时滞微分方程主要用来描述依赖当前和过去历史状态的动力系统,因此它在物理、信息、化学、工程、经济以及生物数学等领域都有重要应用.由于时滞微分方程在实际中应用如此广泛,所以对时滞微分方程的理论研究就显得十分重要,也是非常有意义的.对时滞微分方程的稳定性理论的研究的转折点可以追溯到1892年,这一年俄国数学家Lyapunov发表了一篇名为《运动的稳定性的一般问题》的论文,该论文给出了研究稳定性的一种很有效的方法,称为Lyapunov第二方法,它至今仍是研究时滞微分方程解的稳定性的主要方法,Lyapunov直接法的关键是构造Lyapunov泛函.至今已经有很多学者在这方面有很好的研究成果,文献[1-16]中有很多的介绍.
特别地, 关于时滞微分方程解的稳定性和有界性的研究现状.
2003年, Sadek[16]研究了如下三阶时滞微分方程
| $ \ddddot x + a\ddot x + g\left( {\dot x\left( {t - r\left( t \right)} \right)} \right) + f\left( {x\left( {t - r\left( t \right)} \right)} \right) = p\left( t \right), $ |
得到了当p(t)=0时它的零解渐近稳定的充分条件, 及p(t)≠0时它的所有解有界的充分条件.
2006年, CemilTunc[10]研究了一类三阶非线性时滞微分方程
| $ \ddddot x + \varphi \left( {x,\dot x} \right)\ddot x + g\left( {\dot x\left( {t - r\left( t \right)} \right)} \right) + f\left( {x\left( {t - r\left( t \right)} \right)} \right) = 0 $ |
的零解稳定的充分条件.
2007年,姚洪兴和孟伟业[4]讨论了如下三阶双滞量时滞微分方程的全局渐近稳定性
| $ \begin{gathered} \ddddot x + g\left( {x\left( t \right),\dot x\left( t \right)} \right)\ddot x\left( t \right) + f\left( {\dot x\left( {t - {\tau _1}} \right)} \right) + \hfill \\ h\left( {x\left( t \right)} \right)\varphi \left( {x\left( {t - {\tau _2}} \right)} \right) = 0, \hfill \\ \end{gathered} $ |
给出了其零解全局渐近稳定的充分条件.
受文献[5]的启发,本文研究了一类三阶时滞微分方程解的稳定性和有界性,给出了其零解渐近稳定和所有解有界的充分性条件.
本文研究三阶时滞微分方程
| $ \begin{array}{l} x'''\left( t \right) + g\left( {x\left( t \right),x'\left( t \right)} \right)x''\left( t \right) + f\left( {x'\left( {t - r\left( t \right)} \right)} \right) + \\ h\left( {x\left( t \right)} \right)\varphi \left( {x\left( {t - r\left( t \right)} \right)} \right) = p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - } \right.} \right.\\ \left. {\left. {\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right),t \ge 0 \end{array} $ | (1) |
零解的渐近稳定性和所有解的有界性.其中, f(0)=h(0)=g(0, 0)=φ(0)=0,0≤r(t)≤r, g(x, y), f(x), h(x), φ(x)均为连续函数.
系统(1)等价于系统
| $ \left\{ \begin{array}{l} x'\left( t \right) = y\left( t \right),\\ y'\left( t \right) = z\left( t \right),\\ z'\left( t \right) = - h\left( {x\left( t \right)} \right)\varphi \left( {x\left( t \right)} \right) - f\left( {y\left( t \right)} \right) - \\ \;\;\;g\left( {x\left( t \right),y\left( t \right)} \right)z\left( t \right) + \int_{t - r\left( t \right)}^t {f'\left( {y\left( s \right)} \right)z\left( s \right){\rm{d}}s} + \\ h\left( {x\left( t \right)\int_{t - r\left( t \right)}^t {\varphi '\left( {x\left( s \right)} \right)y\left( s \right){\rm{d}}s} + p\left( {t,x\left( t \right),} \right.} \right.\\ \;\;\;\;\left. {x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right). \end{array} \right. $ | (2) |
当p(t, x(t), x′(t), x(t-r(t)), x′(t-r(t)), x″(t))=0时,讨论式(1)的渐近稳定性.
考虑自治RFDE系统:
| $ \dot x = f\left( {{x_t}} \right),{x_t} = x\left( {t + \theta } \right), - r \le \theta \le 0,t \ge 0, $ | (3) |
其中, f:CH→Rn是连续泛函,f(0)=0, CH= {φ∈C([-r, 0], Rn): φ ≤H}且满足对H1 < H, 若Φ ≤H1,则存在L(H1)>0, 使f(φ) ≤L(H1).
引理1[6] 令V(Φ):CH→ R为满足局部Lipschitz条件的连续泛函,V (0)=0且满足下列条件:
(1) W1(|ϕ(0)|)≤V(ϕ)≤W2(
(2)
定理1 若存在正整数a, b, c, d, L, M, B且满足:
(1) 0 < [h(x)φ(x)]′ < ab-c;
(2)
(3) h(x)φ(x)sgnx>0(x≠0), 对任意的x都有|h(x)| ≤B, |φ′(x)| ≤M;
(4) g′x(x, y)y≤0且g(x, y)≥a+d;
(5) 0≤r(t)≤σ, r′(t)≤β, 0 < β < 1,
那么当
| $ \begin{array}{l} \sigma \le \min \left\{ {\frac{{2c\left( {1 - \beta } \right)}}{{\alpha \left( {L + BM} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)MB}},} \right.\\ \left. {\frac{{2d\left( {1 - \beta } \right)}}{{\left( {L + MB} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)L}}} \right\}, \end{array} $ |
则系(1)的零解是渐近稳定的.
证明 先定义一个Lyapunov泛函V(xt, yt, zt),
| $ \begin{array}{l} V\left( {{x_t},{y_t},{z_t}} \right) = a\int_0^x {h\left( \xi \right)\varphi \left( \xi \right){\rm{d}}\xi } + h\left( x \right)\varphi \left( x \right)y + \\ \frac{1}{2}{\left( {ay + z} \right)^2} + \int_0^y {\frac{{f\left( \eta \right)}}{\eta }{\rm{d}}\eta } + a\int_0^y {\left[ {g\left( {x,\eta } \right) - a} \right]\eta {\rm{d}}\eta } + \\ {u_1}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{y^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } + {u_2}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{z^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } \ge \\ a\int_0^x {h\left( \xi \right)\varphi \left( \xi \right){\rm{d}}\xi } + h\left( x \right)\varphi \left( x \right)y + \frac{1}{2}{\left( {ay + z} \right)^2} + \frac{1}{2}b{y^2} + \\ a\int_0^y {\left[ {g\left( {x,\eta } \right) - a} \right]\eta {\rm{d}}\eta } + {u_1}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{y^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } + \\ {u_2}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{z^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } = \frac{1}{{2b{y^2}}}\left[ {4\int_0^x {h\left( \xi \right)\varphi \left( \xi \right)} \left\{ {\int_0^y {\left( {ab - } \right.} } \right.} \right.\\ \left. {\left. {\left. {{{\left[ {h\left( \xi \right)\varphi \left( \xi \right)} \right]}^\prime }} \right)\eta {\rm{d}}\eta } \right\}} \right]{\rm{d}}\xi + \frac{1}{{2b}}{\left[ {by + h\left( x \right)\varphi \left( x \right)} \right]^2} + \\ \frac{1}{2}{\left( {ay + z} \right)^2} + a\int_0^y {\left[ {g\left( {x,\eta } \right) - a} \right]\eta {\rm{d}}\eta } + \\ {u_1}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{y^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } + {u_2}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{z^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } . \end{array} $ |
明显地,V(0, 0, 0)=0.
由定理1条件(1)知[h(ξ)φ(ξ)]′ < ab-c,则ab-[h(ξ)φ(ξ)]′>c>0.
又由定理1条件(3)和(4)知h(x)φ(x)sgnx>0, g(x, y)-a>d.
显然,对于以上不等式,存在足够小的正常数Di(i=1, 2, 3),使得
| $ \begin{array}{l} V\left( {{x_t},{y_t},{z_t}} \right) \ge {D_1}{x^2} + {D_2}{y^2} + {D_3}{z^2} + \\ {u_1}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{y^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } + {u_2}\int_{ - r\left( t \right)}^0 {\int_{t + s}^t {{z^2}\left( \theta \right){\rm{d}}\theta {\rm{d}}s} } \ge {D_4}\left( {{x^2} + {y^2} + {z^2}} \right). \end{array} $ |
因为
| $ V\left( {{x_t},{y_t},{z_t}} \right) \ge {D_4}\left( {{x^2} + {y^2} + {z^2}} \right) $ |
成立,则V(xt, yt, zt)正定.
因此,泛函V(xt, yt, zt)满足引理1的条件(1).
下证
| $ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} = ah\left( x \right)\varphi \left( x \right)y + {\left[ {h\left( x \right)\varphi \left( x \right)} \right]^\prime }{y^2} + \\ h\left( x \right)\varphi \left( x \right)z + \left( {ay + z} \right)\left( {az + z'} \right) + f\left( y \right)z + ayzg\left( {x,y} \right) + \\ ay\int_0^y {{{g'}_x}\left( {x,y} \right)y{\rm{d}}y} - {a^2}yz + {u_1}{z^2}r\left( t \right) + {u_2}{y^2}r\left( t \right) - \\ {u_1}\left( {1 - r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } + {u_2}{y^2}r\left( t \right) - {u_2}\left( {1 - } \right.\\ \left. {r'\left( t \right)} \right) = {y^2}{\left[ {h\left( x \right)\varphi \left( x \right)} \right]^\prime } - ayf\left( y \right) + ay\int_0^y {{{g'}_x}\left( {x,} \right.} \\ \left. y \right)y{\rm{d}}y + a{z^2} - {z^2}g\left( {x,y} \right) + \left( {ay + z} \right)\int_{t - r\left( t \right)}^t {f'\left( y \right)z\left( s \right){\rm{d}}s} + \\ \left( {ayh\left( x \right) + zh\left( x \right)} \right)\int_{t - r\left( t \right)}^t {\varphi '\left( x \right)y\left( s \right){\rm{d}}s} + {u_1}{z^2}r\left( t \right) + \\ {u_2}{y^2}r\left( t \right) - {u_1}\left( {1 - r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } - {u_2}\left( {1 - } \right.\\ \left. {r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } . \end{array} $ |
由定理1所给的条件可得
| $ \begin{array}{l} \left( {ay + z} \right)\int_{t - r\left( t \right)}^t {f'\left( y \right)z{\rm{d}}s} = ay\int_{t - r\left( t \right)}^t {f'\left( y \right)z\left( s \right){\rm{d}}s} + \\ z\int_{t - r\left( t \right)}^t {f'\left( y \right)z\left( s \right){\rm{d}}s} \le \frac{{aL}}{2}{y^2}r\left( t \right) + \frac{{aL}}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} + \\ \frac{L}{2}{z^2}r\left( t \right) + \frac{L}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} \le \frac{{aL\rho }}{2}{y^2} + \frac{{aL}}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} + \\ \frac{{L\rho }}{2}{z^2} + \frac{L}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} . \end{array} $ |
同理
| $ \begin{array}{l} \left( {ayh\left( x \right) + zh\left( x \right)} \right)\int_{t - r\left( t \right)}^t {\varphi '\left( x \right)y\left( s \right){\rm{d}}s} = \\ ayh\left( x \right)\int_{t - r\left( t \right)}^t {\varphi '\left( x \right)y\left( s \right){\rm{d}}s} + zh\left( x \right)\int_{t - r\left( t \right)}^t {\varphi '\left( x \right)y\left( s \right){\rm{d}}s} \le \\ aBM\int_{t - r\left( t \right)}^t {\left| y \right|\left| {y\left( s \right)} \right|{\rm{d}}s} + BM\int_{t - r\left( t \right)}^t {\left| z \right|\left| {y\left( s \right)} \right|{\rm{d}}s} \le \\ \frac{{aBM}}{2}{y^2}r\left( t \right) + \frac{{aBM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} + \frac{{BM}}{2}{z^2}r\left( t \right) + \\ \frac{{BM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} \le \frac{{aBM\rho }}{2}{y^2} + \frac{{aBM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} + \\ \frac{{BM\rho }}{2}{z^2} + \frac{{BM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} . \end{array} $ |
又因为
| $ \begin{array}{l} {u_1}{z^2}r\left( t \right) + {u_2}{y^2}r\left( t \right) \le {u_1}{z^2}\rho + {u_2}{y^2}\rho ,\\ - {u_1}\left( {1 - r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } - {u_2}\left( {1 - } \right.\\ \left. {r'\left( t \right)} \right)\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } \le - {u_1}\left( {1 - \beta } \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } - \\ {u_2}\left( {1 - \beta } \right)\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } , \end{array} $ |
| $ {y^2}{\left[ {h\left( x \right)\varphi \left( x \right)} \right]^\prime } - ayf\left( y \right) \le \left( {ab - c} \right){y^2} - ab{y^2} - c{y^2}, $ |
| $ a{z^2} - {z^2}g\left( {x,y} \right) \le a{z^2} - {z^2}\left( {a + d} \right) = - d{z^2}, $ |
则由上面不等式得
| $ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le - c{y^2} - d{z^2} + \frac{{aL\rho }}{2}{y^2} + \frac{{aL}}{2}\int_{t - r\left( r \right)}^t {{z^2}\left( s \right){\rm{d}}s} + \\ \frac{{L\rho }}{2}{z^2} + \frac{L}{2}\int_{t - r\left( t \right)}^t {{z^2}\left( s \right){\rm{d}}s} + \frac{{aBM\rho }}{2}{y^2} + \frac{{aBM}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} + \\ \frac{{MB\rho }}{2}{z^2} + \frac{{MB}}{2}\int_{t - r\left( t \right)}^t {{y^2}\left( s \right){\rm{d}}s} + {u_1}{z^2}\rho + {u_2}{z^2}\rho - {u_1}\left( {1 - } \right.\\ \left. \beta \right)\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } - {u_2}\left( {1 - \beta } \right)\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } = - \left[ {c - } \right.\\ \left. {\left( {\frac{{aL}}{2} + \frac{{aBM}}{2} + {u_2}} \right)\rho } \right]{y^2} - \left[ {d - \left( {\frac{L}{2} + \frac{{MB}}{2} + {u_1}} \right)\rho } \right]{z^2} + \\ \left[ {\frac{{aL}}{2} + \frac{L}{2} - {u_1}\left( {1 - \beta } \right)} \right]\int_{t - r\left( t \right)}^t {{z^2}\left( \theta \right){\rm{d}}\theta } + \left[ {\frac{{aBM}}{2} + \frac{{BM}}{2} - } \right.\\ \left. {{u_2}\left( {1 - \beta } \right)} \right]\int_{t - r\left( t \right)}^t {{y^2}\left( \theta \right){\rm{d}}\theta } . \end{array} $ |
| $ 令\;{u_1} = \frac{{\left( {a + 1} \right)L}}{{2\left( {1 - \beta } \right)}},{u_2} = \frac{{\left( {a + 1} \right)MB}}{{2\left( {1 - \beta } \right)}},则 $ |
| $ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le - \left[ {c - \left( {\frac{{aL}}{2} + \frac{{aBM}}{2} + {u_2}} \right)\rho } \right]{y^2} - \\ \left[ {d - \left( {\frac{L}{2} + \frac{{MB}}{2} + {u_1}} \right)\rho } \right]{z^2}. \end{array} $ |
若取
| $ \begin{array}{l} \sigma \le \min \left\{ {\frac{{2c\left( {1 - \beta } \right)}}{{a\left( {L + BM} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)MB}},} \right.\\ \left. {\frac{{2d\left( {1 - \beta } \right)}}{{\left( {L + MB} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)L}}} \right\},可得 \end{array} $ |
| $ \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le - {D_5}{y^2} - {D_6}{z^2} \le 0, $ |
| $ 其中\;{D_5} = \left[ {c - \left( {\frac{{aL}}{2} + \frac{{aBM}}{2} + {u_2}} \right)\rho } \right] \ge 0, $ |
| $ {D_6} = \left[ {d - \left( {\frac{L}{2} + \frac{{MB}}{2} + {u_1}} \right)\rho } \right] \ge 0. $ |
因此,泛函V(xt, yt, zt)满足引理1的条件(2).
容易证明Z中最大不变集是Q={0},在这里Z= {Φ∈CH, V′(Φ)=0 }, 根据
因此,引理1的所有条件都满足,所以式(1)的零解是渐近稳定的.
定理得证.
3 有界性引理2[7] Gronwall-Reid-Bellman不等式:若u(t)与α(t)都是[a, b]上的连续函数,β(t)≥0在[a, b]上可积且成立
| $ u\left( t \right) \le \alpha \left( t \right) + \int_a^t {\beta \left( s \right)u\left( s \right){\rm{d}}s} ,t \in \left[ {a,b} \right], $ |
则必有
| $ u\left( t \right) \le \alpha \left( t \right) + \int_a^t {\beta \left( s \right)\alpha \left( s \right)\exp \left( {\int_a^t {\beta \left( {{s_1}} \right){\rm{d}}{s_1}} } \right){\rm{d}}s} ; $ |
若α(t)非减,则成立
| $ u\left( t \right) \le \alpha \left( t \right)\exp \left( {\int_a^t {\beta \left( s \right){\rm{d}}s} } \right). $ |
对于p(t, x(t), x′(t), x(t-r(t)), x′(t-r(t)), x″(t))≠0的情况,有下列结论:
定理2 [9]假设定理1的条件成立且连续函数p满足下列条件:
| $ \left| {p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right)} \right.} \right| \le q\left( t \right), $ |
其中q(t)∈L1(0, ∞), L1(0, ∞)是Lebesgue可积函数空间.
当
| $ \begin{array}{l} \sigma \le \min \left\{ {\frac{{2c\left( {1 - \beta } \right)}}{{a\left( {L + BM} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)MB}},} \right.\\ \left. {\frac{{2d\left( {1 - \beta } \right)}}{{\left( {L + MB} \right)\left( {1 - \beta } \right) + \left( {a + 1} \right)L}}} \right\} \end{array} $ |
时,存在一个有限正常数M使系统(2)的解x(t)对所有的t≥t0满足不等式
| $ \left| {x\left( t \right)} \right| \le \sqrt M ,\left| {x'\left( t \right)} \right| \le \sqrt M ,\left| {x''\left( t \right)} \right| \le \sqrt M . $ |
注:这里用来证明定理2的Lyapunov函数V(xt, yt, zt)与定理1相同.
证明 对于p(t, x(t), x′(t), x(t-r(t)), x′(t-r(t)), x″(t))≠0的情况,有
| $ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le - {D_5}{y^2} - {D_6}{z^2} + \left| {\left( {ay + z} \right)p\left( {t,x\left( t \right),} \right.} \right.\\ \left. {\left. {x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right)} \right| \le \left| {\left( {ay + } \right.} \right.\\ \left. {\left. z \right)} \right|\left| {p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),} \right.} \right.\\ \left. {\left. {x''\left( t \right)} \right)} \right| \le \left( {a\left| y \right| + \left| z \right|} \right)\left| {p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - } \right.} \right.} \right.\\ \left. {\left. {\left. {r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right)} \right| \le {D_7}\left( {\left| y \right| + } \right.\\ \left. {\left| z \right|} \right)q\left( t \right). \end{array} $ |
其中D7=max{ 1, a }.
由不等式|y|≤1+y2和|z| ≤1+z2, 可得
| $ \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le {D_7}\left( {2 + {y^2} + {z^2}} \right)q\left( t \right). $ |
由y2+z2≤D4-1V(xt, yt, zt),可以得到
| $ \begin{array}{l} \frac{{{\rm{d}}{V_{\left( {{x_t},{y_t},{z_t}} \right)}}}}{{{\rm{d}}t}} \le {D_7}\left( {2 + D_4^{ - 1}V\left( {{x_t},{y_t},{z_t}} \right)} \right)q\left( t \right) = \\ 2{D_7}q\left( t \right) + {D_7}D_4^{ - 1}V\left( {{x_t},{y_t},{z_t}} \right)q\left( t \right). \end{array} $ | (4) |
对式(4)从0到t进行积分,并利用假设q∈L1(0, ∞)和Gronwall-Reid-Bellman不等式,可得
| $ \begin{array}{l} V\left( {{x_t},{y_t},{z_t}} \right) \le V\left( {{x_0},{y_0},{z_0}} \right) + 2{D_7}A + \\ {D_7}D_4^{ - 1}\int_0^t {V\left( {{x_s},{y_s},{z_s}} \right)q\left( s \right){\rm{d}}s} \le \left( {V\left( {{x_0},{y_0},{z_0}} \right) + } \right.\\ \left. {2{D_7}A} \right)\exp \left( {{D_7}D_4^{ - 1}\int_0^t {q\left( s \right){\rm{d}}s} } \right) \le \left( {V\left( {{x_0},{y_0},{z_0}} \right) + } \right.\\ \left. {2{D_7}A} \right)\exp \left( {{D_7}D_4^{ - 1}A} \right) = {M_1} < \infty , \end{array} $ |
其中M1是正常数,M1=(V(x0, y0, z0)+2D7A)exp(D7D4-1A)和
| $ {x^2} + {y^2} + {z^2} \le D_4^{ - 1}V\left( {{x_t},{y_t},{z_t}} \right) \le M, $ |
其中M=D4-1M1.
因此,当t≥t0时,不等式|x| ≤
即当t≥t0时,|x(t)| ≤
证毕.
例题1 考虑三阶时滞微分方程
| $ \begin{array}{l} x'''\left( t \right) + \left( {9 + {{\left( {x'\left( t \right)} \right)}^2}} \right)x''\left( t \right) + 4x'\left( {t - r\left( t \right)} \right) + 2{\rm{arctg}}x\left( {t - r\left( t \right)} \right) = \\ \frac{1}{{1 + {t^2} + {x^2}\left( t \right) + {x^2}\left( {t - r\left( t \right)} \right) + {{x''}^2}\left( t \right) + {{x'}^2}\left( {t - r\left( t \right)} \right)}}. \end{array} $ | (5) |
方程(5)可表示为如下系统
| $ \left\{ \begin{array}{l} x' = y,\\ y' = z,\\ z' = - 2{\rm{arctg}}x\left( t \right) - 4y\left( t \right) - \left( {9 + {y^2}\left( t \right)} \right)z\left( t \right) + \\ \;\;\;\;4\int_{t - r\left( t \right)}^t {z\left( s \right){\rm{d}}s} + 2\int_{t - r\left( t \right)}^t {\frac{{y\left( s \right)}}{{1 + {x^2}\left( s \right)}}{\rm{d}}s + p(t,} \\ x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x\left( t \right)). \end{array} \right. $ |
令
| $ \begin{array}{l} p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right) = \\ \frac{1}{{1 + {t^2} + {x^2}\left( t \right) + {x^2}\left( {t - r\left( t \right)} \right) + {{x''}^2}\left( t \right) + {{x'}^2}\left( {t - r\left( t \right)} \right)}}, \end{array} $ |
显然方程(5)是式(1)的特殊形式,可知
| $ \begin{array}{l} 0 < {\left[ {h\left( x \right)\varphi \left( x \right)} \right]^\prime } = \frac{2}{{{{\left( {1 + x} \right)}^2}}} \le 2 = 3 - 1,a = 1,\\ b = 3,c = 1,\frac{{f\left( y \right)}}{y} = 4 \ge 3 = b,\left( {y \ne 0} \right),\left| {f'\left( y \right)} \right| = \\ 4 \le 5 = L, \end{array} $ |
| $ \begin{array}{l} {\mathop{\rm sgn}} \arctan x = {\rm{sgn}}x,\varphi '\left( x \right) = \frac{2}{{1 + {x^2}}} \le 2 = M,g\left( {x,y} \right) = \\ 9 + {y^2} \ge 9 = 1 + 8,d = 8,{{g'}_x}\left( {x,y} \right)y = 0 \le 0. \end{array} $ |
由于
| $ \begin{array}{l} p\left( {t,x\left( t \right),x'\left( t \right),x\left( {t - r\left( t \right)} \right),x'\left( {t - r\left( t \right)} \right),x''\left( t \right)} \right) = \\ \frac{1}{{1 + {t^2} + {x^2}\left( t \right) + {x^2}\left( {t - r\left( t \right)} \right) + {{x''}^2}\left( t \right) + {{x'}^2}\left( {t - r\left( t \right)} \right)}} \le \\ \frac{1}{{1 + {t^2}}}, \end{array} $ |
则
| $ \int_0^\infty {q\left( s \right){\rm{d}}s} = \int_0^\infty {\frac{1}{{1 + {s^2}}}{\rm{d}}s} = \frac{{\rm{ \mathsf{ π} }}}{2} \le \infty , $ |
其中q∈L1(0, +∞).
因此定理1和定理2的所有条件都成立,当p≡0时方程(5)的零解渐近稳定,当p≠0时方程(5)所有解有界.
| [1] |
王联, 王慕秋.
非线性常微分方程定性分析[M]. 哈尔滨: 哈尔滨工业大学出版社, 1987.
|
| [2] |
王琦. 标量随机延迟微分方程Euler-Maruyama方法的均方稳定性分析[J].
广东工业大学学报, 2011, 28(1): 50-53.
Wang Q. Mean-square stability analysis of euler-maruyama method for scalar stochastic delay differential equations[J]. Journal of Guangdong University of Technology, 2011, 28(1): 50-53. |
| [3] |
王联, 王慕秋. 一类三阶非线性系统李雅普洛夫函数构造分析[J].
应用数学学报, 1983, 6(3): 309-323.
Wang L, Wang M Q. On the construction of globally asymptotically stable lyapunov's of a type of nonlinear third-order systems[J]. Applied Mathematics, 1983, 6(3): 309-323. |
| [4] |
姚洪兴, 孟伟业. 一类三阶双滞量时滞微分方程的全局渐近稳定性[J].
应用数学, 2008, 21(3): 576-580.
Yao H X, Meng W Y. Global asymptotic stability of a class of third-order differential equation with two delays[J]. Mathematics Applied, 2008, 21(3): 576-580. |
| [5] |
Tunc C. On the stability of solutions to a certain fourth-order differential equation[J].
Nonlinear Dyn, 2008, 51(1-2): 71-81.
|
| [6] |
Yao H X, Meng W Y. On the stability of solutions of certain non-linear third-order delaydifferential equations[J].
International Journal of Nonlinear science, 2008, 6(3): 230-237.
|
| [7] |
张丽娟, 斯力更. 一类三阶非线性系统的全局稳定性[J].
应用数学学报, 2007, 30(1): 99-103.
Zhang L J, Si L G. The whole stability of a class of third order nonlinear system[J]. Applied Mathematics, 2007, 30(1): 99-103. |
| [8] |
傅朝金, 廖晓芹. 时滞微分方程的稳定性[J].
数学物理学报, 2003, 23A(4): 494-498.
Fu C J, Liao X Q. Stability for differential equations with delay[J]. Acta Mathematica Scientia, 2003, 23A(4): 494-498. |
| [9] |
赵杰民. 一类非线性时滞系统的定性分析[J].
数学杂志, 2000, 20(4): 403-409.
Zhao J M. Qualitative analysis for a class of nonlinear delay system[J]. J.of Math, 2000, 20(4): 403-409. |
| [10] |
Tunc C. New results about stability and boundedness of certain non-linear third-order delay differential equations[J].
The Arabian Journal for Science and Engineering, 2006, 31(24): 185-196.
|
| [11] |
朱元峰. 一类二阶和三阶时滞微分系统的稳定性[J].
中国科学院研究生院学报, 1990, 7(2): 10-17.
Zhu Y F. On thestability of a type of second and third order delay differential systems[J]. Journal of Graduate School, 1990, 7(2): 10-17. |
| [12] |
贾建文. 一类三阶非线性系统的全局稳定性的Lyapunov函数的构造[J].
应用数学学报, 1999, 22(4): 621-623.
Jia J W. On the construction of globally asymptotically stable lyapunov's of a type of nonlinear third-order systems[J]. Applied Mathematics, 1999, 22(4): 621-623. |
| [13] |
刘昌东. 一类三阶非线性微分方程的全局渐近稳定性[J].
湛江师范学院学报:自然科学版, 1999, 20(2): 16-18.
Liu C D. The entire gradual stability of a class of third order nonlinear differential Equation[J]. Journal of Zhanjiang Normal College:Natural Sciences Edition, 1999, 20(2): 16-18. |
| [14] |
Zhu Y. On stability, boundedness and existence of periodic solution of a kind of third-order nonlinear Delay differential system[J].
Ann of Diff Eqs, 1992, 8(2): 249-259.
|
| [15] |
Tunc C. On the stability of solutions of certain fourth-order delay differential equation[J].
Applied Mathematics, 2006, 27(8): 1141-1148.
|
| [16] |
Sadek A I. Stability and boundedness of a kind of third-order differential system[J].
Applied Mathematics Letters, 2003, 16(5): 657-662.
DOI: 10.1016/S0893-9659(03)00063-6. |
2015, Vol. 32