广东工业大学学报  2014, Vol. 31Issue (4): 69-73, 78.  DOI: 10.3969/j.issn.1007-7162.2014.04.013.
0

引用本文 

周敏, 高学军, 董超. 解抛物型方程的八点隐式差分格式[J]. 广东工业大学学报, 2014, 31(4): 69-73, 78. DOI: 10.3969/j.issn.1007-7162.2014.04.013.
Zhou Min, Gao Xue-jun, Dong Chao. The Implicit Difference Scheme of Eight Points for Solving the Parabolic Equations[J]. Journal of Guangdong University of Technology, 2014, 31(4): 69-73, 78. DOI: 10.3969/j.issn.1007-7162.2014.04.013.

基金项目:

广东省自然科学基金资助项目(S2011040004273;S2011010005029)

作者简介:

周敏(1984-), 女, 硕士研究生, 主要研究方向为微分动力系统。

文章历史

收稿日期:2013-05-31
解抛物型方程的八点隐式差分格式
周敏, 高学军, 董超     
广东工业大学 应用数学学院,广东 广州 510520
摘要: 针对一维抛物型方程的初边值问题, 在网格剖分的基础上, 先用待定系数法构造出了一个含有多个参数的差分格式, 然后利用Taylor级数展开法,并结合偏微分方程本身的特性在xjtn处展开, 使其达到一定的精度, 最后解方程确定参数.按照这样的方法, 构造了一个两层八点隐式差分格式, 其格式的截断误差为O(τ3+h5), 稳定性条件是0.001 < r < 0.231或0.236 < r < 0.772, 并给出了相应的数值算例验证了方法的可行性和有效性.
关键词: 一维抛物型方程    隐式差分格式    截断误差    稳定性条件    
The Implicit Difference Scheme of Eight Points for Solving the Parabolic Equations
Zhou Min, Gao Xue-jun, Dong Chao     
School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
Abstract: Solutions to the initial boundary value problem with one-dimension parabolic equations were presented. On the basis of mesh, an implicit difference scheme with multiple variables was given by the undetermined parameters method. Then, it was expanded with Taylor series by combining the characteristics of partition differential equations in xjtn, to reach certain accuracy. Finally, parameters of the equation were determined. Via this method, an implicit difference scheme of two layers and eight points for solving parabolic equation was constructed. The order of truncation error was O(τ3+h5), and the stability condition was 0.001 < r < 0.231 or 0.236 < r < 0.772. The corresponding numerical example has been given to demonstrate the feasibility and effectiveness of the proposed method.
Key words: one-dimension parabolic equation    implicit difference scheme    order of truncation error    stability condition    

在渗流、扩散、热传导等领域中经常会遇到求解抛物型方程的问题, 对于一维抛物型方程的研究, 其模型为如下初边值问题

$ \left\{ \begin{array}{l} \frac{{\partial u}}{{\partial t}} = a\frac{{{\partial ^2}u}}{{\partial {x^2}}},0 \le x \le L,0 \le t \le T,a > 0,\\ u\left( {x,0} \right) = f\left( x \right),0 \le x \le L,\\ u\left( {0,t} \right) = u\left( {\pi ,t} \right) = 0,0 \le t \le T. \end{array} \right. $ (1)

在解上述问题的线性差分格式中, 已有较多的研究[1-14].张莉[6]给出了一个两层六点半显格式, 其截断误差为O(τ2+h3), 稳定性条件为0 < r < 1.17.陈泽龙[8]给出了一个两层七点半显式格式, 其截断误差为O(τ2+h4), 稳定性条件为0 < r≤0.4647.基于此, 本文用待定系数法构造了一个两层八点的高精度隐式差分格式, 截断误差为O(τ3+h5), 稳定性条件是0.001 < r < 0.231或0.236 < r < 0.772.

1 格式的构造

设时间步长为τ, 空间步长为$h = \frac{L}{M} $(M为整数), 对区域[0, L]×[0, T]矩形区剖分, 取局部节点集为

$ \{ ({x_{j - 2}}, {t_n}), ({x_{j - 1}}, {t_n}), ({x_j}, {t_n}), ({x_{j + 1}}, {t_n}), ({x_{j + 2}}, {t_n}), $$ ({x_{j - 1}}, {t_{n + 1}}), ({x_j}, {t_{n + 1}}), ({x_{j + 1}}, {t_{n + 1}})\} $,如图 1所示.

图 1 差分格式节点示意图 Figure 1 Difference scheme node schemes

当问题(1)的解充分光滑时, 有如下关系式:

$ \frac{{{\partial ^{m + n}}u}}{{\partial {x^m}\partial {t^n}}} = {a^n}\frac{{{\partial ^{m + 2n}}u}}{{\partial {x^{m + 2n}}}}, $ (2)

其中mn为非负整数.将8个节点上u的值在节点(jh, )处作Taylor展开, 得

$ \begin{array}{l} u_{j - 2}^n = u_j^n - 2h\frac{{\partial u}}{{\partial x}} + \frac{{{{\left( {2h} \right)}^2}}}{{2!}}\frac{{{\partial ^2}u}}{{\partial {x^2}}} - \frac{{{{\left( {2h} \right)}^3}}}{{3!}}\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \\ \frac{{{{\left( {2h} \right)}^4}}}{{4!}}\frac{{{\partial ^4}u}}{{\partial {x^4}}} - \frac{{{{\left( {2h} \right)}^5}}}{{5!}}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + \frac{{{{\left( {2h} \right)}^6}}}{{6!}}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^7}} \right), \end{array} $ (3)
$ \begin{array}{l} u_{j - 1}^n = u_j^n - h\frac{{\partial u}}{{\partial x}} + \frac{{{h^2}}}{{2!}}\frac{{{\partial ^2}u}}{{\partial {x^2}}} - \frac{{{h^3}}}{{3!}}\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \frac{{{h^4}}}{{4!}}\frac{{{\partial ^4}u}}{{\partial {x^4}}} - \\ \frac{{{h^5}}}{{5!}}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + \frac{{{h^6}}}{{6!}}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^7}} \right), \end{array} $ (4)
$ \begin{array}{l} u_{j + 1}^n = u_j^n + h\frac{{\partial u}}{{\partial x}} + \frac{{{h^2}}}{{2!}}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{h^3}}}{{3!}}\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \frac{{{h^4}}}{{4!}}\frac{{{\partial ^4}u}}{{\partial {x^4}}} + \\ \frac{{{h^5}}}{{5!}}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + \frac{{{h^6}}}{{6!}}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^7}} \right), \end{array} $ (5)
$ \begin{array}{l} u_{j + 2}^n = u_j^n + 2h\frac{{\partial u}}{{\partial x}} + \frac{{{{\left( {2h} \right)}^2}}}{{2!}}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{{{{\left( {2h} \right)}^3}}}{{3!}}\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \\ \frac{{{{\left( {2h} \right)}^4}}}{{4!}}\frac{{{\partial ^4}u}}{{\partial {x^4}}} + \frac{{{{\left( {2h} \right)}^5}}}{{5!}}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + \frac{{{{\left( {2h} \right)}^6}}}{{6!}}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^7}} \right), \end{array} $ (6)
$ \begin{array}{l} u_{j - 1}^{n + 1} = u_j^n + \left( { - h\frac{{\partial u}}{{\partial x}} + \tau \frac{{\partial u}}{{\partial t}}} \right) + \frac{1}{{2!}}\left( {{h^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} - } \right.\\ \left. {2h\tau a\frac{{{\partial ^3}u}}{{\partial {x^3}}} + {\tau ^2}{a^2}\frac{{{\partial ^4}u}}{{\partial {x^4}}}} \right) + \frac{1}{{3!}}\left( { - {h^3}\frac{{{\partial ^3}u}}{{\partial {x^3}}} + 3{h^2}\tau a\frac{{{\partial ^4}u}}{{\partial {x^4}}} - } \right.\\ \left. {3h{\tau ^2}{a^2}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + {\tau ^3}{a^3}\frac{{{\partial ^6}u}}{{\partial {x^6}}}} \right) + \frac{1}{{4!}}\left( {{h^4}\frac{{{\partial ^4}u}}{{\partial {x^4}}} - 4{h^3}\tau a\frac{{{\partial ^5}u}}{{\partial {x^5}}} + } \right.\\ \left. {6{h^2}{\tau ^2}{a^2}\frac{{{\partial ^6}u}}{{\partial {x^6}}} - 4h{\tau ^3}{a^3}\frac{{{\partial ^7}u}}{{\partial {x^7}}}} \right) + \frac{1}{{5!}}\left( { - {h^5}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + 5{h^4}\tau a\frac{{{\partial ^6}u}}{{\partial {x^6}}} - } \right.\\ \left. {10{h^3}{\tau ^2}{a^2}\frac{{{\partial ^7}u}}{{\partial {x^7}}}} \right) + \frac{1}{{6!}}{h^6}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{\tau ^4} + {h^7}} \right), \end{array} $ (7)
$ u_j^{n + 1} = u_j^n + \tau \frac{{\partial u}}{{\partial t}} + \frac{{{\tau ^2}{a^2}}}{{2!}}\frac{{{\partial ^4}u}}{{\partial {x^4}}} + \frac{{{\tau ^3}{a^3}}}{{3!}}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{\tau ^4}} \right), $ (8)
$ \begin{array}{l} u_{j + 1}^{n + 1} = u_j^n + \left( {h\frac{{\partial u}}{{\partial x}} + \tau \frac{{\partial u}}{{\partial t}}} \right) + \frac{1}{{2!}}\left( {{h^2}\frac{{{\partial ^2}u}}{{\partial {x^2}}} + 2h\tau a\frac{{{\partial ^3}u}}{{\partial {x^3}}} + } \right.\\ \left. {{\tau ^2}{a^2}\frac{{{\partial ^4}u}}{{\partial {x^4}}}} \right) + \frac{1}{{3!}}\left( {{h^3}\frac{{{\partial ^3}u}}{{\partial {x^3}}} + 3{h^2}\tau a\frac{{{\partial ^4}u}}{{\partial {x^4}}} + 3h{\tau ^2}{a^2}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + } \right.\\ \left. {{\tau ^3}{a^3}\frac{{{\partial ^6}u}}{{\partial {x^6}}}} \right) + \frac{1}{{4!}}\left( {{h^4}\frac{{{\partial ^4}u}}{{\partial {x^4}}} + 4{h^3}\tau a\frac{{{\partial ^5}u}}{{\partial {x^5}}} + 6{h^2}{\tau ^2}{a^2}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + } \right.\\ \left. {4h{\tau ^3}{a^3}\frac{{{\partial ^7}u}}{{\partial {x^7}}}} \right) + \frac{1}{{5!}}\left( {{h^5}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + 5{h^4}\tau a\frac{{{\partial ^6}u}}{{\partial {x^6}}} + 10{h^3}{\tau ^2}{a^2}\frac{{{\partial ^7}u}}{{\partial {x^7}}}} \right) + \\ \frac{1}{{6!}}{h^6}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{\tau ^4} + {h^7}} \right), \end{array} $ (9)
$ {\mathit{\Delta} _t}\left[ u \right]_{j - 1}^n = \frac{{u_{j - 1}^{n + 1} - u_{j - 1}^n}}{\tau }, $ (10)
$ {\mathit{\Delta} _t}\left[ u \right]_j^n = \frac{{u_j^{n + 1} - u_j^n}}{\tau }, $ (11)
$ {\mathit{\Delta} _t}\left[ u \right]_{j + 1}^n = \frac{{u_j^{n + 1} - u_j^n}}{\tau }, $ (12)
$ \delta _x^2\left[ u \right]_{j - 1}^n = \frac{{u_{j - 2}^n - 2u_{j - 1}^n + u_j^n}}{{{h^2}}}, $ (13)
$ \delta _x^2\left[ u \right]_j^n = \frac{{u_{j - 1}^n - 2u_j^n + u_{j + 1}^n}}{{{h^2}}}, $ (14)
$ \delta _x^2\left[ u \right]_{j + 1}^n = \frac{{u_j^n - 2u_{j + 1}^n + u_{j + 2}^n}}{{{h^2}}}, $ (15)
$ \delta _x^2\left[ u \right]_{j + 2}^n = \frac{{u_{j + 1}^n - 2u_{j + 2}^n + u_{j + 3}^n}}{{{h^2}}}. $ (16)

如果u是式(2)的光滑解, 即u满足

$ \frac{{\partial u}}{{\partial t}} = a\frac{{{\partial ^2}u}}{{\partial {x^2}}} $

的光滑函数.结合式(2)进行整理, 便可导出下列差商的渐进表达式(其中=h2r):

$ \begin{array}{l} {\mathit{\Delta} _t}\left[ u \right]_{j - 1}^n = \frac{{u_{j - 1}^{n + 1} - u_{j - 1}^n}}{\tau } = \frac{{\partial u}}{{\partial t}} - ha\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \\ \frac{{{h^2}a\left( {r + 1} \right)}}{2}\frac{{{\partial ^4}u}}{{\partial {x^4}}} - \frac{{{h^3}a\left( {3r + 1} \right)}}{6}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + \frac{{{h^4}a}}{{24}}\left( {4{r^2} + 6r + } \right.\\ \left. 1 \right)\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^5}} \right), \end{array} $
$ {\mathit{\Delta} _t}\left[ u \right]_j^n = \frac{{u_j^{n + 1} - u_j^n}}{\tau } = \frac{{\partial u}}{{\partial t}} + \frac{{{h^2}ar}}{2}\frac{{{\partial ^4}u}}{{\partial {x^4}}} + \frac{{{h^4}a{r^2}}}{6}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{\tau ^3}} \right), $
$ \begin{array}{l} {\mathit{\Delta} _t}\left[ u \right]_{j + 1}^n = \frac{{u_{j + 1}^{n + 1} - u_{j + 1}^n}}{\tau } = \frac{{\partial u}}{{\partial t}} + ha\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \\ \frac{{{h^2}a\left( {r + 1} \right)}}{2}\frac{{{\partial ^4}u}}{{\partial {x^4}}} + \frac{{{h^3}a\left( {3r + 1} \right)}}{6}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + \frac{{{h^4}a}}{{24}}\left( {4{r^2} + 6r + } \right.\\ \left. 1 \right)\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^5}} \right), \end{array} $
$ \begin{array}{l} \delta _x^2\left[ u \right]_{j - 1}^n = \frac{{u_{j - 2}^n - 2u_{j - 1}^n + u_j^n}}{{{h^2}}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}} - h\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \\ \frac{7}{{12}}{h^2}\frac{{{\partial ^4}u}}{{\partial {x^4}}} - \frac{1}{4}{h^3}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + \frac{{31}}{{360}}{h^4}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^5}} \right), \end{array} $
$ \begin{array}{l} \delta _x^2\left[ u \right]_j^n = \frac{{u_{j - 1}^n - 2u_j^n + u_{j + 1}^n}}{{{h^2}}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}} + \frac{1}{{12}}{h^2}\frac{{{\partial ^4}u}}{{\partial {x^4}}} + \\ \frac{1}{{360}}{h^4}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^5}} \right), \end{array} $
$ \begin{array}{l} \delta _x^2\left[ u \right]_{j + 1}^n = \frac{{u_j^n - 2u_{j + 1}^n + u_{j + 2}^n}}{{{h^2}}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}} + h\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \\ \frac{7}{{12}}{h^2}\frac{{{\partial ^4}u}}{{\partial {x^4}}} + \frac{1}{4}{h^3}\frac{{{\partial ^5}u}}{{\partial {x^5}}} + \frac{{31}}{{360}}{h^4}\frac{{{\partial ^6}u}}{{\partial {x^6}}} + O\left( {{h^5}} \right). \end{array} $

用上述差商建立含多个参数的差分算子

$ \begin{array}{l} {L_h}\left[ u \right]_j^n = {c_1}{\mathit{\Delta} _t}\left[ u \right]_{j - 1}^n + {c_2}{\mathit{\Delta} _t}\left[ u \right]_j^n + {c_3}{\mathit{\Delta} _t}\left[ u \right]_{j + 1}^n - \\ a{c_4}\delta _x^2\left[ u \right]_{j - 1}^n - a{c_5}\delta _x^2\left[ u \right]_j^n - a{c_6}\delta _x^2\left[ u \right]_{j + 1}^n = 0 \end{array} $ (17)

来逼近微分算子$ {L_u} = \frac{{\partial u}}{{\partial t}} - a\frac{{{\partial ^2}u}}{{\partial {x^2}}} $, 将差商的渐进表达式代入到式(17), 经整理得

$ \begin{array}{l} \left( {{c_1} + {c_2} + {c_3}} \right)\frac{{\partial u}}{{\partial t}} + \left( { - a{c_4} - a{c_5} - a{c_6}} \right)\frac{{{\partial ^2}u}}{{\partial {x^2}}} + \\ \left( { - ha{c_1} + ha{c_3} + ha{c_4} - ha{c_6}} \right)\frac{{{\partial ^3}u}}{{\partial {x^3}}} + \left[ {\frac{{{h^2}a\left( {c + 1} \right)}}{2}{c_1} + } \right.\\ \left. {\frac{{{h^2}ar}}{2}{c_2} + \frac{{{h^2}a\left( {r + 1} \right)}}{2}{c_3} - \frac{{7{h^2}a}}{{12}}{c_4} - \frac{{{h^2}a}}{{12}}{c_5} - \frac{{7{h^2}a}}{{12}}{c_6}} \right]\frac{{{\partial ^4}u}}{{\partial {x^4}}} + \\ \left[ { - \frac{{{h^3}a\left( {3r + 1} \right)}}{6}{c_1} + \frac{{{h^3}a\left( {r + 1} \right)}}{6}{c_3} + \frac{{{h^3}a}}{4}{c_4} - \frac{{{h^3}a}}{4}{c_6}} \right] \times \\ \frac{{{\partial ^5}u}}{{\partial {x^5}}} + \left[ {\frac{{{h^4}a}}{{24}}\left( {4{r^2} + 6r + 1} \right){c_1} + \frac{{{h^3}a{r^2}}}{6}{c_2} + \frac{{{h^4}a}}{{24}}\left( {4{r^2} + 6r + } \right.} \right.\\ \left. {\left. 1 \right){c_3} - \frac{{31{h^4}a}}{{360}}{c_4} - \frac{{{h^4}a}}{{360}}{c_5} - \frac{{31{h^4}a}}{{360}}{c_6}} \right]\frac{{{\partial ^6}u}}{{\partial {x^6}}} = 0. \end{array} $ (18)

为了使式(18)的截断误差达到O(τ3+h5), 只需解下面方程组

$ \left\{ \begin{array}{l} {c_1} + {c_2} + {c_3} - {c_4} - {c_5} - {c_6} = 0,\\ {c_1} - {c_3} - {c_4} + {c_6} = 0,\\ 6\left( {r + 1} \right){c_1} + 6r{c_2} + 6\left( {r + 1} \right){c_3} - 7{c_4} - {c_5} - 7{c_6} = 0,\\ - 2\left( {3r + 1} \right){c_1} + 2\left( {3r + 1} \right){c_3} + 3{c_4} - 3{c_6} = 0,\\ 15\left( {4{r^2} + 6r + 1} \right){c_1} + 60{r^2}{c_2} + 15\left( {4{r^2} + 6r + 1} \right){c_3} - \\ \;\;\;31{c_4} - {c_5} - 31{c_6} = 0. \end{array} \right. $ (19)

解得

$ \left\{ \begin{array}{l} {c_1} = \frac{{ - 300{r^2} + 180r + }}{{3\left( {60{r^2} - 3} \right)}}{c_6},\\ {c_2} = \frac{{600{r^2} + 540r - 160}}{{3\left( {420{r^2} + 56r - 21} \right)}}{c_6},\\ {c_3} = \frac{{ - 300{r^2} + 180r - 25}}{{3\left( {60{r^2} - 3} \right)}}{c_6},\\ {c_4} = {c_6},\\ {c_5} = \frac{{ - 120{r^2} + 300r - 64}}{{60{r^2} - 3}}{c_6}. \end{array} \right. $ (20)

c6=180r2-9, 有

$ \left\{ \begin{array}{l} {c_1} = - 300{r^2} + 180r - 25,\\ {c_2} = 600{r^2} + 540r - 160,\\ {c_3} = - 300{r^2} + 180r - 25,\\ {c_4} = 180{r^2} - 9,\\ {c_5} = - 360{r^2} + 900r - 192. \end{array} \right. $ (21)

将式(21)代入到式(17)中, 得差分格式为

$ \begin{array}{l} \left( { - 300{r^2} + 180r - 25} \right)u_{j - 1}^{n + 1} + \left( {600{r^2} + 540r - } \right.\\ \left. {160} \right)u_j^{n + 1} + \left( { - 300{r^2} + 180r - 25} \right)u_{j + 1}^{n + 1} = \left( {180{r^3} - 9r} \right)u_{j - 2}^n + \\ \left( { - 720{r^3} + 600{r^2} + 6r - 25} \right)u_{j - 1}^n + \left( {1080{r^3} - 1200{r^2} + } \right.\\ \left. {906r - 160} \right)u_j^n + \left( { - 720{r^3} + 600{r^2} + 6r - 25} \right)u_{j + 1}^n + \\ \left( {180{r^3} - 9r} \right)u_{j + 2}^n. \end{array} $ (22)

根据对称性可得其对称格式为

$ \begin{array}{l} \left( { - 300{r^2} + 180r - 25} \right)u_{j + 1}^{n + 1} + \left( {600{r^2} + 540r - } \right.\\ \left. {160} \right)u_j^{n + 1} + \left( { - 300{r^2} + 180r - 25} \right)u_{j - 1}^{n + 1} = \left( {180{r^3} - } \right.\\ \left. {9r} \right)u_{j + 2}^n + \left( { - 720{r^3} + 600{r^2} + 6r - 25} \right)u_{j + 1}^n + \left( {1080{r^3} - } \right.\\ \left. {1200{r^2} + 906r - 160} \right)u_j^n + \left( { - 720{r^3} + 600{r^2} + 6r - } \right.\\ \left. {25} \right)u_{j - 1}^n + \left( {180{r^3} - 9r} \right)u_{j - 2}^n. \end{array} $ (23)
2 稳定性分析

为了简化运算, 令

$ A = - 300{r^2} + 180r - 25, $
$ B = 600{r^2} + 540r - 160, $
$ C = - 300{r^2} + 180r - 25, $
$ D = 180{r^3} - 9r, $
$ E = - 720{r^3} + 600{r^2} + 6r - 25, $
$ F = 1080{r^3} - 1200{r^2} + 906r - 160, $
$ G = - 720{r^3} + 600{r^2} + 6r - 25, $
$ H = 180{r^3} - 9r. $

利用Fourier方法[7-10], 令ujn=vneijθ, 则式(22)可化为

$ \begin{array}{l} A{v^{n + 1}}{{\rm{e}}^{i\left( {j - 1} \right)\theta }} + B{v^n}{{\rm{e}}^{ij\theta }} + C{v^{n + 1}}{{\rm{e}}^{i\left( {j + 1} \right)\theta }} = D{v^n}{{\rm{e}}^{i\left( {j + 2} \right)\theta }} + \\ E{v^n}{{\rm{e}}^{i\left( {j - 1} \right)\theta }} + F{v^n}{{\rm{e}}^{ij\theta }} + G{v^n}{{\rm{e}}^{i\left( {j + 1} \right)\theta }} + H{v^n}{{\rm{e}}^{i\left( {j + 2} \right)\theta }}, \end{array} $ (24)

$ \begin{array}{l} A{v^{n + 1}}{{\rm{e}}^{ - i\theta }} + B{v^n}{{\rm{e}}^{i\theta }} + C{v^{n + 1}}{{\rm{e}}^{i\theta }} = D{v^n}{{\rm{e}}^{ - 2i\theta }} + E{v^n}{{\rm{e}}^{ - i\theta }} + \\ F{v^n} + G{v^n}{{\rm{e}}^{i\theta }} + H{v^n}{{\rm{e}}^{2i\theta }}. \end{array} $ (25)

令增长因子$ \lambda = \frac{q}{p} $, s=1-cosθ, s∈[0, 2], 则

$ p = \left( {A + C} \right)\left( {1 - s} \right) + B + \left( {C - A} \right)i\sin \theta , $ (26)
$ \begin{array}{l} q = \left( {2D + 2H} \right){s^2} + \left( { - 4D - E - G - 4H} \right)s + \\ \left( {D + E + F + G + H} \right) + \left[ { - 2D - E + G + 2H + \left( {2D - } \right.} \right.\\ \left. {\left. {2H} \right)s} \right]i\sin \theta . \end{array} $ (27)

A, B, C, D, E, F, G, H的值代入式(26)和(27), 得

$ \begin{array}{l} p = \left( { - 600{r^2} + 360r - 50} \right) + \left( {600{r^2} - 360r + 50} \right)s + \\ 600{r^2} + 540r - 160, \end{array} $ (28)
$ \begin{array}{l} q = \left( {720{r^3} - 36r} \right){s^2} + \left( {720{r^3} - 1200{r^2} + 24r + } \right.\\ \left. {50} \right)s + 900r - 210, \end{array} $ (29)
$ \begin{array}{l} {\left| {\frac{q}{4}} \right|^2} - {\left| {\frac{p}{4}} \right|^2} = \left( {32400{r^6} - 3240{r^4} + 81{r^2}} \right){s^4} + \\ \left( {64800{r^6} - 108000{r^5} - 1080{r^4} + 10080{r^3} - 108{r^2} - } \right.\\ \left. {234r} \right){s^3} + \left( {32400{r^6} - 10800{r^5} + 150660{r^4} + 9000{r^3} - } \right.\\ \left. {23814{r^2} + 3450r} \right){s^2} + \left( {81000{r^4} - 221580{r^3} + 59850{r^2} - } \right.\\ \left. {10176} \right)s, \end{array} $ (30)

要使格式(22)稳定的充要条件[6]是|q|2- |p|2≤0, 即$ {\left| {\frac{q}{4}} \right|^2} - {\left| {\frac{p}{4}} \right|^2} \le 0 $.

$ \begin{array}{l} F\left( s \right) = \left( {32400{r^6} - 3240{r^4} + 81{r^2}} \right){s^4} + \left( {64800{r^6} - } \right.\\ \left. {108000{r^5} - 1080{r^4} + 10080{r^3} - 108{r^2} - 234r} \right){s^3} + \\ \left( {32400{r^6} - 10800{r^5} + 150660{r^4} + 9000{r^3} - 23814{r^2} + } \right.\\ \left. {3450r} \right){s^2} + \left( {81000{r^4} - 221580{r^3} + 59850{r^2} - } \right.\\ \left. {10176} \right)s, \end{array} $ (31)

$ \begin{array}{l} F'\left( s \right) = 4\left( {32400{r^6} - 3240{r^4} + 81{r^2}} \right){s^3} + \\ 3\left( {64800{r^6} - 108000{r^5} - 1080{r^4} + 10080{r^3} - 108{r^2} - } \right.\\ \left. {234r} \right){s^2} + 2\left( {32400{r^6} - 10800{r^5} + 150660{r^4} + 9000{r^3} - } \right.\\ \left. {23814{r^2} + 3450r} \right)s + \left( {81000{r^4} - 221580{r^3} + 59850{r^2} - } \right.\\ \left. {10176} \right)r, \end{array} $ (32)
$ \begin{array}{l} F''\left( s \right) = 12\left( {32400{r^6} - 3240{r^4} + 81{r^2}} \right){s^2} + \\ 6\left( {64800{r^6} - 108000{r^5} - 1080{r^4} + 10080{r^3} - 108{r^2} - } \right.\\ \left. {234r} \right)s + 2\left( {32400{r^6} - 10800{r^5} + 150660{r^4} + 9000{r^3} - } \right.\\ \left. {23814{r^2} + 3450r} \right), \end{array} $ (33)
$ \begin{array}{l} F'''\left( s \right) = 24\left( {32400{r^6} - 3240{r^4} + 81{r^2}} \right)s + \\ 6\left( {64800{r^6} - 108000{r^5} - 1080{r^4} + 10080{r^3} - 108{r^2} - } \right.\\ \left. {234r} \right), \end{array} $ (34)

从而, 式(22)稳定的充要条件是F(s)≤0.

下证式(22)稳定的一个充分条件.受文献[7-8]的启发, 能得出以下两个引理.

引理1  0.001 < r < 0.231或0.236 < r < 0.772是F(s)≤0, s∈[0, 2]成立的一个充分条件.

证明  由函数的单调性及凸性,

$ \begin{array}{l} F\left( s \right) \le 0 \Leftarrow \left\{ \begin{array}{l} F''\left( s \right) \ge 0\\ F\left( 0 \right) \le 0\\ F\left( 2 \right) \le 0 \end{array} \right. \Leftarrow \left\{ \begin{array}{l} F''\left( 0 \right) \ge 0\\ F''\left( 2 \right) \ge 0\\ F\left( 0 \right) \le 0\\ F\left( 2 \right) \le 0 \end{array} \right.\\ \Leftrightarrow r \in \left( {0.001,0.231} \right) \cup \left( {0.236,0.772} \right). \end{array} $

r∈(0.001, 0.231)∪(0.236, 0.772)是F(s)≤0, s∈[0, 2]成立的一个充分条件.

引理2  0.001 < r < 0.023是F(s)≤0, s∈[0, 2]成立的一个充分条件.

证明 由函数的单调性及凸性,

$ \begin{array}{l} F\left( s \right) \le 0 \Leftarrow \left\{ \begin{array}{l} F'\left( 0 \right) \ge 0\\ F\left( 2 \right) \le 0 \end{array} \right. \Leftarrow \left\{ \begin{array}{l} F'\left( 0 \right) \ge 0\\ F'\left( 2 \right) \ge 0\\ F\left( 2 \right) \le 0\\ F''\left( 0 \right) \le 0\\ F''\left( 2 \right) \le 0 \end{array} \right.\\ \Leftrightarrow r \in \left( {0.001,0.023} \right). \end{array} $

r∈(0.001, 0.023)是F(s)≤0, s∈[0, 2]成立的一个充分条件.

由此, 根据引理1, 引理2得出下面定理.

定理1  格式(23)的截断误差是O(τ3+h5), 且在0.001 < r < 0.231或0.236 < r < 0.772时, 格式稳定.

3 数值算例

对初边值问题:

$ \left\{ \begin{array}{l} \frac{{\partial u}}{{\partial t}} = \frac{{{\partial ^2}u}}{{\partial {x^2}}},0 \le x \le {\rm{ \mathsf{ π} }} ,t \ge 0,a > 0,\\ u\left( {x,0} \right) = \sin x,0 \le x \le {\rm{ \mathsf{ π} }} ,\\ u\left( {0,t} \right) = u\left( {{\rm{ \mathsf{ π} }},t} \right) = 0,t \ge 0, \end{array} \right. $ (35)

已知该问题的精确解为u(x, t)=etsinx, 利用式(22)、(23)以及精确解进行数值模拟[15].模拟结果如图 2所示.为方便起见, 初边值问题(40)的精确解u(x, t)=etsinx给出第一层的值uj1.

图 2 模拟结果 Figure 2 Fitting results

图 2可知, 对于不同的r, 差分式(22)的数值解与精确解都有较好的吻合, 这个数值结果与理论分析是完全一致的, 说明算法的可行性和有效性.

参考文献
[1]
金承日. 解抛物型方程的高精度显式差分格式[J]. 计算数学, 1991, 13(1): 38-44.
Jin C R. The High accuracy explicit difference scheme for solving parabolic equations[J]. Mathematica Numerica Sinica, 1991, 13(1): 38-44.
[2]
马明书. 解抛物型方程的一个高精度两层显格式[J]. 河南师范大学学报, 1996, 24(1): 80-81.
Ma M S. A high accuracy two level explicit difference scheme for solving parabolic equations[J]. Journal of Henan Normal University:Natural Science Edition, 1996, 24(1): 80-81.
[3]
葛永斌, 吴文权, 卢曦. 解二维扩散方程的高精度多重网格方法[J]. 工程热物理学报, 2002, 23(S): 121-124.
Ge Y B, Wu W Q, Lu X. High accuracy multigrid solution of 2-D diffusion equation[J]. Journal of Engineering Themrmophysics, 2002, 23(S): 121-124.
[4]
葛永斌, 田振夫, 吴文权. 三维抛物型方程的两种加权平均隐式多重网格方法[J]. 工程数学学报, 2003, 20(3): 105-110.
Ge Y B, Tian Z F, Wu W Q. Multigrid solutions based on two classes of weighted average implicit schemes of three-dimensional parabolic equation[J]. Journal of Engineering Mathematics, 2003, 20(3): 105-110.
[5]
葛永斌, 田振夫, 吴文权. 二维抛物型方程的高精度多重网格解法[J]. 应用数学, 2003, 16(2): 13-18.
Ge Y B, Tian Z F, Wu W Q. A high accuracy mutltigrid method for 2-D parabolic equation[J]. Mathematicia Applicata, 2003, 16(2): 13-18.
[6]
张莉, 张大凯. 解抛物型方程组合差商法[J]. 贵州大学学报, 2004, 21(4): 349-353.
Zhang L, Zhang D K. Combinatorial difference quotient method for solving parabolic equations[J]. Journal of Guizhou University: Natural Science Edition, 2004, 21(4): 349-353.
[7]
张莉, 袁伟, 张大凯. 求解抛物型方程具较高精度的半显差分格式[J]. 山东农业大学学报, 2008, 39(4): 637-640.
Zhang L, Yuan W, Zhang D K. The higher-precise semi-explicit difference scheme for solving parabolic equations[J]. Journal of Shandong Agricultural University, 2008, 39(4): 637-640.
[8]
陈泽龙, 张大凯. 解抛物型方程的七点半显差分格式[J]. 贵州大学学报, 2006, 23(1): 31-34.
Chen Z L, Zhang D K. The semi-explicit differencing scheme of seven points for sloving the parabolic equations[J]. Journal of Guizhou University:Natural Science Edition, 2006, 23(1): 31-34.
[9]
徐金平, 单双荣. 解抛物型方程的一个高精度显式差分格式[J]. 华侨大学学报, 2009, 30(4): 473-475.
Xu J P, Shan S R. An Explicit difference scheme with high-order accuracy for solving parabolic equation[J]. Journal of Huaqiao University, 2009, 30(4): 473-475. DOI: 10.11830/ISSN.1000-5013.2009.04.0473.
[10]
王爱锋, 曲小钢. 解抛物型方程的一种隐式差分格式[J]. 纺织高校基础科学学报, 2010, 23(4): 393-395.
Wang A F, Qu X G. An implicit differencing scheme for solving the parabolic equation[J]. Basic Sciences Journal of Textile Universities, 2010, 23(4): 393-395.
[11]
Zhang J. Fast and high accuracy multigrid solution of the three dimensional poisson equation[J]. J Comp Phys, 1998, 143(2): 449-461. DOI: 10.1006/jcph.1998.5982.
[12]
余德浩, 汤华中. 微分方程数值解法[M]. 北京: 科学出版社, 2003.
[13]
Morton K W, Mayers D F. 偏微分方程数值解[M]. 李治平, 门大力, 许现明, 等译. 北京: 人民邮电出版社, 2005.
[14]
戴嘉尊, 邱建贤. 微分方程数值解法[M]. 南京: 东南大学出版社, 2012.
[15]
王沫然. Matlab与科学计算[M]. 北京: 科学出版社, 2003.