近年来,时滞微分方程的研究得到了数学、物理以及化学等多个领域学者的关注[1-2].研究下列多时滞非线性微分方程的渐近稳定性
| $ x'\left( t \right) = - \sum\limits_{i = 1}^N {{b_i}\left( t \right)f\left( {x\left( {t - {\tau _i}\left( t \right)} \right)} \right)} , $ | (1) |
其中bi∈ C(R+, R)和τi∈ C(R+, R+),f连续可导及满足Lipschitz条件,当t→∞时,t-τi(t)→∞,i=1, 2, …, N.
关于方程(1) 的研究已经取得了很多研究成果[3-8].例如,Jin C H、Luo J W[3]利用Banach不动点定理证明了以下时滞微分方程的渐近稳定性
| $ x'\left( t \right) = - \sum\limits_{i = 1}^N {{b_i}\left( t \right)x\left( {t - {\tau _i}\left( t \right)} \right)} , $ | (2) |
上述方程(2) 是方程(1) 中f(x)=x的特殊情况.当N=1和N=2,τ1=0时,方程(1) 相应地改变为
| $ x'\left( t \right) = - b\left( t \right)x\left( {t - \tau \left( t \right)} \right) $ | (3) |
和
| $ x'\left( t \right) = - {b_1}\left( t \right)x\left( t \right) - {b_2}\left( t \right)x\left( {t - \tau \left( t \right)} \right). $ | (4) |
Yorke J A[4]对方程(3) 证明了:如果存在正数β和q,使得
| $ 0 < b\left( t \right) \le \beta ,\tau \left( t \right) \le q,\beta q < \frac{3}{2}, $ | (5) |
那么方程(3) 的零解一致稳定.Krisztin T[5]将Yorke J A[4]的定理进一步推广为:假设bi:R+→R+连续,bi≤β和τi:R+→[0, qi]连续,i=1, 2, …, N,如果
在b(t)≥0以及τ(t)有界的情况下,Yoneyama T[6]也对Yorke J A[4]的结论进一步推广且证明:如果
20世纪以来,Lyapunov直接法是研究微分方程零解稳定性的主要方法[10-15].但是,仍然存在很多问题并没有得到解决.本文仿用Jin C H和Luo J W[15]的方法,利用Banach不动点建立了新的渐近稳定性条件,并且不要求τi(t)有界,也不要求bi(t)恒正或者恒负.
2 主要结论设C(S1, S2)表示所有连续函数φ:S1→S2的集合.定义mi(θ)=inf{s-τi(s):s≥θ},
对任意(t0, φ)∈ R +×
定理1 假设存在常数α∈(0, 1) 以及函数τ0∈ C(R+, R+),当t→∞时,t-τ0(t)→∞,h∈ C ([
(1)
(2) f可导,存在正数M1、M2、L,使得| f(x)|≤M1,|f′(x)| ≤M2,|f′(x)| ≤M2,|f′(x)-f′(y)| ≤L |x-y |,x, y∈ C ([
(3)
| $ \begin{array}{l} \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\left| {h\left( s \right)} \right|} \int_{s - {\tau _0}\left( s \right)}^s {\left| {h\left( v \right)} \right|{\rm{d}}v{\rm{d}}s} + \\ \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\left| {h\left( {s - {\tau _0}\left( s \right)} \right)\left( {1 - {{\tau '}_0}\left( s \right)} \right)} \right|{\rm{d}}s} + \\ {{\rm{M}}_2}\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\sum\limits_{i = 1}^N {\left| {{b_k}\left( s \right)} \right|{\rm{d}}s} } + \\ \left( {M_2^2 + {M_1}L} \right)\sum\limits_{i = 1}^N {\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\sum\limits_{j = k}^N {\left| {{b_j}\left( s \right)} \right|} } } \times \\ \int_{s - {\tau _{k - 1}}}^{s - \tau k} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( v \right)} \right|{\rm{d}}v{\rm{d}}s} } \le \alpha , \end{array} $ |
其中bi(t)在区间[m(0), ∞)连续,i=1, 2, …, N.
方程(1) 的解渐近稳定当且仅当
(4)
证明 假设(4) 成立.对任意t0≥0,设
S={x∈C([m(t0), ∞], R):当t→0, x(t)→0, 对s∈[m(t0), t0], x(s)=φ(s)},则S是距离为ρ(x, y)=supt≥t0{ |x(t)-y(t)| }的完备度量空间.
将方程(1) 转换为以下形式:
| $ \begin{array}{l} x'\left( t \right) = - \sum\limits_{k = 1}^N {{b_k}\left( t \right)f\left( {x\left( {t - {\tau _0}\left( t \right)} \right)} \right)} - \\ \sum\limits_{k = 1}^N {{b_k}\left( t \right)\int_{t - {\tau _0}\left( t \right)}^{t - {\tau _1}\left( t \right)} {f'\left( {x\left( s \right)} \right)x'\left( s \right){\rm{d}}s} } - \\ \sum\limits_{k = 2}^N {{b_k}\left( t \right)\int_{t - {\tau _1}\left( t \right)}^{t - {\tau _2}\left( t \right)} {f'\left( {x\left( s \right)} \right)x'\left( s \right){\rm{d}}s} } - \cdots - \\ {b_N}\left( t \right)\int_{t - {\tau _{N - 1}}\left( t \right)}^{t - {\tau _N}\left( t \right)} {f'\left( {x\left( s \right)} \right)x'\left( s \right){\rm{d}}s} = \\ - \sum\limits_{k = 1}^N {{b_k}\left( t \right)f\left( {x\left( {t - {\tau _0}\left( t \right)} \right)} \right)} - \\ \sum\limits_{k = 1}^N {\sum\limits_{j = k}^N {{b_j}\left( t \right)\int_{t - {\tau _{k - 1}}\left( t \right)}^{t - {\tau _k}\left( t \right)} {\sum\limits_{i = 1}^N {{b_i}\left( s \right){\rm{f'}}\left( {x\left( s \right)} \right)x'\left( s \right){\rm{d}}s} } } } . \end{array} $ |
两边同时乘以
| $ \begin{array}{l} x\left( t \right) = \varphi \left( {{t_0}} \right){{\rm{e}}^{ - \int_{{t_0}}^t {h\left( u \right){\rm{d}}u} }} + \int_{{t_0}}^t {{{\rm{e}}^{ - \int_{{t_0}}^t {h\left( u \right){\rm{d}}u} }}h\left( s \right)x\left( s \right){\rm{d}}s} - \\ \int_{{t_0}}^t{{\rm{e}}^{ - \int_{{t_0}}^t {h\left( u \right){\rm{d}}u} }}\sum\limits_{k = 1}^N {{b_k}\left( s \right)f\left( {x\left( {s - {\tau _0}\left( s \right)} \right)} \right){\rm{d}}s} + \\ \sum\limits_{k = 1}^N {\int_{{t_0}}^t {{{\rm{e}}^{ - \int_{{t_0}}^t {h\left( u \right){\rm{d}}u} }}} } \sum\limits_{j = k}^N {{b_j}\left( t \right)\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {f'\left( {x\left( v \right)} \right)} } \times \\ \sum\limits_{i = 1}^N {{b_i}\left( v \right)f\left( {x\left( {v - {\tau _0}\left( v \right)} \right)} \right){\rm{d}}v{\rm{d}}s} . \end{array} $ |
定义算子P:S→S,当t∈[m(t0), t0]时,(Px)(t)=φ(t)和t≥t0时,
| $ \begin{array}{l} \left( {Px} \right)\left( t \right) = \left( {\varphi \left( {{t_0}} \right) - \int_{{t_0} - {\tau _0}\left( {{t_0}} \right)}^t {h\left( s \right)\varphi \left( s \right){\rm{d}}s} } \right){\rm{e}}\\ \int_{t - {\tau _0}\left( t \right)}^t {h\left( s \right)x\left( s \right){\rm{d}}s} - \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}h\left( s \right)} \times \\ \int_{s - {\tau _0}\left( s \right)}^s {h\left( v \right)x\left( v \right){\rm{d}}v{\rm{d}}s} + \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}x\left( {s - {\tau _0}\left( s \right)} \right)h\left( {s - } \right.} \\ \left. {{\tau _0}\left( s \right)} \right)\left( {1 - {{\tau '}_0}\left( s \right)} \right)ds - \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\sum\limits_{i = 1}^N {{b_k}\left( s \right)} } \times \\ f\left( {x\left( {s - {\tau _0}\left( s \right)} \right)} \right){\rm{d}}s + \sum\limits_{k = 1}^N {\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \sum\limits_{j = k}^N {{b_j}\left( t \right)} \times \\ \int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {f'\left( {x\left( v \right)} \right)} \sum\limits_{i = 1}^N {{b_i}\left( v \right)f\left( {x\left( {v - {\tau _0}\left( v \right)} \right)} \right){\rm{d}}v{\rm{d}}s} . \end{array} $ | (6) |
显然,(Px)∈C([m(t0), ∞], R).首先证明当t→∞时,式(6) 每一项都是趋向于零的.由(3) 可知,第1项以及第2项都趋于零,因为t→∞时,x(t)→∞.接着证明当t→∞时,最后一项I6趋向于零.由于当t→∞时,x(t)→∞以及t-τi(t)→∞.对任意ε>0,存在T1, T2>0,使得s≥T1时,有s-τi(s)≥T2以及v≥T2时,|v-τi(v)|<ε,对i=1, 2, …, N.因此,当t≥T1,
| $ \begin{array}{l} \left| {{I_6}} \right| = \\ \left| {\sum\limits_{k = 1}^N {\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \sum\limits_{j = k}^N {{b_j}\left( t \right)\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {f'\left( {x\left( v \right)} \right)} } \times } \right.\\ \left. {\sum\limits_{i = 1}^N {{b_i}\left( v \right)f\left( {x\left( {v - {\tau _0}\left( v \right)} \right)} \right){\rm{d}}v{\rm{d}}s} } \right| \le \\ \sum\limits_{k = 1}^N {\int_{{t_0}}^{{T_1}} {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \left| {\sum\limits_{j = k}^N {{b_j}\left( t \right)} } \right|\left| {\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {f'\left( {x\left( v \right)} \right)} \times } \right.\\ \left. {\sum\limits_{i = 1}^N {{b_i}\left( v \right)f\left( {x\left( {v - {\tau _0}\left( v \right)} \right)} \right){\rm{d}}v} } \right|{\rm{d}}s + \end{array} $ |
| $ \begin{array}{l} \sum\limits_{k = 1}^N {\int_{{T_1}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \left| {\sum\limits_{j = k}^N {{b_j}\left( t \right)} } \right|\left| {\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {f'\left( {x\left( v \right)} \right)} \times } \right.\\ \left. {\sum\limits_{i = 1}^N {{b_i}\left( v \right)x\left( {v - {\tau _0}\left( v \right)} \right){\rm{d}}v} } \right|{\rm{d}}s \le \\ M_2^2\sum\limits_{k = 1}^N {\int_{{t_0}}^{{T_1}} {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \left| {\sum\limits_{j = k}^N {{b_j}\left( t \right)} } \right| \times \\ \left| {\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {\sum\limits_{i = 1}^N {{b_i}\left( v \right)x\left( {v - {\tau _0}\left( v \right)} \right){\rm{d}}v} } } \right|{\rm{d}}s + \\ M_2^2\sum\limits_{k = 1}^N {\int_{{T_1}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \left| {\sum\limits_{j = k}^N {{b_j}\left( t \right)} } \right| \times \end{array} $ |
| $ \begin{array}{l} \left| {\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {\sum\limits_{i = 1}^N {{b_i}\left( v \right)x\left( {v - {\tau _0}\left( v \right)} \right){\rm{d}}v} } } \right|{\rm{d}}s \le \\ M_2^2\mathop {\sup }\limits_{\sigma \ge m\left( {{t_0}} \right)} \left| {x\left( \sigma \right)} \right|\sum\limits_{k = 1}^N {\int_{{t_0}}^{{T_1}} {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \times \\ \left| {\sum\limits_{j = k}^N {{b_j}\left( t \right)} } \right|\left| {\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( v \right)} \right|{\rm{d}}v} } } \right|{\rm{d}}s + \\ M_2^2\varepsilon \sum\limits_{k = 1}^N {\int_{{T_1}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \left| {\sum\limits_{j = k}^N {{b_j}\left( t \right)} } \right| \times \\ \left| {\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( v \right)} \right|{\rm{d}}v} } } \right|{\rm{d}}s. \end{array} $ |
由(4) 可知,存在T3>T1,当t≥T3时
| $ \begin{array}{l} \mathop {\sup }\limits_{\sigma \ge m\left( {{t_0}} \right)} \left| {x\left( \sigma \right)} \right|\sum\limits_{k = 1}^N {\int_{{t_0}}^{{T_1}} {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \left| {\sum\limits_{j = k}^N {{b_j}\left( t \right)} } \right| \times \\ \left| {\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( v \right)} \right|{\rm{d}}v} } } \right|{\rm{d}}s = \\ \mathop {\sup }\limits_{\sigma \ge m\left( {{t_0}} \right)} \left| {x\left( \sigma \right)} \right|{{\rm{e}}^{ - \int_{{T_1}}^t {h\left( u \right){\rm{d}}u} }}\sum\limits_{k = 1}^N {\int_{{t_0}}^{{T_1}} {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \left| {\sum\limits_{j = k}^N {{b_j}\left( t \right)} } \right| \times \\ \left| {\int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( v \right)} \right|{\rm{d}}v} } } \right|{\rm{d}}s < \varepsilon . \end{array} $ |
由(3) 可知,|I6|≤2M2L1ε.因此,t→∞时,|I6|→0.类似地,当t→∞时,其余各项趋向于零.从而得到t→∞时,(Px)(t)→0,因此Px∈S.
接下来,证明P是压缩映射.对任意x, y∈S,
| $ \begin{array}{l} \left| {\left( {Px} \right)\left( t \right) - \left( {Py} \right)\left( t \right)} \right| \le \\ \int_{t - {\tau _0}\left( t \right)}^t {h\left( s \right)\left| {x\left( s \right) - y\left( s \right)} \right|{\rm{d}}s} + \\ \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \left| {h\left( s \right)} \right|\int_{t - {\tau _0}\left( t \right)}^t {h\left( v \right)\left| {x\left( v \right) - } \right.} \\ \left. {y\left( v \right)} \right|{\rm{d}}v{\rm{d}}s + \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \left| {x\left( {s - {\tau _0}\left( s \right)} \right) - } \right.\\ \left. {y\left( {s - {\tau _0}\left( s \right)} \right)} \right|\left| {h\left( {s - {\tau _0}\left( s \right)} \right)\left( {1 - {{\tau '}_0}\left( s \right)} \right)} \right|{\rm{d}}s + \end{array} $ |
| $ \begin{array}{l} \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \sum\limits_{i = 1}^N {\left| {{b_k}\left( s \right)} \right|\left| {f\left( {x\left( {s - {\tau _0}\left( s \right)} \right)} \right) - } \right.} \\ \left. {f\left( {y\left( {s - {\tau _0}\left( s \right)} \right)} \right)} \right|{\rm{d}}s + \sum\limits_{k = 1}^N {\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \times } \\ \sum\limits_{j = k}^N {\left| {{b_j}\left( t \right)} \right|} \int_{s - {\tau _{k - 1}}\left( t \right)}^{s - {\tau _k}\left( t \right)} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( v \right)} \right|\left| {f'\left( {x\left( v \right)} \right)} \right.} } \times \\ \left. {f\left( {x\left( {v - {\tau _0}\left( v \right)} \right)} \right) - f'\left( {y\left( v \right)} \right)f\left( {y\left( {v - {\tau _0}\left( v \right)} \right)} \right)} \right| \times \\ {\rm{d}}v{\rm{d}}s \le \left( {\int_{t - {\tau _0}\left( t \right)}^t {\left| {h\left( s \right)} \right|{\rm{d}}s} + \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \left| {h\left( s \right)} \right| \times } \right. \end{array} $ |
| $ \begin{array}{l} \int_{s - {\tau _0}\left( s \right)}^t {\left| {h\left( v \right)} \right|{\rm{d}}v{\rm{d}}s} + \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \left| {h\left( {s - {\tau _0}\left( s \right)} \right) \times } \right.\\ \left. {\left( {1 - {{\tau '}_0}\left( s \right)} \right)} \right|{\rm{d}}s + {M_2}\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \sum\limits_{i = 1}^N {\left| {{b_k}\left( s \right)} \right|{\rm{d}}s} + \\ \left( {M_2^2 + {M_1}L} \right)\sum\limits_{k = 1}^N {\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \sum\limits_{j = k}^N {\left| {{b_j}\left( s \right)} \right|} \times \\ \int_{s - {\tau _{k - 1}}}^{s - {\tau _k}} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( v \right)} \right|\left. {{\rm{d}}v{\rm{d}}s} \right)\left| {x - y} \right|} } \le \alpha x - y. \end{array} $ |
根据压缩映射原理,P在S中存在唯一的不动点x,x是方程(1) 的解,即在[m(t0), t0]上且初始函数为φ(s)的解x(t)=x(t, t0, φ)→0,当t→∞时.
接着,证明方程零解的稳定性.给定ε>0以及选择δ>0(δ<ε)满足
| $ \begin{array}{l} x\left( {{t^ * }} \right) \le \left\| \varphi \right\|\left( {1 + \int_{{t_0} - {\tau _0}\left( {{t_0}} \right)}^t {h\left( s \right){\rm{d}}s} } \right){{\rm{e}}^{ - \int_{{t_0}}^{{t^ * }} {h\left( u \right){\rm{d}}u} }} + \\ \varepsilon \int_{t - {\tau _0}\left( t \right)}^t {\left| {h\left( s \right)} \right|{\rm{d}}s} + \varepsilon \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\left| {h\left( s \right)} \right|} \times \\ \int_{s - {\tau _0}\left( s \right)}^s {\left| {h\left( v \right)} \right|{\rm{d}}v{\rm{d}}s} + \varepsilon \int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \times \\ \left| {h\left( {s - {\tau _0}\left( s \right)} \right)\left( {1 - {{\tau '}_0}\left( s \right)} \right)} \right|{\rm{d}}s + \\ \varepsilon {M_1}\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} \sum\limits_{i = 1}^N {\left| {{b_k}\left( s \right)} \right|{\rm{d}}s} + \\ \varepsilon {M_1}{M_2}\sum\limits_{k = 1}^N {\int_{{t_0}}^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}} } \times \\ \sum\limits_{j = k}^N {\left| {{b_j}\left( t \right)} \right|} \int_{s - {\tau _{k - 1}}}^{s - {\tau _k}} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( v \right)} \right|{\rm{d}}v{\rm{d}}s} } \le \\ 2\delta K{{\rm{e}}^{\int_0^{{t_0}} {h\left( u \right)du} }} + \alpha \varepsilon < \varepsilon , \end{array} $ | (7) |
这与t*的定义不相符.所以,对所有t≥t0有|x(t)|<ε且方程(1) 的零解是稳定的.这就表明了当条件(4) 成立时,方程(1) 的零解渐近稳定.
相反地,如果(4) 不成立.由1) 可知,存在序列{tn},当n→∞,tn→∞,即对于l∈ R,有
| $ - J \le \int_0^{{t_n}} {h\left( s \right){\rm{d}}s} \le J. $ |
设
| $ \begin{array}{l} \omega \left( s \right) = \left| {h\left( s \right)} \right|\int_{s - {\tau _0}\left( s \right)}^s {\left| {h\left( v \right)} \right|{\rm{d}}v} + \\ \left| {h\left( {s - {\tau _0}\left( s \right)} \right)\left( {1 - {{\tau '}_0}\left( s \right)} \right)} \right| + {M_1}\left| {\sum\limits_{k = 1}^N {{b_k}\left( s \right)} } \right| + \\ {M_1}{M_2}\sum\limits_{k = 1}^N {\left| {\sum\limits_{j = 1}^N {{b_j}\left( s \right)} } \right|} \left| {\int_{s - {\tau _{k - 1}}\left( s \right)}^{s - {\tau _k}\left( s \right)} {\sum\limits_{i = 1}^N {\left| {{b_i}\left( s \right)} \right|{\rm{d}}v} } } \right|,\\ s \ge 0. \end{array} $ |
由3) 可知,
| $ \int_0^{{t_n}} {{{\rm{e}}^{ - \int_s^{{t_n}} {h\left( u \right){\rm{d}}u} }}\omega \left( s \right)} \le \alpha , $ |
从而,有
| $ \int_0^{{t_n}} {{{\rm{e}}^{\int_0^s {h\left( u \right){\rm{d}}u} }}\omega \left( s \right){\rm{d}}s} \le \alpha {e^{\int_0^{{t_n}} {h\left( u \right){\rm{d}}u} }} \le {{\rm{e}}^J}, $ |
序列
| $ \mathop {\lim }\limits_{n \to \infty } \int_0^{{t_n}} {{{\rm{e}}^{\int_0^s {h\left( u \right){\rm{d}}u} }}\omega \left( s \right){\rm{d}}s} = \gamma ,\gamma \in {{\bf{R}}^ + }. $ |
选择充分大的正整数k,使得,对任意n≥k,有
| $ \mathop {\lim }\limits_{n \to \infty } \int_{{t_{\bar k}}}^{{t_n}} {{{\rm{e}}^{\int_0^s {h\left( u \right){\rm{d}}u} }}\omega \left( s \right){\rm{d}}s} < \frac{{{\delta _0}}}{{4K}}, $ |
其中δ0>0,满足2δ0KeJ+α<1.
现在考察方程(6) 的解x(t)=x(t, tk, φ),其中φ(tk)=δ0以及s≤tk时,|φ(s)|≤δ0.与方程(7) 相类似的结论表示为t≥tk时,|x(t)|≤1.选择φ使得
| $ \varphi \left( {{t_{\bar k}}} \right) - \int_{{t_{\bar k}} - {\tau _0}\left( {{t_{\bar k}}} \right)}^{{t_{\bar k}}} {h\left( s \right)\varphi \left( s \right)ds} \ge \frac{1}{2}{\delta _0}. $ |
由式(6) 以及x(t)=(Px)(t),当n≥tk时,
| $ \begin{array}{l} \left| {x\left( {{t_n}} \right) - \int_{{t_n} - {\tau _0}\left( {{t_n}} \right)}^{{t_n}} {h\left( s \right)x\left( s \right){\rm{d}}s} } \right| \ge \\ \frac{1}{2}{\delta _0}{{\rm{e}}^{ - \int_{{t_{\bar k}}}^{{t_n}} {h\left( u \right){\rm{d}}u} }} - \int_{{t_{\bar k}}}^{{t_n}} {{{\rm{e}}^{\int_s^{{t_n}} {h\left( u \right){\rm{d}}u} }}\omega \left( s \right){\rm{d}}s} = \\ \frac{1}{2}{\delta _0}{{\rm{e}}^{ - \int_{{t_{\bar k}}}^{{t_n}} {h\left( u \right){\rm{d}}u} }} - {{\rm{e}}^{ - \int_0^{{t_n}} {h\left( u \right){\rm{d}}u} }}\int_{{t_{\bar k}}}^{{t_n}} {{{\rm{e}}^{\int_0^s {h\left( u \right){\rm{d}}u} }}\omega \left( s \right){\rm{d}}s} = \\ {{\rm{e}}^{ - \int_{{t_{\bar k}}}^{{t_n}} {h\left( u \right){\rm{d}}u} }}\left( {\frac{1}{2}{\delta _0} - {{\rm{e}}^{ - \int_0^{{t_{\bar k}}} {h\left( u \right){\rm{d}}u} }}\int_{{t_{\bar k}}}^{{t_n}} {{{\rm{e}}^{\int_0^s {h\left( u \right){\rm{d}}u} }}\omega \left( s \right){\rm{d}}s} } \right) \ge \\ {{\rm{e}}^{ - \int_{{t_{\bar k}}}^{{t_n}} {h\left( u \right){\rm{d}}u} }}\left( {\frac{1}{2}{\delta _0} - K\int_{{t_{\bar k}}}^{{t_n}} {{{\rm{e}}^{\int_0^s {h\left( u \right){\rm{d}}u} }}\omega \left( s \right){\rm{d}}s} } \right) \ge \\ \frac{1}{4}{\delta _0}{{\rm{e}}^{ - \int_{{t_{\bar k}}}^{{t_n}} {h\left( u \right){\rm{d}}u} }} \ge \frac{1}{4}{\delta _0}{{\rm{e}}^{ - 2J}} > 0. \end{array} $ | (8) |
另一方面,假设方程(1) 的零解渐近稳定,则t→∞时,x(t)=x(t, tk, φ)→0.因为当n→∞时,tn-τ(tn)→∞以及3) 的成立.因此,
| $ x\left( {{t_n}} \right) - \int_{{t_n} - {\tau _0}\left( {{t_n}} \right)}^{{t_n}} {h\left( s \right)x\left( s \right){\rm{d}}s} \to 0,n \to \infty , $ |
这与式(8) 相矛盾,所以(4) 是方程(1) 的零解渐近稳定的必要条件.证明完毕.
3 算例考察以下标量方程
| $ \begin{array}{l} x'\left( t \right) = - {b_1}\left( t \right)f\left( {x\left( {t - {\tau _1}\left( t \right)} \right)} \right) - {b_2}\left( t \right)f\left( {x\left( {t - } \right.} \right.\\ \left. {\left. {{\tau _2}\left( t \right)} \right)} \right), \end{array} $ | (9) |
其中τ1(t)=0.15t,τ2(t)=0.28t,
| $ f\left( x \right) = \left\{ \begin{array}{l} \gamma {{\rm{e}}^{ - \frac{1}{{{x^2}}}}},x = 0,\\ 0,\;\;\;\;x = 0, \end{array} \right. $ |
γ为充分小的正数.
显然|f(x)|≤γ.因为x≠0时,
| $ \begin{array}{l} f'\left( x \right) = \frac{{2\gamma }}{{{x^3}}}{{\rm{e}}^{ - \frac{1}{{{x^2}}}}} \le 3\frac{{\sqrt 6 }}{2}\gamma {{\rm{e}}^{ - \frac{3}{2}}},\\ f''\left( x \right) = \frac{\gamma }{{{x^6}}}{{\rm{e}}^{ - \frac{1}{{{x^2}}}}}\left( {4 - 6{x^2}} \right) \le 8\gamma {{\rm{e}}^{ - 2}}. \end{array} $ |
所以,
选择τ0(t)=τ1(t)=0.15t和h(t)=
| $ \begin{array}{l} \int_{t - {\tau _0}\left( t \right)}^{{t_n}} {\left| {h\left( s \right)} \right|{\rm{d}}s} = \int_{0.85t}^t {\frac{{2.3}}{{s + 1}}{\rm{d}}s} = \\ 2.3\ln \frac{{t + 1}}{{0.85t + 1}} < 0.3738,\\ \int_0^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\left| {h\left( s \right)} \right|} \int_{s - {\tau _0}\left( s \right)}^t {\left| {h\left( v \right)} \right|{\rm{d}}v{\rm{d}}s} < 0.3738,\\ \int_0^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\left| {h\left( {s - {\tau _0}\left( s \right)} \right)\left( {1 - {{\tau '}_0}\left( s \right)} \right){\rm{d}}s} \right|} = \\ \int_0^t {\frac{{0.405}}{{0.85s + 1}}} {{\rm{e}}^{ - \int_s^t {\frac{{2.3}}{{u + 1}}{\rm{d}}u} }}{\rm{d}}s \le \frac{{0.405}}{{2.3 \times 0.85}} < 0.2072. \end{array} $ |
以及
| $ \begin{array}{l} \int_0^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\left( {\left| {{b_1}\left( s \right) + {b_2}\left( s \right)} \right|} \right){\rm{d}}s} = \\ \int_0^t {{{\rm{e}}^{ - \int_s^t {\frac{{2.3}}{{u + 1}}{\rm{d}}u} }}\left( {\frac{{1.55}}{{0.85s + 1}} + \frac{{0.45}}{{0.72s + 1}}} \right){\rm{d}}s} = \\ \int_0^t {{{\rm{e}}^{ - \int_s^t {\frac{{2.3}}{{u + 1}}{\rm{d}}u} }}\left( {\frac{{1.4985s + 2}}{{\left( {0.72s + 1} \right)\left( {0.85s + 1} \right)}}} \right){\rm{d}}s} \le \\ \frac{{1.4985}}{{0.72}}\int_0^t {{{\rm{e}}^{ - \int_s^t {\frac{{2.3}}{{u + 1}}{\rm{d}}u} }} \times \frac{2}{{\left( {0.85s + 1} \right)}}{\rm{d}}s} \le \\ \frac{{1.4985}}{{0.72 \times 0.85 \times 2.3}} < 1.0646. \end{array} $ |
| $ \begin{array}{l} \int_{t - {\tau _1}\left( t \right)}^{t - {\tau _2}\left( t \right)} {\left( {\left| {{b_1}\left( s \right) + {b_2}\left( s \right)} \right|} \right){\rm{d}}s} = \int_0^t {\left( {\frac{{1.55}}{{0.85s + 1}} + } \right.} \\ \left. {\frac{{0.45}}{{0.72s + 1}}} \right){\rm{d}}s < 0.4065, \end{array} $ |
| $ \begin{array}{l} \int_0^t {{{\rm{e}}^{ - \int_s^t {h\left( u \right){\rm{d}}u} }}\left| {{b_2}\left( s \right)} \right|\left| {\int_{s - {\tau _1}\left( s \right)}^{s - {\tau _2}\left( s \right)} {\left( {\left| {{b_1}\left( v \right) + {b_2}\left( v \right)} \right|} \right){\rm{d}}v} } \right|{\rm{d}}s} \le \\ 0.4065\int_0^t {{{\rm{e}}^{ - \int_s^t {\frac{{2.3}}{{u + 1}}{\rm{d}}u} }} \times \frac{{0.45}}{{0.72s + 1}}{\rm{d}}s} \le \\ \left( {\frac{{1.55}}{{0.85}} + \frac{{0.45}}{{0.72}}} \right)\ln \frac{{0.85}}{{0.72}} < 0.1105, \end{array} $ |
令α=0.373 8+0.373 8+0.207 2+
| $ \begin{array}{l} {M_2}1.0646 + \left( {M_2^2 + {M_1}L} \right)0.1105 = 0.9548 + \\ 1.06463\frac{{\sqrt 6 }}{2}\gamma {{\rm{e}}^{ - \frac{3}{2}}} + 0.1105\left( {\frac{3}{2}{\gamma ^2}{{\rm{e}}^{ - 3}} + 8{\gamma ^2}{{\rm{e}}^{ - 2}}} \right). \end{array} $ |
因为γ是足够小的正数,可以选取充分小的γ,使得α<1,由定理1可知,方程(9) 的零解渐近稳定.
| [1] |
彭世国. 中立型泛函微分方程的周期解[J].
广东工业大学学报, 1997, 14(1): 8-13.
PENG S G. Periodic solutions of nonlinear neutral functional differential equations[J]. Journal of Guangdong University of Technology, 1997, 14(1): 8-13. |
| [2] |
彭世国. n维无究延滞的Liénard型方程的周期解[J].
广东工业大学学报, 1997, 14(2): 20-26.
PENG S G. Periodic solutions of n-dimensional liénard equations with infinite retardation[J]. Journal of Guangdong University of Technology, 1997, 14(2): 20-26. |
| [3] | JIN C H, LUO J W. Asymptotic stability of differential equations with several delays[J]. Publ Math Debrecen, 2011, 78(1): 89-102. DOI: 10.5486/PMD. |
| [4] | YORKE J A. Asymptotic stability for one-dimensional functional differential-delay equations[J]. Differential Equations, 1970, 7(1): 189-202. DOI: 10.1016/0022-0396(70)90132-4. |
| [5] | KRISZTIN T. On the stability properties for one dimensional functional equations[J]. Funkcial Ekvac, 1991, 34(2): 241-256. |
| [6] | YONEYAMA T. On the stability theorem for one-dimensional functional delay-differential equation[J]. J Math Anal, 1987, 125(4): 161-173. |
| [7] | YONEYAMA T. On the stability for the delay-differential equation[J]. J Math Anal Appl, 1986, 120(1): 271-275. DOI: 10.1016/0022-247X(86)90215-5. |
| [8] | HARA T, YONEYAMA T, MIYAZAKI R. Some refinements of Razumikhin's method and their applications[J]. Funkciak Ekvac, 1992, 35(2): 279-305. |
| [9] | MUROYA Y. On Yoneyama's stability theorems for one-dimensional delay differential equations[J]. J Math Anal Appl, 2000, 247(1): 314-322. DOI: 10.1006/jmaa.2000.6857. |
| [10] | GRAEF J R, QIAN C, ZHANG B. Asymptotic behavior of solutions of differential equations with variable delays[J]. Proc London Math Soc, 2000, 81(1): 72-92. DOI: 10.1112/S0024611500012429. |
| [11] | BURTON T A. Stability by fixed point theory or Liapunocv's theory: a comparison[J]. Fixed Point Theory, 2003, 4(1): 15-32. |
| [12] | BURTON T A, Furumochi T. Krasnoselskii's fixed point theorem and stability[J]. Nonlinear Anal, 2002, 49(4): 445-454. DOI: 10.1016/S0362-546X(01)00111-0. |
| [13] | BURTON T A. Stability by Fixed Point Theory for Functional Differential Equations[M]. New York: Dover Pubilications, 2006. |
| [14] | ZHANG B. Fixed points and stability in differential equations with variable delay[J]. Nonlinear Anal, 2005, 63(5-7): 233-242. DOI: 10.1016/j.na.2005.02.081. |
| [15] | JIN C H, LUO J W. Fixed points and stability in neutral differential equations with variable delays[J]. Proc Amer Math Soc, 2008, 136(6): 909-918. |
2016, Vol. 33