广东工业大学学报  2015, Vol. 32Issue (1): 128-132.  DOI: 10.3969/j.issn.1007-7162.2015.01.026.
0

引用本文 

徐林, 宋常修. 一类三阶时滞微分方程的稳定性和有界性[J]. 广东工业大学学报, 2015, 32(1): 128-132. DOI: 10.3969/j.issn.1007-7162.2015.01.026.
Xu Lin, Song Chang-xiu. Stability and Boundedness of a Class of Third-order Delay Differential Equations[J]. Journal of Guangdong University of Technology, 2015, 32(1): 128-132. DOI: 10.3969/j.issn.1007-7162.2015.01.026.

基金项目:

广东省自然科学基金资助项目(10151009001000032)

作者简介:

徐林(1987-),男,硕士研究生,主要研究方向为微分动力系统。

文章历史

收稿日期:2013-10-17
一类三阶时滞微分方程的稳定性和有界性
徐林, 宋常修     
广东工业大学 应用数学学院,广东 广州 510520
摘要: 通过类比法构造Lyapunov泛函, 讨论了一类三阶时滞微分方程零解的渐近稳定性和所有解的有解性, 给出了其零解渐近稳和所有解有界的充分性准则.
关键词: 时滞微分方程    渐近稳定性    Lyapunov泛函    有界性    
Stability and Boundedness of a Class of Third-order Delay Differential Equations
Xu Lin, Song Chang-xiu     
School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
Abstract: This paper studies the asymptotic stability of the zero solution and the boundedness of all solutions to a class of third-order delay differential Equation. By the method of Lyapunov function, some sufficient conditions for the asymptotic stability of the zero solution and the boundedness of all solutions are proposed.
Key words: delay differential equations    asymptotic stability    Lyapunov functional    boundedness    
1 问题的提出

时滞微分方程主要用来描述依赖当前和过去历史状态的动力系统,因此它在物理、信息、化学、工程、经济以及生物数学等领域都有重要应用.由于时滞微分方程在实际中应用如此广泛,所以对时滞微分方程的理论研究就显得十分重要,也是非常有意义的.对时滞微分方程的稳定性理论的研究的转折点可以追溯到1892年,这一年俄国数学家Lyapunov发表了一篇名为《运动的稳定性的一般问题》的论文,该论文给出了研究稳定性的一种很有效的方法,称为Lyapunov第二方法,它至今仍是研究时滞微分方程解的稳定性的主要方法,Lyapunov直接法的关键是构造Lyapunov泛函.至今已经有很多学者在这方面有很好的研究成果,文献[1-16]中有很多的介绍.

特别地, 关于时滞微分方程解的稳定性和有界性的研究现状.

2003年, Sadek[16]研究了如下三阶时滞微分方程

$ \ddddot x + a\ddot x + g\left( {\dot x\left( {t - r\left( t \right)} \right)} \right) + f\left( {x\left( {t - r\left( t \right)} \right)} \right) = p\left( t \right), $

得到了当p(t)=0时它的零解渐近稳定的充分条件, 及p(t)≠0时它的所有解有界的充分条件.

2006年, CemilTunc[10]研究了一类三阶非线性时滞微分方程

$ \ddddot x + \varphi \left( {x,\dot x} \right)\ddot x + g\left( {\dot x\left( {t - r\left( t \right)} \right)} \right) + f\left( {x\left( {t - r\left( t \right)} \right)} \right) = 0 $

的零解稳定的充分条件.

2007年,姚洪兴和孟伟业[4]讨论了如下三阶双滞量时滞微分方程的全局渐近稳定性

$ \begin{gathered} \ddddot x + g\left( {x\left( t \right),\dot x\left( t \right)} \right)\ddot x\left( t \right) + f\left( {\dot x\left( {t - {\tau _1}} \right)} \right) + \hfill \\ h\left( {x\left( t \right)} \right)\varphi \left( {x\left( {t - {\tau _2}} \right)} \right) = 0, \hfill \\ \end{gathered} $

给出了其零解全局渐近稳定的充分条件.

受文献[5]的启发,本文研究了一类三阶时滞微分方程解的稳定性和有界性,给出了其零解渐近稳定和所有解有界的充分性条件.

本文研究三阶时滞微分方程

$ \begin{array}{l} x'''\left( t \right) + g\left( {x\left( t \right),x'\left( t \right)} \right)x''\left( t \right) + f\left( {x'\left( {t - r\left( t \right)} \right)} \right) + \\ h\left( {x\left( t \right)} \right)\varphi \left( {x\left( {t - r\left( t \right)} \right)} \right) = p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - } \right.} \right.\\ \left. {\left. {\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right),t \ge 0 \end{array} $ (1)

零解的渐近稳定性和所有解的有界性.其中, f(0)=h(0)=g(0, 0)=φ(0)=0,0≤r(t)≤r, g(x, y), f(x), h(x), φ(x)均为连续函数.

系统(1)等价于系统

$ \left\{ \begin{array}{l} x'\left( t \right) = y\left( t \right),\\ y'\left( t \right) = z\left( t \right),\\ z'\left( t \right) = - h\left( {x\left( t \right)} \right)\varphi \left( {x\left( t \right)} \right) - f\left( {y\left( t \right)} \right) - \\ \;\;\;g\left( {x\left( t \right),y\left( t \right)} \right)z\left( t \right) + \int_{t - r\left( t \right)}^t {f'\left( {y\left( s \right)} \right)z\left( s \right){\rm{d}}s} + \\ h\left( {x\left( t \right)\int_{t - r\left( t \right)}^t {\varphi '\left( {x\left( s \right)} \right)y\left( s \right){\rm{d}}s} + p\left( {t,x\left( t \right),} \right.} \right.\\ \;\;\;\;\left. {x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right). \end{array} \right. $ (2)
2 渐近稳定性

p(t, x(t), x′(t), x(tr(t)), x′(t-r(t)), x″(t))=0时,讨论式(1)的渐近稳定性.

考虑自治RFDE系统:

$ \dot x = f\left( {{x_t}} \right),{x_t} = x\left( {t + \theta } \right), - r \le \theta \le 0,t \ge 0, $ (3)

其中, f:CHRn是连续泛函,f(0)=0, CH= {φC([-r, 0], Rn): φH}且满足对H1 < H, 若ΦH1,则存在L(H1)>0, 使f(φ) ≤L(H1).

引理1[6]  令V(Φ):CHR为满足局部Lipschitz条件的连续泛函,V (0)=0且满足下列条件:

(1) W1(|ϕ(0)|)≤V(ϕ)≤W2($\left\| \phi \right\|$),W1(r), W2(r)为权函数;

(2) ${\dot V_{\left(3 \right)}}$(ϕ)≤0, 当ϕCH, 则系统(3)零解是一致稳定的,若定义Z ={φCH: ${\dot V_{\left(3 \right)}}$(φ)=0}, 如果Z的最大不变集Q={0}, 则系统(3)的零解是渐近稳定的.

定理1  若存在正整数a, b, c, d, L, M, B且满足:

(1) 0 < [h(x)φ(x)]′ < ab-c;

(2)$\frac{{f\left(y \right)}}{y}$b(y≠0), 对任意的y都有|f′(y)| ≤L;

(3) h(x)φ(x)sgnx>0(x≠0), 对任意的x都有|h(x)| ≤B, |φ′(x)| ≤M;

(4) g′x(x, y)y≤0且g(x, y)≥a+d;

(5) 0≤r(t)≤σ, r′(t)≤β, 0 < β < 1,

那么当

$ \begin{array}{l} \sigma \le \min \left\{ {\frac{{2c\left( {1 - \beta } \right)}}{{\alpha \left( {L + BM} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)MB}},} \right.\\ \left. {\frac{{2d\left( {1 - \beta } \right)}}{{\left( {L + MB} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)L}}} \right\}, \end{array} $

则系(1)的零解是渐近稳定的.

证明  先定义一个Lyapunov泛函V(xt, yt, zt),

$ \begin{array}{l} V\left( {{x_t},{y_t},{z_t}} \right) = a\int_0^x {h\left( \xi \right)\varphi \left( \xi \right){\rm{d}}\xi } + h\left( x \right)\varphi \left( x \right)y + \\ \frac{1}{2}{\left( {ay + z} \right)^2} + \int_0^y {\frac{{f\left( \eta \right)}}{\eta }{\rm{d}}\eta } + a\int_0^y {\left[ {g\left( {x,\eta } \right) - a} \right]\eta {\rm{d}}\eta } + \\ {u_1}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{y^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } + {u_2}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{z^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } \ge \\ a\int_0^x {h\left( \xi \right)\varphi \left( \xi \right){\rm{d}}\xi } + h\left( x \right)\varphi \left( x \right)y + \frac{1}{2}{\left( {ay + z} \right)^2} + \frac{1}{2}b{y^2} + \\ a\int_0^y {\left[ {g\left( {x,\eta } \right) - a} \right]\eta {\rm{d}}\eta } + {u_1}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{y^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } + \\ {u_2}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{z^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } = \frac{1}{{2b{y^2}}}\left[ {4\int_0^x {h\left( \xi \right)\varphi \left( \xi \right)} \left\{ {\int_0^y {\left( {ab - } \right.} } \right.} \right.\\ \left. {\left. {\left. {{{\left[ {h\left( \xi \right)\varphi \left( \xi \right)} \right]}^\prime }} \right)\eta {\rm{d}}\eta } \right\}} \right]{\rm{d}}\xi + \frac{1}{{2b}}{\left[ {by + h\left( x \right)\varphi \left( x \right)} \right]^2} + \\ \frac{1}{2}{\left( {ay + z} \right)^2} + a\int_0^y {\left[ {g\left( {x,\eta } \right) - a} \right]\eta {\rm{d}}\eta } + \\ {u_1}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{y^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } + {u_2}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{z^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } . \end{array} $

明显地,V(0, 0, 0)=0.

由定理1条件(1)知[h(ξ)φ(ξ)]′ < ab-c,则ab-[h(ξ)φ(ξ)]′>c>0.

又由定理1条件(3)和(4)知h(x)φ(x)sgnx>0, g(x, y)-a>d.

显然,对于以上不等式,存在足够小的正常数Di(i=1, 2, 3),使得

$ \begin{array}{l} V\left( {{x_t},{y_t},{z_t}} \right) \ge {D_1}{x^2} + {D_2}{y^2} + {D_3}{z^2} + \\ {u_1}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{y^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } + {u_2}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{z^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } \ge {D_4}\left( {{x^2} + {y^2} + {z^2}} \right). \end{array} $

因为${u_1}\int_{-r\left(t \right)}^0 {\int_{t + s}^t {{y^2}\left(\theta \right){\rm{d}}\theta {\rm{d}}s} } $${u_2}\int_{-r\left(t \right)}^0 {\int_{t + s}^t {{z^2}\left(\theta \right){\rm{d}}\theta {\rm{d}}s} } $是非负的,其中D4=min(D1, D2, D3),所以不等式

$ V\left( {{x_t},{y_t},{z_t}} \right) \ge {D_4}\left( {{x^2} + {y^2} + {z^2}} \right) $

成立,则V(xt, yt, zt)正定.

因此,泛函V(xt, yt, zt)满足引理1的条件(1).

下证$\frac{{{\rm{d}}{V_{\left({{x_t}, {y_t}, {z_t}} \right)}}}}{{{\rm{d}}t}} \le 0.$

$ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} = ah\left( x \right)\varphi \left( x \right)y + {\left[ {h\left( x \right)\varphi \left( x \right)} \right]^\prime }{y^2} + \\ h\left( x \right)\varphi \left( x \right)z + \left( {ay + z} \right)\left( {az + z'} \right) + f\left( y \right)z + ayzg\left( {x,y} \right) + \\ ay\int_0^y {{{g'}_x}\left( {x,y} \right)y{\rm{d}}y} - {a^2}yz + {u_1}{z^2}r\left( t \right) + {u_2}{y^2}r\left( t \right) - \\ {u_1}\left( {1 - r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } + {u_2}{y^2}r\left( t \right) - {u_2}\left( {1 - } \right.\\ \left. {r'\left( t \right)} \right) = {y^2}{\left[ {h\left( x \right)\varphi \left( x \right)} \right]^\prime } - ayf\left( y \right) + ay\int_0^y {{{g'}_x}\left( {x,} \right.} \\ \left. y \right)y{\rm{d}}y + a{z^2} - {z^2}g\left( {x,y} \right) + \left( {ay + z} \right)\int_{t - r\left( t \right)}^t {f'\left( y \right)z\left( s \right){\rm{d}}s} + \\ \left( {ayh\left( x \right) + zh\left( x \right)} \right)\int_{t - r\left( t \right)}^t {\varphi '\left( x \right)y\left( s \right){\rm{d}}s} + {u_1}{z^2}r\left( t \right) + \\ {u_2}{y^2}r\left( t \right) - {u_1}\left( {1 - r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } - {u_2}\left( {1 - } \right.\\ \left. {r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } . \end{array} $

由定理1所给的条件可得

$ \begin{array}{l} \left( {ay + z} \right)\int_{t - r\left( t \right)}^t {f'\left( y \right)z{\rm{d}}s} = ay\int_{t - r\left( t \right)}^t {f'\left( y \right)z\left( s \right){\rm{d}}s} + \\ z\int_{t - r\left( t \right)}^t {f'\left( y \right)z\left( s \right){\rm{d}}s} \le \frac{{aL}}{2}{y^2}r\left( t \right) + \frac{{aL}}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} + \\ \frac{L}{2}{z^2}r\left( t \right) + \frac{L}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} \le \frac{{aL\rho }}{2}{y^2} + \frac{{aL}}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} + \\ \frac{{L\rho }}{2}{z^2} + \frac{L}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} . \end{array} $

同理

$ \begin{array}{l} \left( {ayh\left( x \right) + zh\left( x \right)} \right)\int_{t - r\left( t \right)}^t {\varphi '\left( x \right)y\left( s \right){\rm{d}}s} = \\ ayh\left( x \right)\int_{t - r\left( t \right)}^t {\varphi '\left( x \right)y\left( s \right){\rm{d}}s} + zh\left( x \right)\int_{t - r\left( t \right)}^t {\varphi '\left( x \right)y\left( s \right){\rm{d}}s} \le \\ aBM\int_{t - r\left( t \right)}^t {\left| y \right|\left| {y\left( s \right)} \right|{\rm{d}}s} + BM\int_{t - r\left( t \right)}^t {\left| z \right|\left| {y\left( s \right)} \right|{\rm{d}}s} \le \\ \frac{{aBM}}{2}{y^2}r\left( t \right) + \frac{{aBM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} + \frac{{BM}}{2}{z^2}r\left( t \right) + \\ \frac{{BM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} \le \frac{{aBM\rho }}{2}{y^2} + \frac{{aBM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} + \\ \frac{{BM\rho }}{2}{z^2} + \frac{{BM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} . \end{array} $

又因为

$ \begin{array}{l} {u_1}{z^2}r\left( t \right) + {u_2}{y^2}r\left( t \right) \le {u_1}{z^2}\rho + {u_2}{y^2}\rho ,\\ - {u_1}\left( {1 - r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } - {u_2}\left( {1 - } \right.\\ \left. {r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } \le - {u_1}\left( {1 - \beta } \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } - \\ {u_2}\left( {1 - \beta } \right)\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } , \end{array} $
$ {y^2}{\left[ {h\left( x \right)\varphi \left( x \right)} \right]^\prime } - ayf\left( y \right) \le \left( {ab - c} \right){y^2} - ab{y^2} - c{y^2}, $
$ a{z^2} - {z^2}g\left( {x,y} \right) \le a{z^2} - {z^2}\left( {a + d} \right) = - d{z^2}, $

则由上面不等式得

$ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le - c{y^2} - d{z^2} + \frac{{aL\rho }}{2}{y^2} + \frac{{aL}}{2}\int_{t - r\left( r \right)}^t {{z^2}\left( s \right){\rm{d}}s} + \\ \frac{{L\rho }}{2}{z^2} + \frac{L}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} + \frac{{aBM\rho }}{2}{y^2} + \frac{{aBM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} + \\ \frac{{MB\rho }}{2}{z^2} + \frac{{MB}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} + {u_1}{z^2}\rho + {u_2}{z^2}\rho - {u_1}\left( {1 - } \right.\\ \left. \beta \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } - {u_2}\left( {1 - \beta } \right)\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } = - \left[ {c - } \right.\\ \left. {\left( {\frac{{aL}}{2} + \frac{{aBM}}{2} + {u_2}} \right)\rho } \right]{y^2} - \left[ {d - \left( {\frac{L}{2} + \frac{{MB}}{2} + {u_1}} \right)\rho } \right]{z^2} + \\ \left[ {\frac{{aL}}{2} + \frac{L}{2} - {u_1}\left( {1 - \beta } \right)} \right]\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } + \left[ {\frac{{aBM}}{2} + \frac{{BM}}{2} - } \right.\\ \left. {{u_2}\left( {1 - \beta } \right)} \right]\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } . \end{array} $
$ 令\;{u_1} = \frac{{\left( {a + 1} \right)L}}{{2\left( {1 - \beta } \right)}},{u_2} = \frac{{\left( {a + 1} \right)MB}}{{2\left( {1 - \beta } \right)}},则 $
$ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le - \left[ {c - \left( {\frac{{aL}}{2} + \frac{{aBM}}{2} + {u_2}} \right)\rho } \right]{y^2} - \\ \left[ {d - \left( {\frac{L}{2} + \frac{{MB}}{2} + {u_1}} \right)\rho } \right]{z^2}. \end{array} $

若取

$ \begin{array}{l} \sigma \le \min \left\{ {\frac{{2c\left( {1 - \beta } \right)}}{{a\left( {L + BM} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)MB}},} \right.\\ \left. {\frac{{2d\left( {1 - \beta } \right)}}{{\left( {L + MB} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)L}}} \right\},可得 \end{array} $
$ \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le - {D_5}{y^2} - {D_6}{z^2} \le 0, $
$ 其中\;{D_5} = \left[ {c - \left( {\frac{{aL}}{2} + \frac{{aBM}}{2} + {u_2}} \right)\rho } \right] \ge 0, $
$ {D_6} = \left[ {d - \left( {\frac{L}{2} + \frac{{MB}}{2} + {u_1}} \right)\rho } \right] \ge 0. $

因此,泛函V(xt, yt, zt)满足引理1的条件(2).

容易证明Z中最大不变集是Q={0},在这里Z= {ΦCH, V′(Φ)=0 }, 根据

$\frac{{{\rm{d}}V}}{{{\rm{d}}t}}{\rm{ = }}0$和系统(2),易知x=y=z=0.

因此,引理1的所有条件都满足,所以式(1)的零解是渐近稳定的.

定理得证.

3 有界性

引理2[7]   Gronwall-Reid-Bellman不等式:若u(t)与α(t)都是[a, b]上的连续函数,β(t)≥0在[a, b]上可积且成立

$ u\left( t \right) \le \alpha \left( t \right) + \int_a^t {\beta \left( s \right)u\left( s \right){\rm{d}}s} ,t \in \left[ {a,b} \right], $

则必有

$ u\left( t \right) \le \alpha \left( t \right) + \int_a^t {\beta \left( s \right)\alpha \left( s \right)\exp \left( {\int_a^t {\beta \left( {{s_1}} \right){\rm{d}}{s_1}} } \right){\rm{d}}s} ; $

α(t)非减,则成立

$ u\left( t \right) \le \alpha \left( t \right)\exp \left( {\int_a^t {\beta \left( s \right){\rm{d}}s} } \right). $

对于p(t, x(t), x′(t), x(t-r(t)), x′(t-r(t)), x″(t))≠0的情况,有下列结论:

定理2 [9]假设定理1的条件成立且连续函数p满足下列条件:

$ \left| {p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right)} \right.} \right| \le q\left( t \right), $

其中q(t)∈L1(0, ∞), L1(0, ∞)是Lebesgue可积函数空间.

$ \begin{array}{l} \sigma \le \min \left\{ {\frac{{2c\left( {1 - \beta } \right)}}{{a\left( {L + BM} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)MB}},} \right.\\ \left. {\frac{{2d\left( {1 - \beta } \right)}}{{\left( {L + MB} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)L}}} \right\} \end{array} $

时,存在一个有限正常数M使系统(2)的解x(t)对所有的tt0满足不等式

$ \left| {x\left( t \right)} \right| \le \sqrt M ,\left| {x'\left( t \right)} \right| \le \sqrt M ,\left| {x''\left( t \right)} \right| \le \sqrt M . $

注:这里用来证明定理2的Lyapunov函数V(xt, yt, zt)与定理1相同.

证明  对于p(t, x(t), x′(t), x(t-r(t)), x′(t-r(t)), x″(t))≠0的情况,有

$ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le - {D_5}{y^2} - {D_6}{z^2} + \left| {\left( {ay + z} \right)p\left( {t,x\left( t \right),} \right.} \right.\\ \left. {\left. {x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right)} \right| \le \left| {\left( {ay + } \right.} \right.\\ \left. {\left. z \right)} \right|\left| {p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),} \right.} \right.\\ \left. {\left. {x''\left( t \right)} \right)} \right| \le \left( {a\left| y \right| + \left| z \right|} \right)\left| {p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - } \right.} \right.} \right.\\ \left. {\left. {\left. {r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right)} \right| \le {D_7}\left( {\left| y \right| + } \right.\\ \left. {\left| z \right|} \right)q\left( t \right). \end{array} $

其中D7=max{ 1, a }.

由不等式|y|≤1+y2和|z| ≤1+z2, 可得

$ \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le {D_7}\left( {2 + {y^2} + {z^2}} \right)q\left( t \right). $

y2+z2D4-1V(xt, yt, zt),可以得到

$ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le {D_7}\left( {2 + D_4^{ - 1}V\left( {{x_t},{y_t},{z_t}} \right)} \right)q\left( t \right) = \\ 2{D_7}q\left( t \right) + {D_7}D_4^{ - 1}V\left( {{x_t},{y_t},{z_t}} \right)q\left( t \right). \end{array} $ (4)

对式(4)从0到t进行积分,并利用假设qL1(0, ∞)和Gronwall-Reid-Bellman不等式,可得

$ \begin{array}{l} V\left( {{x_t},{y_t},{z_t}} \right) \le V\left( {{x_0},{y_0},{z_0}} \right) + 2{D_7}A + \\ {D_7}D_4^{ - 1}\int_0^t {V\left( {{x_s},{y_s},{z_s}} \right)q\left( s \right){\rm{d}}s} \le \left( {V\left( {{x_0},{y_0},{z_0}} \right) + } \right.\\ \left. {2{D_7}A} \right)\exp \left( {{D_7}D_4^{ - 1}\int_0^t {q\left( s \right){\rm{d}}s} } \right) \le \left( {V\left( {{x_0},{y_0},{z_0}} \right) + } \right.\\ \left. {2{D_7}A} \right)\exp \left( {{D_7}D_4^{ - 1}A} \right) = {M_1} < \infty , \end{array} $

其中M1是正常数,M1=(V(x0, y0, z0)+2D7A)exp(D7D4-1A)和$A = \int_0^t {q\left(s \right){\rm{d}}s} $.所以

$ {x^2} + {y^2} + {z^2} \le D_4^{ - 1}V\left( {{x_t},{y_t},{z_t}} \right) \le M, $

其中M=D4-1M1.

因此,当tt0时,不等式|x| ≤$\sqrt M $, |y| ≤ $\sqrt M $, |z| ≤ $\sqrt M $成立.

即当tt0时,|x(t)| ≤ $\sqrt M $, |x′(t) |≤ $\sqrt M $, |x″(t)| ≤ $\sqrt M $成立.

证毕.

例题1  考虑三阶时滞微分方程

$ \begin{array}{l} x'''\left( t \right) + \left( {9 + {{\left( {x'\left( t \right)} \right)}^2}} \right)x''\left( t \right) + 4x'\left( {t - r\left( t \right)} \right) + 2{\rm{arctg}}x\left( {t - r\left( t \right)} \right) = \\ \frac{1}{{1 + {t^2} + {x^2}\left( t \right) + {x^2}\left( {t - r\left( t \right)} \right) + {{x''}^2}\left( t \right) + {{x'}^2}\left( {t - r\left( t \right)} \right)}}. \end{array} $ (5)

方程(5)可表示为如下系统

$ \left\{ \begin{array}{l} x' = y,\\ y' = z,\\ z' = - 2{\rm{arctg}}x\left( t \right) - 4y\left( t \right) - \left( {9 + {y^2}\left( t \right)} \right)z\left( t \right) + \\ \;\;\;\;4\int_{t - r\left( t \right)}^t {z\left( s \right){\rm{d}}s} + 2\int_{t - r\left( t \right)}^t {\frac{{y\left( s \right)}}{{1 + {x^2}\left( s \right)}}{\rm{d}}s + p(t,} \\ x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x\left( t \right)). \end{array} \right. $

$ \begin{array}{l} p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right) = \\ \frac{1}{{1 + {t^2} + {x^2}\left( t \right) + {x^2}\left( {t - r\left( t \right)} \right) + {{x''}^2}\left( t \right) + {{x'}^2}\left( {t - r\left( t \right)} \right)}}, \end{array} $

显然方程(5)是式(1)的特殊形式,可知

$ \begin{array}{l} 0 < {\left[ {h\left( x \right)\varphi \left( x \right)} \right]^\prime } = \frac{2}{{{{\left( {1 + x} \right)}^2}}} \le 2 = 3 - 1,a = 1,\\ b = 3,c = 1,\frac{{f\left( y \right)}}{y} = 4 \ge 3 = b,\left( {y \ne 0} \right),\left| {f'\left( y \right)} \right| = \\ 4 \le 5 = L, \end{array} $
$ \begin{array}{l} {\mathop{\rm sgn}} \arctan x = {\rm{sgn}}x,\varphi '\left( x \right) = \frac{2}{{1 + {x^2}}} \le 2 = M,g\left( {x,y} \right) = \\ 9 + {y^2} \ge 9 = 1 + 8,d = 8,{{g'}_x}\left( {x,y} \right)y = 0 \le 0. \end{array} $

由于

$ \begin{array}{l} p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right) = \\ \frac{1}{{1 + {t^2} + {x^2}\left( t \right) + {x^2}\left( {t - r\left( t \right)} \right) + {{x''}^2}\left( t \right) + {{x'}^2}\left( {t - r\left( t \right)} \right)}} \le \\ \frac{1}{{1 + {t^2}}}, \end{array} $

$ \int_0^\infty {q\left( s \right){\rm{d}}s} = \int_0^\infty {\frac{1}{{1 + {s^2}}}{\rm{d}}s} = \frac{{\rm{ \mathsf{ π} }}}{2} \le \infty , $

其中qL1(0, +∞).

因此定理1和定理2的所有条件都成立,当p≡0时方程(5)的零解渐近稳定,当p≠0时方程(5)所有解有界.

参考文献
[1]
王联, 王慕秋. 非线性常微分方程定性分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1987.
[2]
王琦. 标量随机延迟微分方程Euler-Maruyama方法的均方稳定性分析[J]. 广东工业大学学报, 2011, 28(1): 50-53.
Wang Q. Mean-square stability analysis of euler-maruyama method for scalar stochastic delay differential equations[J]. Journal of Guangdong University of Technology, 2011, 28(1): 50-53.
[3]
王联, 王慕秋. 一类三阶非线性系统李雅普洛夫函数构造分析[J]. 应用数学学报, 1983, 6(3): 309-323.
Wang L, Wang M Q. On the construction of globally asymptotically stable lyapunov's of a type of nonlinear third-order systems[J]. Applied Mathematics, 1983, 6(3): 309-323.
[4]
姚洪兴, 孟伟业. 一类三阶双滞量时滞微分方程的全局渐近稳定性[J]. 应用数学, 2008, 21(3): 576-580.
Yao H X, Meng W Y. Global asymptotic stability of a class of third-order differential equation with two delays[J]. Mathematics Applied, 2008, 21(3): 576-580.
[5]
Tunc C. On the stability of solutions to a certain fourth-order differential equation[J]. Nonlinear Dyn, 2008, 51(1-2): 71-81.
[6]
Yao H X, Meng W Y. On the stability of solutions of certain non-linear third-order delaydifferential equations[J]. International Journal of Nonlinear science, 2008, 6(3): 230-237.
[7]
张丽娟, 斯力更. 一类三阶非线性系统的全局稳定性[J]. 应用数学学报, 2007, 30(1): 99-103.
Zhang L J, Si L G. The whole stability of a class of third order nonlinear system[J]. Applied Mathematics, 2007, 30(1): 99-103.
[8]
傅朝金, 廖晓芹. 时滞微分方程的稳定性[J]. 数学物理学报, 2003, 23A(4): 494-498.
Fu C J, Liao X Q. Stability for differential equations with delay[J]. Acta Mathematica Scientia, 2003, 23A(4): 494-498.
[9]
赵杰民. 一类非线性时滞系统的定性分析[J]. 数学杂志, 2000, 20(4): 403-409.
Zhao J M. Qualitative analysis for a class of nonlinear delay system[J]. J.of Math, 2000, 20(4): 403-409.
[10]
Tunc C. New results about stability and boundedness of certain non-linear third-order delay differential equations[J]. The Arabian Journal for Science and Engineering, 2006, 31(24): 185-196.
[11]
朱元峰. 一类二阶和三阶时滞微分系统的稳定性[J]. 中国科学院研究生院学报, 1990, 7(2): 10-17.
Zhu Y F. On thestability of a type of second and third order delay differential systems[J]. Journal of Graduate School, 1990, 7(2): 10-17.
[12]
贾建文. 一类三阶非线性系统的全局稳定性的Lyapunov函数的构造[J]. 应用数学学报, 1999, 22(4): 621-623.
Jia J W. On the construction of globally asymptotically stable lyapunov's of a type of nonlinear third-order systems[J]. Applied Mathematics, 1999, 22(4): 621-623.
[13]
刘昌东. 一类三阶非线性微分方程的全局渐近稳定性[J]. 湛江师范学院学报:自然科学版, 1999, 20(2): 16-18.
Liu C D. The entire gradual stability of a class of third order nonlinear differential Equation[J]. Journal of Zhanjiang Normal College:Natural Sciences Edition, 1999, 20(2): 16-18.
[14]
Zhu Y. On stability, boundedness and existence of periodic solution of a kind of third-order nonlinear Delay differential system[J]. Ann of Diff Eqs, 1992, 8(2): 249-259.
[15]
Tunc C. On the stability of solutions of certain fourth-order delay differential equation[J]. Applied Mathematics, 2006, 27(8): 1141-1148.
[16]
Sadek A I. Stability and boundedness of a kind of third-order differential system[J]. Applied Mathematics Letters, 2003, 16(5): 657-662. DOI: 10.1016/S0893-9659(03)00063-6.