in\! {\mathbb{R}}} \end{aligned}} \right.$ (1)

这里 $k \geqslant 2, b \in {\mathbb{R}}$

利用卷积公式 ${(1 \!-\! \partial _x^2)^{ - 1}}f \!=\! G * f$ 和格林函数 $G(x)\! = $ $ \dfrac{1}{2}{{\rm{e}}^{ - \left| x \right|}}(x \in {\mathbb{R}})$ ,故方程(1)可化成:

$\left\{ {\begin{aligned} & {u_t} +{ {u^k}{u_x} = - {\partial _x}G * \left(\frac{b}{{k + 1}}{u^{k + 1}} + \frac{{3k - b}}{2}{u^{k - 1}}u_x^2\right)}+ \\ & G * \left(\frac{{(k - 1)(k - b)}}{2}{u^{k - 2}}u_x^3\right),\;{t > 0,\;x \in {\mathbb{R}}}\\ & {u(0,x) = {u_0}(x),}{\;\;\;\;\;\;\;\;\;\;\qquad\qquad\qquad x \in {\mathbb{R}}} \end{aligned}} \right.$ (2)

$k = 1$ $b = 2$ 时,方程为Camassa-Holm方程[16]。当 $k = 1$ $b = 3$ 时,则为Degasperis-Procesi方程[17]。当 $k = 2$ $b = 3$ 时,则为Novikov方程[18]

下面是本文的主要结论:

定理1  给定 ${u_0} \in X \equiv {H^1} \cap {W^{1,\infty }}$ ,则存在 $T = $ $ T({\left\| {{u_0}} \right\|_X}) > 0$ ,方程(2)有唯一解u且满足:

$u \in {Z_T} \equiv C([0,T]:{H^1}) \cap {L^\infty }([0,T]:{W^{1,\infty }}) \cap {C^1}([0,T]:{L^2})$

且存在 $c > 0$ 时,

$ \begin{aligned} \mathop {\sup }\limits_{t \in [0,T]} {\left\| {u( \cdot ,t)} \right\|_X} =& \mathop {\sup }\limits_{t \in [0,T]} \left({\left\| {u( \cdot ,t)} \right\|_{{H^1}({\mathbb{R}})}} + {\left\| {u( \cdot ,t)} \right\|_{{W^{1,\infty }}({\mathbb{R}})}}\right) \leqslant\\ & \!c{\left\| {{u_0}} \right\|_X} \end{aligned}$

此外,在空间 $X$ 中,若初值 ${u_{01}} \to {u_{02}}$ ,那么存在 $T = $ $ \min \left\{ {{T_1},{T_2}} \right\} > 0$ 并且其相对应的解 ${u_1}$ ${u_2}$ 在空间 $C([0, $ $T]:{H^1}) \cap {C^1}([0,T]:{L^2})$ 中,且 ${u_1} \to {u_2}$

本文运用特征线方法将广义CH方程转变成类似ODE的方程,首先在第1节中证明该新方程解的局部存在唯一性,在第2节和第3节中分别证明了原方程解的局部存在性和唯一性,且给出原方程解对初值的弱连续依赖性。在本文中,为便于书写, ${L^2}({\mathbb{R}})$ ${L^\infty }({\mathbb{R}})$ ${H^1}({\mathbb{R}})$ ${W^{1,\infty }}({\mathbb{R}})$ 空间中的 ${\mathbb{R}}$ 都省略。

1 新方程解的存在唯一性

$ \begin{aligned} &{f = \frac{b}{{k + 1}}{u^{k + 1}} + \frac{{3k - b}}{2}{u^{k + 1}}u_x^2}\\ &{g = \frac{{(k - 1)(k - b)}}{2}{u^{k - 2}}u_x^3}\\ &{{R_1} = G * f,\;\;\;{R_2} = G * g}\\ &{{Q_i} = {\partial _x}{R_i},\;\;i = 1,2} \end{aligned} $

其中 $G(x) = \dfrac{1}{2}{{\rm{e}}^{ - \left| x \right|}}$

对Cauchy问题(1)的光滑解 $u$ ,定义 $x(s,t)$ 为方程(2)的特征线,s为初值,有

$\left\{ \begin{aligned} &\frac{{{\rm{d}}x(s,t)}}{{{\rm{d}}t}} = {u^k}(x(s,t),t)\\ & x(s,0) = s \end{aligned} \right.$ (3)

利用ODE理论,易知方程(3)有唯一解 $x(s,t) \in $ ${C^1} ([0,T]:{\mathbb{R}})$ 。此外,根据文献[15],可知解 $x(s,t)$ 是关于s严格递增的函数,即 $x(s,t) \notin {W^{k,p}}(U)$ ,那么可得 $x( \cdot ,t)$ 不在本文考察的能量空间里。因此,定义函数 $\zeta (s,t) = $ $x(s,t) - s$ $(s \in {\mathbb{R}},\;t \in {{\mathbb{R}}^ + })$

对任意的 $s \in {\mathbb{R}}$ $t \in {{\mathbb{R}}^ + }$ ,定义

$\begin{aligned} &{U(s,t) = u(x(s,t),t)}\\ &{W(s,t) = {u_x}(x(s,t),t)} \end{aligned}$

定义 $X = {H^1} \cap {W^{1,\infty }}$ $Y = {L^2} \cap {L^\infty }$ ${J} = X \times X \times Y$ $ {\left\| v \right\|_{J}} = $ ${\left\| \zeta \right\|_{J}} + {\left\| U \right\|_{J}} + {\left\| W \right\|_{J}}$ ,其中 $v = (\zeta ,U,W) \in {J}$

为了简化表达,定义非线性函数

$ \begin{aligned} &{{M_1}(\omega ) = \frac{b}{{k + 1}}{U^{k + 1}} + \frac{{3k - b}}{2}{U^{k + 1}}{W^2}}\\ &{{M_2}(\omega ) = \frac{{(k - 1)(k - b)}}{2}{U^{k - 2}}{W^3}} \end{aligned} $

其中 $\omega \dot = (U,W) \in X \times Y$ 。因此,非线性映射可以转化为

${R_i}(V(s,t))\! \!=\!\!\! \int_{ - \infty }^{ + \infty } \!\!{G(x(s,t) \!\!-\! \!x(\sigma ,t)){M_i}(\omega (\sigma ,t))(1 \!\!+\!\! {\zeta _s}(\sigma ,t)){\rm{d}}\sigma }$ (4)
${Q_i}(V(s,t)) \!\!=\!\!\! \int_{ - \infty }^{ + \infty } \!\!{{G'}}\! (x(s,t) \!\!- \!\!x(\sigma ,t)){M_i}(\omega (\sigma ,t))(1 \!\!+\! \!{\zeta _s}(\sigma ,t)){\rm{d}}\sigma$ (5)

这里 $i = 1,\;2$

由于 $\zeta (s,t) = x(s,t) - s$ ,所以

$\frac{{{\rm{d}}\zeta (s,t)}}{{{\rm{d}}t}} = \frac{{{\rm{d}}x(s,t)}}{{{\rm{d}}t}} = {u^k}(x(s,t),t) = {U^k}(s,t)$ (6)

由方程(2),可知满足 $u$ 的方程可写为

$\frac{{{\rm{d}}U(s,t)}}{{{\rm{d}}t}}\! \!=\!\! \frac{{{\rm{d}}u(x(s,t),t)}}{{{\rm{d}}t}} \!\!=\!\! {u_t} \!+\! {u^k}{u_x} \!=\! -\! {Q_1}(V(s,t)) \!+\! {R_2}(V(s,t))$ (7)

根据式(3)和卷积公式 ${(1 - \partial _x^2)^{ - 1}}f = G * f$ ,那么方程(2)的第一个微分方程可化为

$\begin{split} \displaystyle &\frac{{{\rm{d}}W(s,t)}}{{{\rm{d}}t}} = \frac{{{\rm{d}}{u_x}(x(s,t),t)}}{{{\rm{d}}t}} = {u^k}{u_{xx}} + {u_{tx}} = \\& - {R_1}(V(s,t)) + {Q_{2}}(V(s,t)) + N(\omega (s,t)) \end{split}$ (8)

其中 $N(\omega ) = \dfrac{b}{{k + 1}}{U^{k + 1}} + \dfrac{{k - b}}{2}{U^{k - 1}}{W^2}$

由式(6)~(8),可得新方程

$\left\{ \begin{aligned} & \frac{{{\rm{d}}\zeta (s,t)}}{{{\rm{d}}t}} = {U^k}(s,t)\\ & \frac{{{\rm{d}}U(s,t)}}{{{\rm{d}}t}} = - {Q_1}(V(s,t)) + {R_2}(V(s,t))\\ & \frac{{{\rm{d}}W(s,t)}}{{{\rm{d}}t}} = - {R_1}(V(s,t)) + {Q_2}(V(s,t)) + N(\omega (s,t)) \end{aligned} \right.$ (9)

其中

$\left\{ \begin{aligned} & \zeta (s,0) = 0\\ & U(s,0) = {u_0}(s)\\ & W(s,0) = {u_{0,x}}(s) \end{aligned} \right.$

为了方便表达,定义

$\left\{ \begin{aligned} &{F_1} = - {Q_1}(V(s,t)) + {R_2}(V(s,t))\\ &{F_2} = - {R_1}(V(s,t)) + {Q_2}(V(s,t)) + N(\omega (s,t)) \end{aligned} \right.$

若令

$F(V( \cdot ,t)) = (U,{F_1},{F_2})$ (10)

则由已知初值 ${V_0}( \cdot )$ ,方程(9)的通解可写为

$V( \cdot ,t) = {V_0}( \cdot ) + \int_0^t {F(V( \cdot ,\tau ))} {\rm{d}}\tau $ (11)

其中 $V( \cdot ,t) = (\zeta ,U,W)( \cdot ,t) \in {J},\;t \in [0,T] $

下面讨论方程(11)的解的局部存在性和唯一性。

定义1  对任意的 $\alpha > 0$ ${\vartheta _\alpha } = \{ \zeta \in X:1 + \mathop {{\rm{essinf}}\;{\zeta _s}(x)} $ $ > \alpha \}$ 。定 $\zeta \in {\vartheta _\alpha }$ $\forall s \in {\mathbb{R}}$ ,满足: $x(s,t) = \zeta (s,t) +$ $ s$ ,令 $\varphi :{\mathbb{R}}\! \to \!{\mathbb{R}}$ x的反函数,则 ${\rm{essinf}} \;{x_s} \!=\! 1 \!+\! {\rm{essinf}}\;{\zeta _s} \!> \!\alpha $ 。此外,定义映射 $\phi \zeta (x,t) = $ $\varphi (x,t)$ $ - x$ $\forall x \in {\mathbb{R}}$ 。现在给出主要结果证明所需的引理:

引理1(文献[15]) 如果 $\zeta \in {\vartheta _\alpha }$ $\forall s \in {\mathbb{R}}$ 时, $x(s,t) = $ $ \zeta (s,t) + s$ 。那么 $\varphi ( \cdot ,t)$ 是严格递增的,又 $x \mapsto \varphi (x,t)$ 是同胚映射,即 ${\varphi _x}(x,t) = {({x_s} \circ \varphi (x,t))^{ - 1}}\;\;a.e.\;\;x \in {\mathbb{R}}$ 。此外,还可得到

$ \begin{aligned} &\alpha \leqslant {x_s}(s,t) \leqslant 1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}}&a.e.\;\;s \in {\mathbb{R}}\\ &{(1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}})^{ - 1}} \leqslant {\varphi _x}(x,t) \leqslant {\alpha ^{ - 1}}&a.e.\;\;x \in {\mathbb{R}} \end{aligned} $

引理2  对任意的 $V = (\zeta ,U,W) \in \bar {J} \dot = {\vartheta _\alpha } \times X \times Y$ 时, ${\left\| V \right\|_{\bar {{J}} }} \leqslant L$ ,那么非线性映射 ${R_i}$ ${Q_i}$ $(i = 1,2)$ $\bar {J} $ $Y$ 上的局部Lipschitz连续。 ${R_i}$ ${Q_i}$ 定义见式(4)~(5)。

证明:这里只证映射 $ R_1$ $\bar {J}$ $Y$ 的局部Lipschitz连续,其他同理可得。由于 $\zeta(s,t)=x(s,t)-s$ $x(s,t) $ 相对于s是严格递增的函数,根据定义(4),映射可写为

$ \begin{aligned} & {R_1}(V(s,t))\! \!=\!\! \frac{1}{2}\!\!\int_{ - \infty }^{ + \infty } \!{{{\rm{e}}^{ -\! \left| {x(s,t) \!- \!x(\sigma ,t)} \right|}}{M_1}(\omega (\sigma ,t))(1 \!\!+ \!\!{\zeta _s}(\sigma ,t))} {\rm{d}}\sigma \!\!= \\ & \frac{1}{2}{{\rm{e}}^{ - \zeta (s,t)}}\!\!\int_{ - \infty }^{ + \infty } {{\chi _{\left\{ {\sigma < s} \right\}}}{{\rm{e}}^{ -\! (s \!-\! \sigma )}}{{\rm{e}}^{\zeta (\sigma ,t)}}{M_1}(\omega (\sigma ,t))(1 \!\!+\!\! {\zeta _s}(\sigma ,t))} {\rm{d}}\sigma\!+ \\ & \frac{1}{2}{{\rm{e}}^{\zeta (s,t)}}\!\!\int_{ - \infty }^{ + \infty } {{\chi _{\left\{ {\sigma > s} \right\}}}{{\rm{e}}^{ -\! (\sigma \! -\! s)}}{{\rm{e}}^{ - \!\zeta (\sigma ,t)}}{M_1}(\omega (\sigma ,t))(1 \!\!+\!\! {\zeta _s}(\sigma ,t))} {\rm{d}}\sigma\! \dot = \\ & {I_1}(V(s,t)) + {I_2}(V(s,t)) \end{aligned}$

其中 ${\chi _A}$ 是关于集合A的指数函数。令 $h(s) = $ ${\chi _{\left\{ {s > 0} \right\}}} (s){{\rm{e}}^{ - s}}$ ,有

$\psi (V(s,t))\dot = {{\rm{e}}^{\zeta (s,t)}}{M_1}(\omega (s,t))(1 + {\zeta _s}(s,t))$

$ \begin{aligned} & {I_1}(V(s,t)) = \frac{1}{2}{{\rm{e}}^{ - \zeta (s,t)}}\int_{ - \infty }^{ + \infty } {h(s - \sigma )\psi (V(s,t))} {\rm{d}}\sigma =\\ & \frac{1}{2}{{\rm{e}}^{ - \zeta (s,t)}}h * \psi (V( \cdot ,t))(s) \end{aligned}$

因此, $\forall {V_j} = ({\zeta _j},{U_j},{W_j}) \in \bar {{J}} $ $\left\| {{V_j}} \right\| \leqslant A(j = 1,2)$ 时,可得

$ \begin{aligned} & {\left\| {{R_1}({V_1}) \!-\! {R_1}({V_2})} \right\|_Y} \!=\! {\left\| {{I_1}({V_1}) \!+\! {I_2}({V_1}) \!-\! {I_1}({V_2}) \!-\! {I_2}({V_2})} \right\|_Y}\!\leqslant \\ &{\left\| {I{}_1({V_1}) - I{}_1({V_2})} \right\|_Y} + {\left\| {I{}_2({V_1}) - I_2({V_2})} \right\|_Y} \\[-10pt] \end{aligned}$ (12)

对于 ${I_1}$ ,利用 $\left| {{{\rm{e}}^x} - {{\rm{e}}^y}} \right| \leqslant {{\rm{e}}^{\max \{ \left| x \right|,\left| y \right|\} }}\left| {x - y} \right|$ 和Young’s不等式得

$ \begin{aligned} &{\left\| {{I_1}({V_1}) \!-\! {I_1}({V_2})} \right\|_Y} = {\left\| {\frac{1}{2}{{\rm{e}}^{ - {\zeta _1}}}h * \psi (V_1) \!-\! \frac{1}{2}{{\rm{e}}^{ - {\zeta _2}}}h * \psi (V_2)} \right\|_Y} \!\leqslant\\ & \frac{1}{2}{\left\| {{{\rm{e}}^{ - {\zeta _1}}}} \right\|_{{L^\infty }}}{\left\| h \right\|_{{L^1}}}{\left\| {\psi ({V_1}) \!-\! \psi ({V_2})} \right\|_Y} \!+\! \frac{1}{2}{\left\| h \right\|_{{L^1}}}{\left\| {\psi ({V_2})} \right\|_{{L^\infty }}}\\ & \left\| {{\rm{e}}^{ -\! {\zeta _1}}}\! -\!{{\rm{e}}^{ - \zeta_2}} \right\|_Y \!\leqslant\!\frac{1}{2}{{\rm{e}}^A}{\left\| {\psi ({V_1}) \!-\! \psi ({V_2})} \right\|_Y} \!\!+\!\! {C_1}(k,b,A){\left\| {{\zeta _1}\! -\! {\zeta _2}} \right\|_Y} \end{aligned}$ (13)

注意到: ${\left\| h \right\|_{{L^1}}} = \displaystyle \int_0^\infty {{{\rm{e}}^{ - s}}} {\rm{d}}s = 1$ 。令 ${\omega _j} = ({U_j},{W_j})$ $j = 1,2$ 。由前面所定义的 ${M_i}(i = 1,2)$ $N$ ,可得

$\begin{split} &\left\| {{M_1}({\omega _1}) - {M_1}({\omega _2})} \right\|{}_Y \leqslant\\ &\left(\frac{{kb}}{{k + 1}} + \frac{{(k - 2)(3k - b)}}{2}\right){A^k}{\left\| {{U_1} - {U_2}} \right\|_Y} + \\ &(3k - b){A^K}{\left\| {{W_1} - {W_2}} \right\|_Y} \end{split} $ (14)
$\begin{split} &{\left\| {{M_2}({\omega _1}) - {M_2}({\omega _2})} \right\|_Y} \leqslant\\ &\frac{{(k - 3)(k - 1)(k - b)}}{2}{A^k}{\left\| {{U_1} - {U_2}} \right\|_Y} +\\ &\frac{{3(k - 1)(k - b)}}{2}{A^k}{\left\| {{W_1} - {W_2}} \right\|_Y} \end{split}$ (15)

以及

$\begin{split} &{\left\| {N({\omega _1}) - N({\omega _2})} \right\|_Y} \leqslant \\ &\left(\frac{{kb}}{{k + 1}} + \frac{{(k - 2)(k - b)}}{2}\right){A^k}{\left\| {{U_1} - {U_2}} \right\|_Y} +\\ &(k - b){A^k}{\left\| {{W_1} - {W_2}} \right\|_Y} \end{split} $ (16)

那么 $\forall {V_1},{V_2} \in \bar {{J}} $ 时,可得

$ \begin{split} & {\left\| {\psi ({V_1}) - \psi (V{}_2)} \right\|_Y} = \\ &{\left\| {{{\rm{e}}^{{\zeta _1}}}{M_1}({\omega _1})(1 + {\partial _s}{\zeta _1}) - {{\rm{e}}^{{\zeta _2}}}{M_1}({\omega _2})(1 + {\partial _s}{\zeta _2})} \right\|_Y}\leqslant \\ &{\left\| {{{\rm{e}}^{{\zeta _1}}}{M_1}({\omega _1}) - {{\rm{e}}^{{\zeta _2}}}{M_1}({\omega _2})} \right\|_Y} +\\ & {\left\| {{{\rm{e}}^{{\zeta _1}}}{M_1}({\omega _1}){\partial _s}{\zeta _1} - {{\rm{e}}^{{\zeta _2}}}{M_1}({\omega _2}){\partial _s}{\zeta _2}} \right\|_Y}\leqslant \\ &(1 + A)\left(\frac{{kb}}{{k + 1}} + \frac{{(k - 2)(3k - b)}}{2}\right){{\rm{e}}^A}{A^k}{\left\| {{U_1} - {U_2}} \right\|_Y} +\\ & (1 + A)(3k + b) \cdot{{\rm{e}}^A}{A^k}{\left\| {{W_1} - {W_2}} \right\|_Y} + \\ &(1 + A)\left(\frac{b}{{k + 1}} + \frac{{3k - b}}{2}\right){{\rm{e}}^A}{A^{2k + 2}}{\left\| {{\zeta _1} - {\zeta _2}} \right\|_Y}+\\ & \left( {\frac{b}{{k + 1}} + \frac{{3k - b}}{2}} \right){{\rm{e}}^A}{A^{2k + 2}}{\left\| {{\partial _s}{\zeta _1} - {\partial _s}{\zeta _2}} \right\|_Y}\leqslant \\ & {C_2}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar {{J}} }} \end{split}$ (17)

结合式(13)和式(17)可得

$ \begin{split} & \!\!\!{\left\| {{I_1}({V_1})\! -\! {I_1}({V_2})} \right\|_Y}\! \!\leqslant\! \!\frac{1}{2}{{\rm{e}}^A}{\left\| {\psi ({V_1}) \!- \!\psi ({V_2})} \right\|_Y} \!+ \!{C_1}(A){\left\| {{\zeta _1} \!- \!{\zeta _2}} \right\|_Y}\!\leqslant\\ &\displaystyle \frac{1}{2}{{\rm{e}}^A}{C_2}(A){\left\| {{V_1} - {V_2}} \right\|_{{J}}} + {C_1}(A){\left\| {{\zeta _1} - {\zeta _2}} \right\|_Y}\leqslant\\ & {C_3}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar{ {J}}}} \\[-10pt] \end{split}$ (18)

同理可得,

${\left\| {{I_2}({V_1}) - {I_2}({V_2})} \right\|_Y} \leqslant {C_4}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar{ {J}}}}$ (19)

因此,由式(12),(18)和(19)得,

$\begin{split} {\left\| {{R_1}({V_1}) - {R_1}({V_2})} \right\|_Y} \leqslant {\left\| {{I_1}({V_1}) - {I_1}({V_2})} \right\|_Y} +\\ {\left\| {{I_2}({V_1}) - {I_2}({V_2})} \right\|_Y}\!\leqslant {C_5}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar {{J}} }} \end{split}$ (20)

其中常数 ${C_5}(k,b,A) = {C_3}(k,b,A) + {C_4}(k,b,A)$

根据(4),易得 $R(0) = 0$ 。因此,由(20)可得 ${R_1}(V) \in Y$ 。故得非线性映射 ${R_1}$ ${{J}}$ $Y$ 上的局部Lipschitz连续。

引理3  令 $\zeta \in {\vartheta _\alpha }$ $V = (\zeta ,U,W) \in \bar {{J}} $ 。那么从 $\bar {{J}} $ ${{J}}$ 的映射 $V \to F(V)$ 是局部Lipschitz连续的,F定义见(10)。

证明 $\forall {V_1},{V_2} \in \bar {{J}} $ ${\left\| {{V_j}} \right\|_{\bar {{J}} }} \leqslant A$ $(j = 1,2)$ 时,

$\begin{split} {\left\| {F({V_1}) - F({V_2})} \right\|_{{J}}} =& {\left\| {{U_1} - {U_2}} \right\|_X} + {\left\| {{F_1}({V_1}) - {F_1}({V_2})} \right\|_X} + {\left\| {{F_2}({V_1}) - {F_2}({V_2})} \right\|_Y}\leqslant{\left\| {{U_1} - {U_2}} \right\|_X} + {\left\| {{Q_1}({V_1}) - {Q_1}({V_2})} \right\|_Y} +\\ & {\left\| {{\partial _s}{Q_1}({V_1}) - {\partial _s}{Q_1}({V_2})} \right\|_Y}+ {\left\| {{R_2}({V_1}) - {R_2}({V_2})} \right\|_Y} + {\left\| {{\partial _s}{R_2}({V_1}) - {\partial _s}{R_2}({V_2})} \right\|_Y} +\\ & {\left\| {{R_1}({V_1}) - {R_1}({V_2})} \right\|_Y}+ {\left\| {{Q_2}({V_1}) - {Q_2}({V_2})} \right\|_Y} + {\left\| {N({\omega _1}) - N({\omega _2})} \right\|_Y} \end{split} $ (21)

通过卷积公式 ${(1 - \partial _x^2)^{ - 1}}f = G * f$ ,当 $f \in {L^2}$ 时,则 $\partial _x^2G * f = G * f - f$ 。那么由式(4)~(5)定义的 ${R_i}$ ${Q_i}$

$ \begin{aligned} & {\left\| {{\partial _s}{R_i}({V_1}) - {\partial _s}{R_i}({V_2})} \right\|_Y} = {\left\| {{\partial _x}{R_i}({V_1}){x_s} - {\partial _x}{R_i}({V_2}){x_s}} \right\|_Y}\leqslant\\ & {\left\| {{x_s}} \right\|_{{L^\infty }}}{\left\| {{Q_i}({V_1}) - {Q_i}({V_2})} \right\|_Y}\leqslant \\ & (1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}}){\left\| {{Q_i}({V_1}) - {Q_i}({V_2})} \right\|_Y} \\[-10pt] \end{aligned}$ (22)

$\begin{aligned} &\;\\ & {\left\| {{\partial _s}{Q_i}({V_1}) - {\partial _s}{Q_i}({V_2})} \right\|_Y} = {\left\| {{\partial _x}{Q_i}({V_1}){x_s} - {\partial _x}{Q_i}({V_2}){x_s}} \right\|_Y}\leqslant\\ & {\left\| {{x_s}} \right\|_{{L^\infty }}}{\left\| {\partial _x^2{R_i}({V_1}) - \partial _x^2{R_i}({V_2})} \right\|_Y}\leqslant\\ & (1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}})({\left\| {{R_i}({V_1}) - {R_i}({V_2})} \right\|_Y} + {\left\| {{M_i}({\omega _1}) - {M_i}({\omega _2})} \right\|_Y}) \end{aligned} $ (23)

这里 $i = 1 ,\;2$

由式(14)~(16),式(22)~(23)和引理2,可将不等式(21)转化为

$\begin{split} & {\left\| {F({V_1}) - F({V_2})} \right\|_{{J}}} \leqslant \left\| {{U_1} - {U_2}} \right\|{}_X + {\|\| {{Q_1}({V_1})}}- \\ & {Q_1}({V_2}) \|\|_Y + (1 + A)\cdot ({\left\| {{R_1}({V_1}) - {R_1}({V_2})} \right\|_Y} +\\ & {\left\| {{M_1}({\omega _1}) - {M_1}({\omega _2})} \right\|_Y}) + {\left\| {{R_2}({V_1}) - {R_2}({V_2})} \right\|_Y}+ \\ & (1 + A){\left\| {Q{}_2({V_1}) - Q{}_2({V_2})} \right\|_Y} +\\ & {\left\| {{R_1}({V_1}) - {R_1}({V_2})} \right\|_Y}+ \\ & {\left\| {{Q_2}({V_1}) - {Q_2}({V_2})} \right\|_Y} + {\left\| {N({\omega _1}) - N({\omega _2})} \right\|_Y} \leqslant \\ & {C_6}(k,b,A){\left\| {{V_1} - {V_2}} \right\|_{\bar {{J}} }} \end{split} $ (24)

根据式(10)所定义的 $F$ ,容易得 $F(0) = 0$ 。因此,由式(24)可得 $F(V) \in {{J}}$ 。故从 $\bar {{J}} $ ${{J}}$ 的映射 $V \to F(V)$ 是局部Lipschitz连续的。

定理2  给定 $A > 0$ ,定义:

$\beta (\alpha ,A) = \{ V = (\zeta ,U,W) \in {{J}}:\zeta \in {\vartheta _\alpha },{\left\| V \right\|_{{J}}} \leqslant A\}$

对任意的 ${V_0} = ({\zeta _0},{U_0},{W_0}) \in \beta (\alpha ,A)$ 时,若时间 $T > 0$ ,则方程(11)有唯一解

$ V \in {C^1}([0,T]:\beta (\alpha ,A)) $

此外,如果 ${\partial _s}{U_0}(s) = {W_0}(s)(1 + {\partial _s}{\zeta _0}(s))$ ,则 $ V( \cdot ,t) \in C([0,$ $ T]:Y)$ 满足

${\partial _s}U( \cdot ,t) = W( \cdot ,t)(1 + {\partial _s}\zeta ( \cdot ,t))$ (25)

证明:由引理3,得映射 $F:\bar {{J}} \to {{J}}$ 是局部Lipschitz连续。类似于文献[15]中定理3.8的证明,通过Banach空间中ODE理论,可得方程(11)有唯一解 $V \in {C^1}([0,T]:$ $\beta (\alpha ,A))$ ,且等式(25)成立。

2 原方程局部解的存在性

在这节中,本文研究了方程(2)局部解的存在性。首先介绍一些引理,这些引理将用于证明主要结果。

引理4(文献[15]) 定义在式(3)的映射 $\phi $ 满足下面性质

(i) $\phi :{\vartheta _\alpha } \to X$ ,且 ${\left\| {\phi \zeta } \right\|_X} \leqslant C(\alpha ,{\left\| {{\zeta _s}} \right\|_{{L^\infty }}}){\left\| \zeta \right\|_X}$

(ii) ${\zeta _j} \in {\vartheta _\alpha },j = 1,2$

那么

$\begin{aligned} &{{\left\| {\phi {\zeta _1} - \phi {\zeta _2}} \right\|_{{L^\infty }}} \leqslant {\alpha ^{ - 1}}{\left\| {{\zeta _1} - {\zeta _2}} \right\|_{{L^\infty }}}}\\ &{{\left\| {\phi {\zeta _1} - \phi {\zeta _2}} \right\|_{{L^2}}} \leqslant C{(1 + {\left\| {{\partial _s}{\zeta _1}} \right\|_{{L^\infty }}})^{\frac{1}{2}}}{\left\| {{\zeta _1} - {\zeta _2}} \right\|_{{L^2}}}} \end{aligned} $

(iii) 映射 $D{}_x\phi :{\vartheta _\alpha } \to {L^2}$ 是连续的。

引理5(文献[15]) 定义集合 ${\cal{H}} = \{ \zeta \in {\vartheta _\alpha }: $ ${\left\| \zeta \right\|_X} \leqslant A\} $ 。任意的 $f \in C([0,T]:{L^2})$ 时,那么从 ${\cal{H}}$ ${L^\infty }($ $[0,T]:{L^2})$ 的映射 ${{\cal{H}}_f}:\zeta \mapsto f(\varphi ,t)$ 是一致连续的,其中 $\varphi $ $x$ 的反函数。

现在,证明方程(2)局部解的存在性。

定理3  给定 ${u_0} \in X$ ,存在函数 $T = T({\left\| {{u_0}} \right\|_X}) > $ $ 0$ ,则方程(2)的解 $u$ 满足 $u \in {Z_T} \equiv C([0,T]:{H^1}) \cap $ ${L^\infty }([0,T]:{W^{1,\infty }}) \cap {C^1}([0,T]:{L^2})$

$ \begin{aligned} \mathop {\sup }\limits_{t \in [0,T]} {\left\| {u( \cdot ,t)} \right\|_{X \times X}} \!\!& = \!\!\mathop {\sup }\limits_{t \in [0,T]} ({\left\| {u( \cdot ,t)} \right\|_{{H^1} \times {H^1}}} \!+\! {\left\| {u( \cdot ,t)} \right\|_{{W^{1,\infty }} \times {W^{1,\infty }}}})\\ & \leqslant c{\left\| {{u_0}} \right\|_{X \times X}}\end{aligned}$

证明:给定 ${u_0} \in X$ ,由 ${\zeta _0}$ 的定义,可得 ${\zeta _0} = 0$ ,令 ${V_0} = ({\zeta _0},{U_0},{W_0}) \in \beta (\alpha ,A)$ 。根据定理2,若时间 $T > 0$ ,那么方程(11)有唯一解 $V \in {C^1}([0,T]:\beta (\alpha ,A))$

$x(s,t) = \zeta (s,t) + s$ ,那么由定义(3)可得 ${x_s}(s,t) = $ $1 + {\partial _s}\zeta (s,t) > 0$ 。因此,映射 $x:{\mathbb{R}} \to {\mathbb{R}}$ 是同胚映射。令 $\varphi $ $x$ 的反函数,那么 $\varphi $ ${\mathbb{R}}$ 上也是同胚映射。令

$u(s,t) = U(\varphi (x,t),t),\;\;\forall (x,t) \in {\mathbb{R}} \times [0,T]$

那么

$U(s,t) = u(x(s,t),t),\;\;\forall (s,t) \in {\mathbb{R}} \times [0,T]$

现在来证明解 $u$ 有意义。由于 $u(x,t) = U(\varphi (x,t),t)$ ,通过变量替换,可得

$\begin{aligned} &{\left(\int_{\mathbb{R}} {{u^2}(x,t)} {\rm{d}}x\right)^{\tfrac{1}{2}}}=\\ &{\left(\int_{\mathbb{R}} {{U^2}(\varphi (x,t),t)} {\rm{d}}x\right)^{\tfrac{1}{2}}} = {\left(\int_{\mathbb{R}} {{U^2}(y,t){x_s}(y,t)} {\rm{d}}y\right)^{\tfrac{1}{2}}}\leqslant\\ &\left\| {{x_s}} \right\|_{{L^\infty }}^{1/2}{\left\| {U( \cdot ,t)} \right\|_{{L^2}}} \leqslant {(1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}})^{1/2}}{\left\| {U( \cdot ,t)} \right\|_{{L^2}}}\end{aligned}$

$u( \cdot ,t) \in {L^2}$ 。由定理2,已知 $V \in {C^1}([0,T]:\beta (\alpha ,A))$ ,那么 $U \in {C^1}([0,T]:X)$ 。因此, ${\partial _t}U \in {L^\infty }([0,$ $T]:Y)$ ${\partial _s}U \in $ ${L^\infty }([0,T]:Y)$ 。由引理4, $\forall {t_1}$ ${t_2} \in [0,T]$ 时,

$\begin{aligned} {\left\| {u( \cdot ,{t_1}) - u( \cdot ,{t_2})} \right\|_{{L^2}}} \leqslant&{\left\| {U(\varphi ( \cdot ,{t_1}),{t_1}) - U(\varphi ( \cdot ,{t_1}),{t_2})} \right\|_{{L^2}}} +{\left\| {U(\varphi ( \cdot ,{t_1}),{t_2}) - U(\varphi ( \cdot ,{t_2}),{t_2})} \right\|_{{L^2}}}\leqslant\\ & {\left\| {{\partial _t}U( \cdot ,t)} \right\|_{{L^\infty }([0,T]:{L^2})}}\left| {{t_1} - {t_2}} \right| + {\left\| {{\partial _s}U( \cdot ,{t_2})} \right\|_{{L^\infty }}}{\left\| {\phi \zeta ( \cdot ,{t_1}) - \phi \zeta ( \cdot ,{t_2})} \right\|_{{L^2}}}\leqslant\\ & {C_7}(\alpha ,k,b,A)(\left| {{t_1} - {t_2}} \right| + {\left\| {\zeta ( \cdot ,{t_1}) - \zeta ( \cdot ,{t_2})} \right\|_{{L^2}}}) \end{aligned}$

$\zeta \in C([0,T]:X)$ $\zeta \in {\vartheta _\alpha }$ 且任意的 $t \in [0,T]$ $\left\| {\zeta ( \cdot ,t)} \right\| \leqslant $ $A $ 时,可得:在X空间中,当 ${t_2} \to {t_1}$ 时, $\zeta ( \cdot ,{t_2}) \mapsto \zeta ( \cdot ,{t_1})$ 。即当 ${t_2} \to {t_1}$ 时, ${\left\| {u( \cdot ,{t_1}) - u( \cdot ,{t_2})} \right\|_{{L^2}}} \to 0$ 。因此, $u \in$ $ C ([0,T]:{L^2})$

接下来,验证 ${\partial _x}u \in C([0,T]:{L^2})$ 。根据定理2,有 ${\partial _s}U = W{\partial _s}x$ 。又由 ${x_s}(\varphi (x,t),t){\varphi _x}(x,t) = 1$ ,通过链锁法则可得

$\begin{aligned} &{u_x}(x,t) = {\partial _s}U(\varphi (x,t),t){\varphi _x}(x,t)=\\ & W(\varphi (x,t),t){x_s}(\varphi (x,t),t){\varphi _x}(x,t) = W(\varphi (x,t),t) \end{aligned}$

因为 ${u_x}(x,t) = W(\varphi (x,t),t)$ ,通过变量替换,得

$\begin{aligned} &{\left(\int_{\mathbb{R}} {u_x^2(x,t)} {\rm{d}}x\right)^{\tfrac{1}{2}}}=\\ &{\left(\int_{\mathbb{R}} {{W^2}(\varphi (x,t),t)} {\rm{d}}x\right)^{\tfrac{1}{2}}} = {\left(\int_{\mathbb{R}} {{W^2}(y,t){x_s}(y,t)} {\rm{d}}y\right)^{\tfrac{1}{2}}}\leqslant\\ &\left\| {{x_s}} \right\|_{{L^\infty }}^{\frac{1}{2}}{\left\| {W( \cdot ,t)} \right\|_{{L^2}}} \leqslant {(1 + {\left\| {{\zeta _s}} \right\|_{{L^\infty }}})^{\frac{1}{2}}}{\left\| {W( \cdot ,t)} \right\|_{{L^2}}}\end{aligned}$

${u_x}( \cdot ,t) \in {L^2}$ 。当 $W(s,t) \in {C^1}([0,T]:Y)$ 时,有 ${\partial _t}W(s,t) \in $ $ {L^\infty }([0,T]:Y)$ 。那么 $\forall {t_1},{t_2} \in [0,T]$ 时,可得

$\begin{aligned} &{|| {{\partial _x}u( \cdot ,{t_1}) \!-\! {\partial _x}u( \cdot ,{t_2})} ||_{{L^2}}} \!\!\leqslant\! {|| {W(\varphi ( \cdot ,{t_1}),{t_1})}} \!-\!W(\varphi ( \cdot ,{t_1}),{t_2}) ||_{{L^2}} \!+\\ & {|| {W(\varphi ( \cdot ,{t_1}),{t_2}) - W(\varphi ( \cdot ,{t_2}),{t_2})} ||_{{L^2}}} \leqslant {|| {{\partial _t}W} ||_{{L^\infty }([0,T]:{L^2})}} \\ &|| {{t_1} - {t_2}} || + {|| {W(\varphi ( \cdot ,{t_1}),{t_2}) - W(\varphi ( \cdot ,{t_2}),{t_2})} ||_{{L^2}}}\end{aligned}$

给定 ${t_2} \in [0,T]$ ,由于 $W( \cdot ,{t_2}) \in {L^2}$ ,根据引理5得, $\zeta \mapsto W(s,{t_2})$ ${\cal{H}}$ ${L^\infty }([0,T]:{L^2})$ 是一致连续的。由于在X空间中,当 ${t_2} \to {t_1}$ 时, $\zeta ( \cdot ,{t_2}) \mapsto \zeta ( \cdot ,{t_1})$ ,可得:当 ${t_2} \to {t_1}$ 时,

${\left\| {W(\varphi ( \cdot ,{t_1}),{t_2}) - W(\varphi ( \cdot ,{t_2}),{t_2})} \right\|_{{L^2}}} \to 0$

因此,当 ${t_2} \to {t_1}$ 时,

$\left\| {{\partial _x}u( \cdot ,{t_1}) - {\partial _x}u( \cdot ,{t_2})} \right\| \to 0$

即可得 ${\partial _x}u \in C([0,T]:{L^2})$ 。故 $u \in C([0,T]:{H^1})$

因为 $u \in C([0,T]:{H^1})$ ,通过Sobolev嵌入定理,易得 $u \in C([0,T]:{L^\infty })$ 。此外,由 ${\partial _x}u(x,t) = $ $W(\varphi (x,t),t)$ ,得

${\left\| {{\partial _x}u( \cdot ,t)} \right\|_{{L^\infty }}} = {\left\| {W(\varphi ( \cdot ,t),t)} \right\|_{{L^\infty }}} \leqslant {\left\| {W( \cdot ,t)} \right\|_{{L^\infty }}} \leqslant A$

即可说明 ${\partial _x}u \in {L^\infty }([0,T]:{L^\infty })$ ,故 $u \in {L^\infty }([0,T]:{W^{1,\infty }})$

下面证明 $u$ 满足方程(2)的解。由文献[15]的定理3.9,可得

${\partial _t}\varphi = - {u^k}{\partial _x}\varphi $ (26)

通过链锁法则和等式(26),可以推出

$\begin{aligned} {\partial _t}U(\varphi (x,t),t) &= {U_\varphi }{\varphi _t} + {U_t} = {U_\varphi }( - {u^k}{\varphi _x}) + {U_t}=\\ & {U_t} - {u^k}{U_\varphi }{\varphi _x} = {U_t} - {u^k}{u_x}\end{aligned}$

那么 ${\partial _t}u$ 是存在的且有

${U_t} = {u_t} + {u^k}{u_x}$ (27)

因为 $V$ 是方程(9)的解且 $W(s,t) = {u_x}(x(s,t),t)$ ,由(27)可得

$ \begin{split} {u_t} + {u^k}{u_x}=& - {\partial _x}G * \left(\frac{b}{{k + 1}}{u^{k + 1}} + \frac{{3k - b}}{2}{u^{k - 1}}u_x^2\right) + \\ & G * \left(\frac{{(k - 1)(k - b)}}{2}{u^{k - 2}}u_x^3\right) \end{split} $ (28)

因此, $u$ 是方程(2)的解。

最后,证明 $u \in {C^1}([0,T]:{L^2})$ $\forall {t_1},{t_2} \in [0,T]$ ,由等式(28),

$\begin{aligned} & {\left\| {{\partial _t}u( \cdot ,{t_1}) - {\partial _t}u( \cdot ,{t_2})} \right\|_{{L^2}}}\leqslant\\ &{\left\| {{u^k}( \cdot ,{t_1}){u_x}( \cdot ,{t_1}) - {u^k}( \cdot ,{t_2}){u_x}( \cdot ,{t_2})} \right\|_{{L^2}}}+ \\ & {\left\| {{\partial _x}G * f( \cdot ,{t_1}) - {\partial _x}G * f( \cdot ,{t_2})} \right\|_{{L^2}}}+\\ & {\left\| {{\partial _x}G * g( \cdot ,{t_1}) - {\partial _x}G * g( \cdot ,{t_2})} \right\|_{{L^2}}}\leqslant \\ &{C_8}(k,b,A){\left\| {u( \cdot ,{t_1}) - u( \cdot ,{t_2})} \right\|_{{H^1}}}\end{aligned}$

通过上面的证明,可知 $u \in C([0,T]:{L^2})$ . 易得:当 ${t_2} \to {t_1}$ 时,

${\left\| {{\partial _t}u( \cdot ,{t_1}) - {\partial _t}u( \cdot ,{t_2})} \right\|_{{L^2}}} \to 0$

因此, $u \in C{}^1([0,T]:{L^2})$ 。故定理3得证。

3 原方程解的唯一性

定理4  令初值 ${u_0} \in X$ 。如果方程(2)的解满足

$u \in {Z_T} \equiv C([0,T]:{H^1}) \cap {L^\infty }([0,T]:{W^{1,\infty }}) \cap {C^1}([0,T]:{L^2})$

则解 $u$ 是唯一的。

证明:由于 $u \in C([0,T]:{H^1})$ $u$ ${\mathbb{R}} \times [0,T]$ 里是连续的。因为 $u \in {L^\infty }([0,T]:{W^{1,\infty }})$ ,可得 $\forall t \in $ $[0,$ $T]$ 时,对于变量x来说, $u( \cdot ,t)$ 是Lipschitz连续的。因此,类似于文献[15]中的定理3.10,初始问题

${\partial _t}\zeta (s,t) = u(s + \zeta (s,t),t),\begin{array}{*{20}{c}} {} \end{array}\zeta (s,0) = 0$ (29)

有唯一解 $\zeta $ ,且 $\zeta \in {C^1}([0,T]:C({\mathbb{R}})) \cap {L^\infty }([0,T]:{W^{1,\infty }})$ ,即 ${\partial _t}\zeta \in C([0,T]:C({\mathbb{R}})) \cap {L^\infty }([0,T]:{W^{1,\infty }})$ 。对任意的 $(s,t) \in {\mathbb{R}} \times [0,T]$ ,定义

$\begin{aligned} & x(s,t) = s + \zeta (s,t)\\ &U(s,t) = u(x(s,t),t)\\ &W(s,t) = {u_x}(x(s,t),t)\end{aligned}$

此外, ${x_s}(s,t) = 1 + {\zeta _s}(s,t)$ ${x_t}(s,t) = {u^k}(x(s,t),t) = {U^k}(s,t)$ 。因为 $u$ 是方程(2)的解,由链锁法则可得

$\begin{split} & {\partial _t}U(s,t) = {u_t}(x(s,t),t) + {u_x}(x(s,t),t){x_t}(s,t)=\\ & ({u_t} + {u^k}{u_x})(x(s,t),t) = - {Q_1}(V(s,t)) + {R_2}(V(s,t))=\\ & {F_1}(V(s,t)) \end{split} $ (30)

这里的 ${F_1}$ 和后面的 ${F_2}$ 都定义在第1节。

${F_1}$ 的定义以及卷积公式 ${(1 - \partial _x^2)^{ - 1}}f = G * f$ ,可以推出

$\begin{aligned} &{\partial _s}{F_1}(V(s,t)) = {\partial _s}[ - {Q_1}(V(s,t)) + {R_2}(V(s,t))]=\\ & [ - G'' * {M_1}(\omega (s,t))){\partial _s}x + (G' * {M_2}(\omega (s,t))]{\partial _s}x=\\ & [ - {R_1}(V(s,t)) + {Q_2}(V(s,t)) + N(\omega (s,t))]{\partial _s}x=\\ & [{F_2}(V(s,t)) + k{U^{k - 1}}(s,t){W^2}(s,t)]{\partial _s}x\end{aligned}$

其中 $\omega (s,t) = (U(s,t),W(s,t))$ 。因此可得

$\begin{split} &{\partial _t}{\partial _s}{U^k} = {\partial _s}(k{U^{k - 1}}{U_t}) = {\partial _s}(k{U^{k - 1}}{F_1}(V(s,t)))=\\ &[k(k - 1){U^{k - 2}}W{F_1}(V(s,t)) + k{U^{k - 1}}\cdot ({F_2}(V(s,t)) +\\ &k{U^{k - 1}}{W^2})]{\partial _s}x \end{split} $ (31)

定义: $\forall (s,t) \in {\mathbb{R}} \times [0,T]$ 时,

$y(s,t) = \exp (\int_0^t {W(s,\tau ) \cdot k{U^{k - 1}}(s,\tau )} {\rm{d}}\tau )$

$ {\partial _t}x = {\partial _t}\zeta = {U^k},\;\;\;{\partial _t}y = Wy \cdot k{U^{k - 1}} $

由文献[15]中定理3.10的证明,可知 ${\partial _s}x(s,t) = y(s,t)$ 。因此,得

$W = \frac{{{\partial _t}y}}{{y \cdot k{U^{k - 1}}}} = \frac{{{\partial _t}{\partial _s}x}}{{y \cdot k{U^{k - 1}}}} = \frac{{{\partial _s}{U^k}}}{{y \cdot k{U^{k - 1}}}}$

因此,利用式(31),

$ \begin{split} &{\partial _t}W(s,t) = {\partial _t}\left(\frac{{U_s^k}}{{y \cdot k{U^{k - 1}}}}\right)= \frac{{{\partial _t}{\partial _s}{U^k}}}{{y \cdot k{U^{k - 1}}}} - k{U^{k - 1}}W{}^2 -\\ & \frac{{(k - 1){F_1} \cdot Wy \cdot k{U^{k - 1}}}}{{y \cdot k{U^{k - 1}}}}=\frac{{(k - 1)W{F_1}}}{U} + {F_2} +\\ & k{U^{k - 1}}{W^2} - k{U^{k - 1}}{W^2} - \frac{{(k - 1)W{F_1}}}{U} = F_2(V(s,t)) \end{split} $ (32)

由式(29)~(30)和式(32),可知 $V( \cdot ,t) \in \bar {{J}} $ 是新方程(9)的解。因为映射 $F:\bar {{J}} \to {{J}}$ 是局部Lipschitz连续,类似定理2的证明,得 $V \in {C^1}([0,T]:\bar {{J}} )$ 。根据定理2, $V \in {C^1}([0,T]:\bar {{J}} )$ 是唯一解。此外,因为对 $\forall t \in [0,T]$ 来说, $x( \cdot ,t)$ 是同胚映射,所以可推出解 $u$ 是唯一的。故定理得证。

最后,本文给出解对初值的弱连续依赖性结论。

定理5  对任意的 $\varepsilon > 0$ $B > 0$ ,给定初值 ${u_{01}} \in X$ ${\left\| {{u_{01}}} \right\|_X} < B$ ,存在 $0 < \delta < B - {\left\| {{u_{01}}} \right\|_X}$ ,则对任意的初值 ${u_{02}} \ne {u_{01}} \in X$ ,如果

${\left\| {{u_{01}} - {u_{02}}} \right\|_X} \leqslant \delta $

方程(2)有相应解

$ {u_i} \in C([0,{T_i}]:{H^1}) \cap {C^1}([0,{T_i}]:{L^2}), \;\;\;i = 1,2 $

且满足

$\mathop {\sup }\limits_{t \in [0,T]} ({\left\| {{u_1}( \cdot ,t) - {u_2}( \cdot ,t)} \right\|_{{H^1}}} + {\left\| {{\partial _t}{u_1}( \cdot ,t) - {\partial _t}{u_2}( \cdot ,t)} \right\|_{{L^2}}}) < \varepsilon$

这里 $T = \min \left\{ {{T_1},{T_2}} \right\}$

定理5的证明类似于定理3的证明过程,故这里省略。

定理1的证明:综合定理2、3、4、5,即可得证。

参考文献
[1]
GRAYSHAN K, HIMONAS A A. Equations with peakon traveling wave solutions[J]. Advances in Dynamical Systems and Applications, 2013, 8(2): 217-232.
[2]
GUAN C X, WANG J M, MENG Y P. Weak well-posedness for a modified two-component Camassa-Holm system[J]. Nonlinear Analysis, 2019, 178: 247-265. DOI: 10.1016/j.na.2018.07.019.
[3]
GUAN C X, ZHU H. Well-posedness of a class of solutions to an integrable two-component Camassa-Holm system[J]. Journal of Mathematical Analysis and Applications, 2019, 470: 413-433. DOI: 10.1016/j.jmaa.2018.10.012.
[4]
WEI L, QIAO Z J, WANG Y, ZHOU S M. Conserved quantities, Global existence and blow-up for a generalized CH equation[J]. Discrete and Continuous Dynamical Systems, 2017, 37(3): 1733-1748. DOI: 10.3934/dcds.2017072.
[5]
TU X, YIN Z Y. Global weak solutions for a generalized Camassa-Holm equation[J]. Mathematische Nachrichten, 2018, 291(16): 2457-2475. DOI: 10.1002/mana.201700038.
[6]
GUAN C X. Uniqueness of global conservative weak solutions for the modified two-component Camassa-Holm system[J]. Journal of Evolution Equations, 2018, 18(2): 1003-1024. DOI: 10.1007/s00028-018-0430-x.
[7]
GUAN C X, KARLSEN K H, YIN Z Y. Well-posedness and blow-up phenomena for a modified two-component Camassa-Holm equation[J]. Contemporary Mathematics, 2010, 526: 199-220.
[8]
GUAN C X, YAN K, WEI X M. Lipschitz metric for the modified two-component Camassa-Holm system[J]. Analysis and Applications, 2018, 16(2): 159-182. DOI: 10.1142/S0219530516500226.
[9]
GUAN C X, YIN Z Y. Global weak solutions for a modified two-component Camassa-Holm equation[J]. Annales de I’Institut Henri poincaré/Analyse Non Linéaire, 2011, 28(4): 623-641. DOI: 10.1016/j.anihpc.2011.04.003.
[10]
GUAN C X, YIN Z Y. On the global weak solutions for a modified two-component Camassa-Holm equation[J]. Mathematische Nachrichten, 2013, 286(13): 1287-1304. DOI: 10.1002/mana.201200193.
[11]
BAROSTICHI R F, HIMONAS A A, PETRONILHO G. Global analyticity for a generalized Camassa-Holm equation and decay of the radius of spatical analyticity[J]. Journal of Differential Equations, 2017, 263(1): 732-764. DOI: 10.1016/j.jde.2017.02.052.
[12]
HIMONAS A A, HOLLIMAN C. The Cauchy problem for a generalized Camassa-Holm equation[J]. Advances in Differential Equations, 2014, 19(1-2): 161-200.
[13]
YAN W, LI Y S. The Cauchy problem for the modified two-component Camassa-Holm system in critical Besov Space[J]. Annales de I’Institut Henri poincaré/Analyse Non Linéaire, 2015, 32: 443-469. DOI: 10.1016/j.anihpc.2014.01.003.
[14]
ZHOU S M. The Cauchy problem for a generalized b-equation with higher-order nonlinearities in critical besov spaces and weighted spaces[J]. Discrete and Continuous Dynamical Systems, 2014, 3-4(11): 4967-4986.
[15]
LINARES F, PONCE G, SIDERIS T C. Properties of solutions to the Camassa-Holm equation on the line in a class containing the peakons[EB/OL]. (2016-12-2) [2019-04-07]. https://arxiv.org/abs/1609.06212.
[16]
CAMASSA R, HOLM D D. An integrable shallow water equation with peaked solutions[J]. Physical Review Letters, 1993, 71(11): 1661-1664. DOI: 10.1103/PhysRevLett.71.1661.
[17]
GIUSEPPE G, RAFFAELE V, SEBASTIAN W. Symmetry and Perturbation Theory[M]. Singapore: World Scientific, 1999: 23-37.
[18]
NOVIKOV V. Generalizations of the Camassa-Holm equation[J]. Journal of Physics A: Mathematical and Theoretical, 2009, 42(34): 2002-2015.