凸函数是许多数学分支中的一个重要研究对象,其性质的研究受到各学科领域的广泛关注.1996年,Rockafellar[1]在Banach空间上研究了凸泛函的次微分及其一些性质.2008年,Ghoussoub[2-3]在凸泛函的条件下提出自反的Banach空间上用自对偶变分法解决一类不适合用Euler-Lagrange法的偏微分方程,随后Galichon[4]、Ricceri[5]等对变分理论的研究均是建立在凸泛函的基础上.可见,凸泛函的应用非常广泛.
本文受此启发, 参考文献[6-8]中的变分理论,对非自反Banach空间中对Legendre-Fenchel对偶变换和某些向量场的性质进行了探讨,这些结果对研究非自反Banach空间中的变分理论有着重要作用.
1 预备知识首先,回顾一些相关概念及定理,其他概念可参考文献[9-11].
定义1[12] 如果赋范空间X到X**的自然映射是满射的,则称X是自反的,记X = X**.
定义2[13] 函数f:X→R∪{+∞}在x0点弱*下半连续,则当
| $ f\left( {{x_0}} \right) \le \mathop {\underline {\lim } }\limits_{{x_n} \to {x_0}} f\left( {{x_n}} \right). $ |
定义3[14] 若X是实局部凸空间,泛函
定义4[14] 若φ, ψ是Banach空间X中的的下半连续凸泛函,则
| $ \varphi * \psi = \inf \left\{ {\varphi \left( y \right) + \psi \left( {x - y} \right);y \in x} \right\}. $ |
引理1[12] 任一赋范空间X与其二次对偶空间X**的某一子空间等距线性同构.
引理2[14] 令h(x)=
| $ {\rm{inf}}\left\{ {F\left( {{x_1},{x_2}} \right);{x_1},{x_2} \in X,x = \frac{1}{2}\left( {{x_1} + {x_2}} \right)} \right\}, $ |
其中F是X×X上的泛函,其中X是Banach空间,则对任意p∈X*,
引理3[14] 定义在X×X上的函数g(x1, x2)=‖x1-x2‖2,其中X是Banach空间,则
| $ {g^*}\left( {{p_1}, {p_2}} \right) = \left\{ \begin{array}{l} \frac{1}{4}{\left\| {{p_1}} \right\|^2}, {p_1} + {p_2} = 0;\\ + \infty, {\rm{其他}}. \end{array} \right. $ |
引理4[15] 若X是非自反Banach空间,φ:X*→R是凸拓扑弱*下半连续,且
引理5[15] 设X为实非自反Banach空间,φ:X*→R为弱*下半连续凸泛函,则
(1) φ*:X**→R是凸的且弱*下半连续;
(2) φ**:X*→R,则
| $ {\varphi ^{**}} = \varphi ; $ |
(3) 若
定理1 若X是非自反Banach空间,f1, f2: X*→R∪{+∞}是两个弱*下半连续凸泛函,定义h(x)=
| $ \begin{array}{l} \inf \left\{ {\frac{1}{2}{f_1}\left( {{x_1}} \right) + \frac{1}{2}{f_2}\left( {{x_2}} \right) + \frac{1}{8}{{\left\| {{x_1} - {x_2}} \right\|}^2};} \right.\\ \left. {{x_1}, {x_2} \in {X^*}, x = \frac{1}{2}\left( {{x_1} + {x_2}} \right)} \right\}, 则\\ {h^*}\left( p \right) = \\ \inf \left\{ {\frac{1}{2}f_1^*\left( {{p_1}} \right) + \frac{1}{2}f_2^*\left( {{p_2}} \right)} \right. + \frac{1}{8}{\left\| {{p_1} - {p_2}} \right\|^2};\\ \left. {{p_1}, {p_2} \in {X^{**}}, p = \frac{1}{2}\left( {{p_1} + {p_2}} \right)} \right\}. \end{array} $ |
证明 令F(x1, x2)=g1(x1, x2)+g2(x1, x2),
| $ \begin{array}{*{20}{l}} {{\rm{其中}}\frac{{{x_1} + {x_2}}}{2} = x,}\\ {{g_1}\left( {{x_1},{x_2}} \right) = \frac{1}{2}{f_1}\left( {{x_1}} \right) + \frac{1}{2}{f_2}\left( {{x_2}} \right),}\\ {{g_2}\left( {{x_1},{x_2}} \right) = \frac{1}{8}{{\left\| {{x_1} - {x_2}} \right\|}^2}.} \end{array} $ |
因为f1, f2是弱*下半连续,所以F是X*×X*上的弱*下半连续凸泛函,且f1, f2由仿射函数下控,
由引理2可得
| $ \begin{array}{l} {h^*}\left( p \right) = {F^*}\left( {\frac{p}{2}, \frac{p}{2}} \right) = \left( {{g_1} + {g_2}} \right) \times \left( {\frac{p}{2}, \frac{p}{2}} \right) = \\ g_1^* \times g_2^*\left( {\frac{p}{2}, \frac{p}{2}} \right), \\ {\rm{又g}}_1^*\left( {{p_1}, {p_2}} \right) = \frac{1}{2}f_1^*\left( {\frac{{{p_1}}}{2}} \right) + \frac{1}{2}f_2^*\left( {\frac{{{p_2}}}{2}} \right). \end{array} $ |
根据引理3可得
| $ \begin{array}{l} g_2^*\left( {{p_1}, {p_2}} \right) = \left\{ \begin{array}{l} 2{\left\| {{p_1}} \right\|^2}, {p_1} + {p_2} = 0;\\ + \infty, \;\;{\rm{其他}}{\rm{.}} \end{array} \right.\\ {h^*}\left( p \right) = g_1^* \times g_2^*\left( {\frac{p}{2}, \frac{p}{2}} \right) = \\ \;\;\;\;\inf \left\{ {\frac{1}{2}f_1^*\left( {{q_1}} \right) + \frac{1}{2}f_2^*\left( {{q_2}} \right)} \right. + \frac{1}{8}{\left\| {{q_1} - {q_2}} \right\|^2};\\ \;\;\;\;\left. {{q_1}, {q_2} \in {X^{**}}, p = \frac{1}{2}\left( {{q_1} + {q_2}} \right)} \right\}. \end{array} $ |
因为f1, f2:X*→R∪{ + ∞ }为弱*下半连续凸泛函,则
下面给出h(x)与h*(p)的计算实例.
| $ \begin{array}{l} h\left( x \right) = \inf \left\{ {\frac{1}{2}{f_1}\left( {{x_1}} \right)} \right. + \frac{1}{2}{f_2}\left( {{x_2}} \right) + \\ \frac{1}{8}{\left\| {{x_1} - {x_2}} \right\|^2};{x_1}, {x_2} \in {X^*}, \\ \left. {x = \frac{1}{2}\left( {{x_1} + {x_2}} \right)} \right\}. \end{array} $ |
令x′i+x″i=0,则有x′i=-x″i,
| $ \begin{array}{l} h\left( 0 \right) = \inf \left\{ {\frac{1}{2}\sum\limits_{i = 1}^{ + \infty } {\left[ {{{\left( {x{'_i} + \frac{{{\alpha _i} - {\beta _i}}}{2}} \right)}^2} - \left( {\frac{{{\alpha _i} - {\beta _i}^2}}{2}} \right)} \right]} } \right\} \ge \\ \;\;\;\;\;\; - \frac{1}{8}\sum\limits_{i = 1}^{ + \infty } {{{\left( {{\alpha _i} - {\beta _i}} \right)}^2}} . \end{array} $ |
若
若
故
根据Legendre-Fenchel变换, 可得
| $ \begin{array}{l} {h^*}\left( p \right) = \mathop {\sup }\limits_{0 \in {l^1}} \left\{ { < 0, p > - h\left( 0 \right)} \right\} = \\ \left\{ \begin{array}{l} + \infty, p = \alpha + \beta ;\\ \frac{1}{8}{\left\| {\alpha - \beta } \right\|^2}, p \ne \alpha + \beta . \end{array} \right. \end{array} $ |
根据定理1,依次求出
| $ \begin{array}{l} \;\;\;\;\;\;f_1^*\left( p \right) = \mathop {\sup }\limits_{X \in {l^1}} \left\{ {\left\langle {x, p} \right\rangle - {f_1}\left( x \right)} \right\} = \\ \mathop {\sup }\limits_{X \in {l^1}} \left\{ {\sum\limits_{i = 1}^{ + \infty } {\left( {{p_i} - {\alpha _i}} \right){x_i}} } \right\} = \left\{ \begin{array}{l} 0, \;\;p = \alpha ;\\ + \infty, \;\;p \ne \alpha . \end{array} \right. \end{array} $ |
同理
| $ f_2^*\left( p \right) = \mathop {\sup }\limits_{X \in {l^1}} \left\{ { < x, p > - {f_2}\left( x \right)} \right\} = \left\{ \begin{array}{l} 0, \;\;p = \beta ;\\ + \infty, \;\;p \ne \beta . \end{array} \right. $ |
应用定理1的结论
| $ \begin{array}{*{20}{l}} {{h^*}\left( p \right) = }\\ {\inf \left\{ {\frac{1}{2}f_1^*\left( {{p_1}} \right) + \frac{1}{2}f_2^*\left( {{p_2}} \right)} \right. + \frac{1}{8}{{\left\| {{p_1} - {p_2}} \right\|}^2} = }\\ {\left\{ {\begin{array}{*{20}{l}} { + \infty ,\;\;p \ne \alpha + \beta ;}\\ {\frac{1}{8}{{\left\| {\alpha - \beta } \right\|}^2},\;\;p = \alpha + \beta .} \end{array}} \right.} \end{array} $ |
通过直接计算与使用定理1的结论求出h(x)的Legendre-Fenchel变换h*(p)结果相同.
在非自反Banach空间X中,对任意弱*下半连续Lagrange型凸泛函L:X**×X*→R,可以定义向量场δ*L(x)[16].
| $ \begin{array}{l} {\delta ^*}L\left( x \right) = \\ \left\{ {p \in {X^*};\left( {p, x} \right) \in {X^*} \times X, } \right.\\ \left. {\left( {p, x} \right), \left( {u - x, q - p} \right) \le L\left( {u, q} \right) - L\left( {x, p} \right)} \right\}. \end{array} $ |
δ*L(x)可以是空集.命题[16]:x→δ*L(x)是单调映射.若X是自反Banach空间,则δ*L(x)=δL(x)[4],否则不一致[16].
另外,可以定义L(x, p)的另一个向量场
| $ \begin{array}{l} \bar \partial L\left( x \right) = \\ \left\{ {p \in {X^*};\left( {x, p} \right) \in {X^{**}} \times {X^*}, L\left( {x, p} \right) - < x, p > = 0} \right\}. \end{array} $ |
定理2 L:X**×X*→R是弱*下半连续Lagrange型凸泛函,X是非自反Banach空间,若对任意(x, p)∈X**×X*有L (x, p) ≥<x, p>,则
证明 假设
| $ \begin{array}{l} L\left( {x + y, p + q} \right) - L\left( {x, p} \right) \ge \\ \;\;\;\;\;\;\;{t^{ - 1}}\left[{L\left( {x + ty, p + tq} \right)-L\left( {x, p} \right)} \right] \ge \\ \;\;\;\;\;\;\;{t^{ - 1}}\left[{ < x + ty.p + tq >-< x , p > } \right] \ge \\ \;\;\;\;\;\;\; < x, q > + < y, p > + t < y, q > . \end{array} $ |
令t→0+,得
又
所以,
举例说明定理2的
例1 设
| $ \begin{array}{l} X = {c_0} = \left\{ {\left( {{x_1}, {x_2}, {x_3}, ...} \right), \mathop {\lim }\limits_{n \to \infty } {x_n} = 0} \right\};\\ {X^*} = {l^1} = \left\{ {\left( {{x_1}, {x_2}, {x_3}, ...} \right), \sum\limits_{n = 1}^\infty {\left| {{x_n}} \right| < + \infty } } \right\};\\ {X^{**}} = {l^\infty } = \left\{ {\left( {{x_1}, {x_2}, {x_3}, ...} \right), \mathop {\sup }\limits_{n \ge 1} \left| {{x_n}} \right| < + \infty } \right\}; \end{array} $ |
(1) 求δ*L(x).
由定理2可知p∈δ*L(x), 即有<x, q>+<y, p>≤L(x+y, p+q)-L(x, p),此时(x, p)∈c0×l1.又
| $ \begin{array}{l} < x, q > + < y, p > \le L\left( {x + y, p + q} \right) - L\left( {x, p} \right) = \\ {\left\| {x + y} \right\|_{{l^\infty }}} + {\left\| {p + q} \right\|_{{l^1}}} - {\left\| x \right\|_{{l^\infty }}} - {\left\| p \right\|_{{l^1}}} \le \\ {\left\| y \right\|_{{l^\infty }}} + {\left\| q \right\|_{{l^1}}} \end{array} $ | (1) |
其中x, y∈c0; p, q∈l1.
式(1) 对任意(y, q)∈c0×l1均成立,则当y=(0, 0, …),有
可得,
(2) 求
由定义
① 当x=(0, 0, …)∈l∞时,L(x, p)-<x, p>=0变形为
| $ 0 + \sum\limits_{n = 1}^\infty {\left| {{p_n}} \right|} = 0, 求得{p}{\rm{ = }}\left( {0, 0, ...} \right) \in {l^1}; $ |
② 当x=(x1, x2, …, xi, 0, …), i=1, 2, …,
| $ \mathop {\sup }\limits_n \left| {{x_n}} \right| + \sum\limits_{n = 1}^\infty {\left| {{p_n}} \right|} = {x_1}{p_1} + ... + {x_i}{p_i}, $ |
即
与
③ 当x=(x1, x2, …, xi, 0, …), i=1, 2, …,且
由上面计算知,‖x‖l∞≤1,
B:X**→X**是一有界线性算子,定义B*:X*→X*如下,且<B*f, y>=<f, By>,
命题:B*是一有界线性算子,且
证明 线性性显然,令
定理3 若X是非自反Banach空间,设φ:X*→R为弱*下半连续凸泛函,令φ*(x)=
| $ \begin{array}{*{20}{l}} \begin{array}{l} \;\;\;\;\;\;\;\sup \left\{ { < x,p > - \varphi \left( p \right),p \in {X^*}} \right\},x \in {X^{**}}\;,\\ L:{X^{**}} \times {X^*} \to R \cup \left\{ { + \infty } \right\},L\left( {x,p} \right) = \end{array}\\ {\;\;\;\;\;\;\;\;{\varphi ^*}\left( {Bx} \right) + \varphi \left( p \right),{L^*}\left( {{B_*}p,Bx} \right) = }\\ {\;\;\;\;\;\;\;\;\sup \left\{ { < y,{B_*}p > + < Bx,q > - L\left( {y,q} \right),y \in {X^{**}},} \right.} \end{array} $ |
q∈X*},则有L*(B*p, Bx)=L(x, p),即L是B自对偶的.
证明 因为L*(B*p, Bx)=
| $ \begin{array}{l} \;\;\;\;\;\;\sup \left\{ { < y,{B_*}p > + < Bx,q > - L\left( {y,q} \right),} \right.y \in {X^{**}},\\ \left. {q \in {X^*}} \right\},\\ \begin{array}{*{20}{l}} {L\left( {x,p} \right) = {\varphi ^*}\left( {Bx} \right) + \varphi \left( p \right).{\rm{所以有}}}\\ {{L^*}\left( {{B^*}p,Bx} \right) = }\\ {\mathop {\sup }\limits_{y \in {X^{**}},p \in {X^*}} \left\{ { < y,{B_*}p > + < Bx,q > - } \right.{\varphi ^*}\left( {Bx} \right) - }\\ {\left. {\varphi \left( p \right)} \right\}.}\\ {{\rm{又}}\mathop {\sup }\limits_{q \in {X^*}} \left\{ { < Bx,q > - \varphi \left( q \right)} \right\} = {\varphi ^*}\left( {Bx} \right),}\\ {\mathop {\sup }\limits_{y \in {X^{**}}} \left\{ { < y,{B_*}p > - {\varphi ^*}\left( {By} \right)} \right\} = }\\ {\mathop {\sup }\limits_{y \in {X^{**}}} \left\{ { < By,p > - {\varphi ^*}\left( {By} \right)} \right\} = {\varphi ^{**}}\left( p \right),} \end{array} \end{array} $ |
又φ**=φ,故L*(B*p, Bx)=L(x, p).证毕.
| [1] | ROCKAFELLAR R T. Characterization of the subdifferentials of convex funcions[J]. Pacific Journal of Math, 1966, 17(3): 497-509. DOI: 10.2140/pjm. |
| [2] | GHOUSSOUB N. A variational theory for monotone vector fields[J]. Journal Fixed Point Theory Applications, 2008, 1(4): 107-135. |
| [3] | GHOUSSOUB N.Maximal monotone operators are selfdual vector fields and vice-versa[EB/OL].(2006-10-16)[2008-02-02]http://arxiv.ora/abs/math/0610494v1. |
| [4] | GALICHON A, GHOUSSOUB N.Variational representations for N-cyclically monotone vector fields[EB/OL].(2012-07-10)[2013-10-02]http://arxiv.ora/abs/1207.2408v3. |
| [5] | RICCERI B. A general variational principle and some of its applications[J]. Journal of Computational and Applied Mathematics, 2000, 1(113): 401-410. |
| [6] | AUCHMUTY G. Duality for non-convex variational principles[J]. Journal of Differential Equation, 1983, 1(50): 80-145. |
| [7] | HESTENSE M R. On variational theory and optimal control theory[J]. SIAM, 1965, 3(1): 23-48. |
| [8] | LI S J, YANG X Q, CHEN G Y. Vector Ekeland variational principle[J]. Nonconvex Optimization and Its Appl, 2000(38): 321-333. |
| [9] | CHEN Y Q, CHO Y J. Nonlinear Operator Theory in Abstract Spaces and Applications[M]. New York: Nova Science Publishers, Inc, 2004. |
| [10] | ROCHAFELLAR R T. Convex Analysis[M]. New Jersey: Princeton University Press, 1972. |
| [11] | EKELAND I. On the variational principle[J]. Journal of Mathematical Analysis and Applications, 1974, 47(2): 324-353. DOI: 10.1016/0022-247X(74)90025-0. |
| [12] | 姚泽清, 苏晓冰, 郑琴, 等. 应用泛函分析[M]. 北京: 科学出版社, 2007. |
| [13] | 郭大钧. 非线性泛函分析[M]. 2版. 山东: 山东科学技术出版社, 2001. |
| [14] | GHOUSSOUB N. Self-dual Partial Differential Systems and Their Variational Principles (Springer Monographs in Mathematics)[M]. New York: Springer, 2008. |
| [15] |
蒋平川, 王伟. 非自反空间内的自对偶lagrange凸泛函[J].
广东工业大学学报, 2013, 30(4): 107-110.
JIANG P C, WANG W. About the self-dual lagrangian convex functional within the non-reflexive space[J]. Journal of Guangdong University of Technology, 2013, 30(4): 107-110. |
| [16] | CHEN Q Y, CHO Y J. Monotone type operators in non-reflexive Banach spaces[J]. Fixed Point Theory Applications, 2014: 119. DOI: 10.1186/1687-1812-2014-119. |
2016, Vol. 33