广东工业大学学报  2014, Vol. 31Issue (4): 65-68.  DOI: 10.3969/j.issn.1007-7162.2014.04.012.
0

引用本文 

黄明辉. 带可积时滞的非线性中立型微分方程周期解的存在性[J]. 广东工业大学学报, 2014, 31(4): 65-68. DOI: 10.3969/j.issn.1007-7162.2014.04.012.
Huang Ming-hui. Existence of Periodic Solutions for Nonlinear Neutral Differential Equations with Functional Delay[J]. Journal of Guangdong University of Technology, 2014, 31(4): 65-68. DOI: 10.3969/j.issn.1007-7162.2014.04.012.

基金项目:

国家自然科学青年科学基金资助项目(31100308)

作者简介:

黄明辉(1988-),男,硕士研究生,主要研究方向为微分动力系统。

文章历史

收稿日期:2013-04-24
带可积时滞的非线性中立型微分方程周期解的存在性
黄明辉     
广东工业大学 应用数学学院,广东 广州 510520
摘要: 采用Krasnoselskii不动点定理证明了带可积时滞的非线性中立型微分方程周期解的存在性.并推广了Dib和Maroun的结论.
关键词: 周期解    不动点    非线性    
Existence of Periodic Solutions for Nonlinear Neutral Differential Equations with Functional Delay
Huang Ming-hui     
School of Applied Mathematics, Guangdong University of Technology, Guangzhou 510520, China
Abstract: It used a variant of Krasnoselskii's fixed point theorem to show the existence of periodic solutions for nonlinear neutral differential equations with functional delay. The results were obtained by generalizing previous results of Dib and Maroun. An example was given to illustrate the results.
Key words: periodic solution    fixed point    nonlinear    

近几年来,不动点理论已经成为研究带时滞积分微分方程的稳定性和周期解的主要方法之一[1-15].例如,方程式

$ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}t}}x\left( t \right) = - a\left( t \right)x\left( t \right) + \frac{{\rm{d}}}{{{\rm{d}}t}}Q\left( {t,x\left( {t - g\left( t \right)} \right)} \right) + \\ G\left( {t,x\left( t \right),x\left( {t - g\left( t \right)} \right)} \right), \end{array} $ (1)

它的特别形式一直都受到许多研究人员的关注.本文关注的是以下非线性中立型微分方程

$ \begin{array}{l} \frac{{\rm{d}}}{{{\rm{d}}t}}x\left( t \right) = - a\left( t \right)h\left( {x\left( t \right)} \right) + \frac{{\rm{d}}}{{{\rm{d}}t}}Q\left( {t,x\left( {t - } \right.} \right.\\ \left. {\left. {g\left( t \right)} \right)} \right) + G\left( {t,x\left( t \right),x\left( {t - g\left( t \right)} \right)} \right), \end{array} $ (2)

其中a(t),g(t),h(t)和G(t, x, y)在各自定义的区间中是连续的,Q(t, x)是连续可导函数.由于方程式(2)出现了非线性项h(x(t)),不能直接使用不动点定理.因此本文需要加减一项非线性项.因此定义两个映射,其中一个是完全连续的,另外一个是大压缩的.

1 准备工作

T>0,定义集合PT={φC( , ):φ(t+T)=φ(t)},$ x\left( t \right)\left\| {\mathop {\max }\limits_{t \in \left[ {0, T} \right]} } \right.\left| {x\left( t \right)} \right| $,其中C是连续实值函数空间.则(PT, .||)是Banach空间.对任意L>0,定义

$ {M_L} = \left\{ {\varphi \in {P_T}:\varphi \left\| { \le L} \right.,\left| {\varphi '} \right| \le L'} \right\}, $ (3)

其中L′是正实数.

本文做出以下假设:

$ a\left( t \right) = a\left( {t + T} \right),g\left( t \right) = g\left( {t + T} \right), $ (4)

其中g(t)是连续函数,和g(t)≥g*>0.

$ \int_0^T {a\left( s \right){\rm{d}}s} > 0. $ (5)

同时假设Q(t, x)和G(t, x, y)是关于t的周期函数和关于xy的Lipschitz函数,即

$ Q\left( {t + T,x} \right) = Q\left( {t,x} \right),G\left( {t + T,x,y} \right) = G\left( {t,x,y} \right) $ (6)

存在正数E1E2E3使得

$ \left| {Q\left( {t,x} \right) - Q\left( {t,y} \right)} \right| \le {E_1}\left\| {x - y} \right\|, $ (7)
$ \left| {G\left( {t,x,y} \right) - G\left( {t,z,w} \right)} \right| \le {E_2}\left\| {x - z} \right\| + {E_3}\left\| {y - w} \right\|. $ (8)

引理1  假设式(4)和(6)成立.如果x(t)∈PT,则x(t)是方程(1)的解当且仅当

$ \begin{array}{l} x\left( t \right) = Q\left( {t,x\left( {t - g\left( t \right)} \right)} \right) + {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}} \times \\ \int_{t - T}^t {\left[ {a\left( u \right)H\left( {x\left( u \right)} \right) + G\left( {u,x\left( u \right),x\left( {u - g\left( u \right)} \right)} \right) - } \right.} \\ \left. {a\left( u \right)Q\left( {u,x\left( {u - g\left( u \right)} \right)} \right)} \right]{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u, \end{array} $ (9)

其中H(x(u))=x(u)-h(x(u)).

证明  设x(t)∈PT是式(1)的一个解.首先将式(1)写成以下形式

$ \begin{array}{*{20}{c}} {\frac{{\rm{d}}}{{{\rm{d}}t}}x\left( t \right) + a\left( t \right)x\left( t \right) = a\left( t \right)H\left( {x\left( t \right)} \right) + }\\ {\frac{{\rm{d}}}{{{\rm{d}}t}}Q\left( {t,x\left( {t - g\left( t \right)} \right)} \right) + G\left( {t,x\left( t \right),x\left( {t - g\left( t \right)} \right)} \right).} \end{array} $

上式两边同时乘以$ {\rm{e}}^{\int_0^t {a\left( s \right){\rm{d}}s}} $以及对ttTt进行积分得$\smallint _{_{t - T}}^{^t}\left[ {x\left( u \right){{\rm{e}}^{\int_{_0}^{^t} a \left( s \right){\rm{d}}s}}} \right]'{\rm{d}}u = \smallint _{_{t - T}}^{^t}[a\left( u \right){\rm{ }}H\left( {x\left( u \right)} \right) + \frac{{\rm{d}}}{{{\rm{d}}u}}Q\left( {u, x\left( {u - g\left( u \right)} \right)} \right) + $$ G\left( {u, x{\rm{ }}\left( u \right), x\left( {u - g{\rm{ }}\left( u \right)} \right)} \right)]{{\rm{e}}^{\int_0^{^u} {a\left( s \right){\rm{d}}s} }}{\rm{d}}u.$

因此得到

$ \begin{array}{l} x\left( t \right){{\rm{e}}^{\int_0^t {a\left( s \right){\rm{d}}s} }} - x\left( {t - T} \right){{\rm{e}}^{\int_0^{t - T} {a\left( s \right){\rm{d}}s} }} = \int_{t - T}^t {\left[ {a\left( u \right)H\left( {x\left( u \right)} \right) + } \right.} \\ \left. {\frac{{\rm{d}}}{{{\rm{d}}u}}Q\left( {u,x\left( {u - g\left( u \right)} \right)} \right) + G\left( {u,x\left( u \right),x\left( {u - g\left( u \right)} \right)} \right)} \right]{{\rm{e}}^{\int_0^u {a\left( s \right){\rm{d}}s} }}{\rm{d}}u. \end{array} $

两边同时除以$ {{\rm{e}}^{\int_0^t {a\left( s \right){\rm{d}}s} }} $,以及由于x(t)=x(t+T), 得到

$ \begin{array}{l} x\left( t \right) = {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\int_{t - T}^t {\left[ {a\left( u \right)H\left( {x\left( u \right)} \right) + } \right.} \\ \frac{{\rm{d}}}{{{\rm{d}}u}}Q\left( {u,x\left( {u - g\left( u \right)} \right)} \right) + G\left( {u,x\left( u \right),x\left( {u - } \right.} \right.\\ \left. {\left. {\left. {g\left( u \right)} \right)} \right)} \right]{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u = Q\left( {t,x\left( {t - g\left( t \right)} \right)} \right) + \left( {1 - } \right.\\ {\left. {{{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\int\limits_{t - T}^t {\left[ {a\left( u \right)H\left( {x\left( u \right)} \right) + G\left( {u,x\left( u \right),x\left( {u - } \right.} \right.} \right.} \\ \left. {\left. {\left. {g\left( u \right)} \right)} \right) - a\left( u \right)Q\left( {u,x\left( {u - g\left( u \right)} \right)} \right)} \right]{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u. \end{array} $

得证.

定义1 [15] 设(M, d)是一个完备度量空间和BMM.B是一个大压缩的.如果ϕ, φM,当ϕφ时,有d(, ) < d(ϕ, φ)和对任意ε>0,存在δ < 1,使得[ϕ, φM, d(ϕ, φ)≥ε]⇒d(, )≤δd(ϕ, φ).

下一个定理是Krasnoselskii’s不动点定理,它是构成我们重要结论的主要定理.

定理1 [15]  设M是Banach空间(S, ||.||)的一个有界凸非空子集.假设ABM投影到M,以及:

(1) 对所有x, yM, 有Ax+ByM;

(2) A是连续的和AM包含在M的一个紧子集中;

(3) B是一个大压缩.

则存在一个zM,使得z=Az+Bz.

2 周期解的存在性

首先定义一个映射P

$ \begin{array}{l} \left( {P\varphi } \right)\left( t \right) = Q\left( {t,\varphi \left( {t - g\left( t \right)} \right)} \right) + \left( {1 - } \right.\\ {\left. {{{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\int\limits_{t - T}^t {\left[ {a\left( u \right)H\left( {\varphi \left( u \right)} \right) + G\left( {u,\varphi \left( u \right),\varphi \left( {u - } \right.} \right.} \right.} \\ \left. {\left. {\left. {g\left( u \right)} \right)} \right) - a\left( u \right)Q\left( {u,\varphi \left( {u - g\left( u \right)} \right)} \right)} \right]{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u \end{array} $ (10)

为了使用定理1,需要将映射P表示成两个映射之和,其中一个是完全连续映射, 另一个是压缩映射.

设()(t)=(t)+(t), 其中ABPTPT定义为

$ \begin{array}{l} \left( {A\varphi } \right)\left( t \right) = Q\left( {t,\varphi \left( {t - g\left( t \right)} \right)} \right) + \left( {1 - } \right.\\ {\left. {{{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\int_{t - T}^t {\left[ {G\left( {u,\varphi \left( u \right),\varphi \left( {u - g\left( u \right)} \right)} \right) - } \right.} \\ \left. {a\left( u \right)Q\left( {u,\varphi \left( {u - g\left( u \right)} \right)} \right)} \right]{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u \end{array} $ (11)

$ \left( {B\varphi } \right)\left( t \right) = {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\int_{t - T}^t {a\left( u \right)H\left( {\varphi \left( u \right)} \right){{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u} . $ (12)

还需要假设:

$ \left( {{E_2} + {E_3}} \right)L + \left| {G\left( {t,0,0} \right)} \right| \le \beta La\left( t \right), $ (13)
$ {E_1}L + \left| {Q\left( {t,0} \right)} \right| \le \alpha L, $ (14)
$ J\left( {2\alpha + \beta } \right) \le 1, $ (15)

其中αβLJ是常数,以及J≥3.

存在正数M,使得

$ \left| {\frac{{\rm{d}}}{{{\rm{d}}t}}Q\left( {t,x\left( {t - g\left( t \right)} \right)} \right)} \right| \le M,x \in {M_L}. $ (16)

引理2  假设条件(4)-(8)和(13)-(15)成立.L是式(3)中所定义的,A:MLML是连续的和将M投影到M的一个紧集中.

证明  在式(12)中变量的改变可以证明()(T+t)=()(t).注意到

$ \begin{array}{l} \left| {Q\left( {t,x} \right)} \right| \le \left| {Q\left( {t,x} \right) - Q\left( {t,0} \right)} \right| + \left| {Q\left( {t,0} \right)} \right| \le \\ {E_1}\left\| x \right\| + \left| {Q\left( {t,0} \right)} \right|, \end{array} $

以及

$ \begin{array}{l} \left| {G\left( {t,x,y} \right)} \right| \le \left| {G\left( {t,x,y} \right) - G\left( {t,0,0} \right)} \right| + \\ \left| {G\left( {t,0,0} \right)} \right| \le {E_2}\left\| x \right\| + {E_3}\left\| y \right\| + \left| {G\left( {t,0,0} \right)} \right|. \end{array} $

首先证明AML投影到本身.因此,对任意φML,有

$ \begin{array}{l} \left| {\left( {A\varphi } \right)\left( t \right)} \right| \le \left| {Q\left( {t,\varphi \left( {t - g\left( t \right)} \right)} \right)} \right| + \left( {1 - } \right.\\ {\left. {{{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\left| {\int_{t - T}^t {G\left( {u,\varphi \left( u \right),\varphi \left( {u - g\left( u \right)} \right)} \right){{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u} } \right| + \\ {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\left| \begin{array}{l} \int_{t - T}^t {a\left( u \right)Q\left( {u,\varphi \left( {u - } \right.} \right.} \\ \left. {\left. {g\left( u \right)} \right)} \right){{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u \end{array} \right| \le \\ {E_1}\left\| \varphi \right\| + \left| {Q\left( {t,0} \right)} \right| + \\ {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\left| \begin{array}{l} \int_{t - T}^t {\left[ {\left( {{E_2} + {E_3}} \right)\left\| \varphi \right\| + } \right.} \\ \left. {\left| {G\left( {u,0,0} \right)} \right|} \right]{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u \end{array} \right| + \\ {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\left| \begin{array}{l} \int_{t - T}^t {a\left( u \right)\left( {{E_1}\left\| \varphi \right\| + } \right.} \\ \left. {\left| {Q\left( {u,0} \right)} \right|} \right){{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u \end{array} \right| \le \\ {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\left| {\int_{t - T}^t {\beta La\left( u \right){{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u} } \right| + 2\alpha L \le \\ \left( {2\alpha + \beta } \right)L \le \frac{L}{J} < L. \end{array} $

证毕.

接着证明A是连续的.设φ, ϕML,令

$ \begin{array}{l} \eta = \mathop {\max }\limits_{t \in \left[ {0,T} \right]} {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( s \right){\rm{d}}s} }}} \right)^{ - 1}},\theta = \mathop {\max }\limits_{t \in \left[ {0,T} \right]} \left| {a\left( t \right)} \right|,\\ \nu = \mathop {\max }\limits_{s \in \left[ {t - T,t} \right]} {{\rm{e}}^{ - \int_s^t {a\left( u \right){\rm{d}}u} }}. \end{array} $ (17)

对任意ε>0,取$ \delta = \frac{\varepsilon }{N} $,使得当||ϕφ||≤δ,有

$ \begin{array}{l} \left| {\left( {A\phi } \right)\left( t \right) - \left( {A\varphi } \right)\left( t \right)} \right| \le {E_1}\left\| {\phi - \varphi } \right\| + \\ \left| {{{\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( s \right){\rm{d}}s} }}} \right)}^{ - 1}}\int_{t - T}^t {\left( {{E_2} + {E_3}} \right)\left\| {\phi - \varphi } \right\|{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u} } \right| + \\ \left| {{{\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( s \right){\rm{d}}s} }}} \right)}^{ - 1}}\int_{t - T}^t {a\left( u \right){E_1}\left\| {\phi - \varphi } \right\|{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u} } \right| \le \\ \left[ {2{E_1} + \eta T\nu \left( {{E_2} + {E_3}} \right)} \right]\left\| {\phi - \varphi } \right\| < \varepsilon . \end{array} $

其中,N=2E1+ηTν(E2+E3).证毕.

接着证明A是紧的.

φnMLn是正整数.故有(n)(t)≤L.直接计算,得$ \left( {A{\varphi _n}} \right)'\left( t \right) = \frac{{\rm{d}}}{{{\rm{d}}t}}Q\left( {t, {\varphi _n}\left( {t - g\left( t \right)} \right)} \right) - a\left( t \right)Q\left( {t, {\varphi _n}\left( {t - g\left( t \right)} \right)} \right) + G(u, {\varphi _n}(u), $$ {\varphi _n}\left( {u - g\left( u \right)} \right)) - a\left( t \right){\left( {1 - {e^{ - \smallint _{_{t - T}}^{^t}a\left( u \right){\rm{d}}u}}} \right)^{ - 1}}\smallint _{_{t - T}}^{^t}[G(u, {\varphi _n}\left( u \right), $$ {\varphi _n}\left( {u - g\left( u \right)} \right)) - a\left( u \right)Q\left( {u, {\varphi _n}\left( {u - g\left( u \right)} \right)} \right)]{{\rm{e}}^{ - \smallint _{_u}^{^t}a\left( s \right){\rm{d}}s}}{\rm{d}}u $.

由式(13)、(14)、(16)、(17)得

$ \begin{array}{l} \left| {{{\left( {A{\varphi _n}} \right)}^\prime }\left( t \right)} \right| \le M + \theta \alpha L + \theta \beta L + \theta \eta T\left[ {\left( {\theta \alpha L + } \right.} \right.\\ \left. {\left. {\theta \beta L} \right)\nu } \right] \le {\rm{d}}, \end{array} $

存在正实数d.因此数列(n)是一致有界和等度连续的.由Ascoli-Arzela定理可知,A是紧的.

引理3 假设式(4)-(6)和或(13)-(15)成立.L是式(3)中所定义的,同时假设

$ \begin{array}{l} {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\int_{t - T}^t {\left| {a\left( u \right)H\left( {\varphi \left( u \right)} \right)} \right|} \times \\ {{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}{\rm{d}}u \le \frac{{J - 1}}{J}L, \end{array} $ (18)

对任意φML成立,AB分别是式(11)和(12)所定义的,对任意φ, ϕML,有

$ A\varphi + B\phi :{M_L} \to {M_L}. $

证明  对任意φ, ϕML,由B的定义和引理2的结论,得到

$ \begin{array}{l} \left| {\left( {A\phi } \right)\left( t \right) + \left( {B\varphi } \right)\left( t \right)} \right| \le \left| {Q\left( {t,\varphi \left( {t - g\left( t \right)} \right)} \right)} \right| + \\ {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\left| {\int_{t - T}^t {G\left( {u,\varphi \left( u \right),\varphi \left( {u - g\left( u \right)} \right)} \right){{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}} {\rm{d}}u} \right| + \\ {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\left| {\int_{t - T}^t {a\left( u \right)Q\left( {u,\varphi \left( {u - g\left( u \right)} \right)} \right){{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}} {\rm{d}}u} \right| + \\ {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\left| {\int_{t - T}^t {\left| {a\left( u \right)H\left( {\phi \left( u \right)} \right)} \right|{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}} {\rm{d}}u} \right| \le \frac{L}{J} + \\ \frac{{\left( {J - 1} \right)L}}{J} = L. \end{array} $

因此+ML.

下一个引理将证明映射BML上是大压缩的,这个引理的证明读者可以参考文献[15].最后,对函数h:RR作出以下假设:

(1) h在区间UL=[-L, L]上是连续可导的.

(2) h在区间UL=[-L, L]上严格递增.

(3) $ \mathop {{\rm{sup}}}\limits_{s \in {U_L}} h'\left( s \right) \le 1 $.

(4) $ \left( {s - r} \right)\left\{ {\mathop {{\rm{sup}}}\limits_{t \in {U_L}} h'\left( t \right)} \right\} \ge h\left( s \right) - h\left( r \right) \ge \left( {s - r} \right)\left\{ {\mathop {{\rm{inf}}}\limits_{t \in {U_L}} h'\left( t \right)} \right\} \ge 0 $, 其中s, rUL以及sr.

引理4 [15]  设函数h满足假设(1)~(4).L是式(3)所定义的,则映射B是一个大压缩.

定理2  假设条件式(4)~(8)、式(13)~(15)和式(18)成立,以及函数h满足假设(1)~(4),则方程式(2)在ML={ϕPT: ||ϕ|| ≤L, |ϕ′| ≤L′}存在一个周期解.

证明 由引理(1)可知,+ML是方程式(2)的一个解,如果

$ \phi = A\phi + B\phi . $

根据引理(2),A:MLML是连续的和ML包含在ML紧集中.+ML,对任意的ϕ, φML.而且根据式(12),B是一个大压缩.显然,满足Krasnoselskii’s不动点定理.因此,存在一个不动点ϕML使得ϕ=+.因此方程(12)有一个周期为T的解.

3 实例

非线性微分方程:

$ \begin{array}{l} x'\left( t \right) = - \frac{1}{4}\left[ {\frac{{15}}{{16}}x\left( t \right) - \frac{L}{{16}}\sin \left( {\frac{{\left. {x\left( t \right)} \right)}}{L}} \right.} \right] + \\ \frac{{\rm{d}}}{{{\rm{d}}t}}\left[ {\frac{{{{10}^{ - 3}}}}{L}\sin \left( t \right){x^2}\left( {t - 1} \right)} \right] + \frac{{{{10}^{ - 3}}}}{L}\cos \left( t \right){x^2}\left( {t - 1} \right), \end{array} $ (19)

其中T=2π,$a\left( t \right) = \frac{1}{4} $$ h\left( t \right) = \frac{{15}}{{16}}t - \frac{L}{{16}}\sin (\frac{t}{L}) $$ H\left( {x\left( t \right)} \right) = \frac{1}{{16}}x\left( t \right) + \frac{L}{{16}}\sin (\frac{{x\left( t \right)}}{L}) $$ Q\left( {t, x} \right) = \frac{{{{10}^{ - 3}}}}{L}{x^2}\sin t $$ G\left( {t, x, y} \right) = \frac{{{{10}^{ - 3}}}}{L}{y^2}\cos t $g(t)=1.

显然式(4)~(6)成立.通过直接计算,得

$ h'\left( t \right) = \frac{{15}}{{16}} - \frac{1}{{16}}\cos \left( {\frac{t}{L}} \right), $

故满足假设(1)~(4).

$ \begin{array}{l} \left| {\frac{{\rm{d}}}{{{\rm{d}}t}}Q\left( {t,x\left( {t - g\left( t \right)} \right)} \right)} \right| = \\ \left| {\frac{{{{10}^{ - 3}}}}{L}\left[ {{x^2}\left( {t - 1} \right)\cos \left( t \right) + 2x\left( {t - 1} \right)x'\left( {t - 1} \right)\sin \left( t \right)} \right]} \right| \le \\ {10^{ - 3}}\left( {L + 2L'} \right), \end{array} $

因此式(16)成立.

$ \begin{array}{l} {E_1} = {E_3} = 2 \times {10^{ - 3}},{E_2} = 0,\alpha = 2 \times {10^{ - 3}},\\ \beta = 8 \times {10^{ - 3}}. \end{array} $

由式(15)得

$ 3 \le J \le {\left( {1.2 \times {{10}^{ - 2}}} \right)^{ - 1}}, $ (20)
$ \eta = {\left( {1 - {{\rm{e}}^{ - \frac{{\rm{ \mathsf{ π} }}}{2}}}} \right)^{ - 1}},\theta = \frac{1}{4},\nu = 1. $
$ \begin{array}{l} {\left( {1 - {{\rm{e}}^{ - \int_{t - T}^t {a\left( u \right){\rm{d}}u} }}} \right)^{ - 1}}\int_{t - T}^t {\left| {a\left( u \right)H\left( {\varphi \left( u \right)} \right)} \right|{{\rm{e}}^{ - \int_u^t {a\left( s \right){\rm{d}}s} }}} {\rm{d}}u \le \\ {\left( {1 - {{\rm{e}}^{ - \frac{{\rm{ \mathsf{ π} }}}{2}}}} \right)^{ - 1}}\frac{{\rm{ \mathsf{ π} }}}{{16}}L \le 0.3L. \end{array} $

又由式(20)可知,$ \frac{2}{3}L \le \frac{{J - 1}}{J}L,L \in \left[ {3,{{\left( {1.2 \times {{10}^{ - 2}}} \right)}^{ - 1}}} \right] $.

故式(19)成立.

故式(19)在ML={ϕP: ||ϕ|| ≤L, |ϕ′| ≤L′}上存在一个周期为2π的解.

参考文献
[1]
Burton T A. Liapunov functionals, fixed points and stability by Krasnoselskii's theorem[J]. Nonlinear Stud, 2002, 9: 181-190.
[2]
Burton T A. Stability by Fixed Point Theory for Functional Differential Equations[M]. New York: Dover Publications, 2006.
[3]
Burton T A. A fixed point theorem of Krasnoselskii[J]. App Math Lett, 1998(11): 85-88.
[4]
T A Burton. Stability and Periodic Solutions of Ordinary Functional Equations[M]. New York: Academic Press, 1985.
[5]
Burton T A, Furumochi T. Krasnoselskii's fixed point theorem and stability[J]. Nonlinear Anal, 2002, 4(49): 445-454.
[6]
Dib Y M, Maroun M R. Periodicity and stability in neutral nonlinear differential equations with functional delay, Electron[J]. J Differential Equations, 2005, 142: 1-11.
[7]
Gopalsamy K, Zhang B G. On a periodic neutral logistic equation[J]. Glasg Math J, 1991, 33: 281-286. DOI: 10.1017/S001708950000834X.
[8]
Kaufmann E R. A nonlinear neutral periodic differential equation[J]. Electron J Differential Equations, 2010, 88: 1-8.
[9]
Kun L Y. Periodic solution of a periodic neutral delay equation[J]. J Math Anal Appl, 1997, 214: 11-21. DOI: 10.1006/jmaa.1997.5576.
[10]
Maroun M, Raffoul Y N. Periodic in nonlinear neutral delay equations with functional delay[J]. J Korean Math Soc, 2005, 42: 255-268. DOI: 10.4134/JKMS.2005.42.2.255.
[11]
Raffoul Y N. Periodic solutions for neutral nonlinear differential equations with functional delay[J]. Electron J Differential Equations, 2003, 102: 1-7.
[12]
Raffoul Y N. Positive periodic solutions in neutral nonlinear differential equations[J]. Electron J Qual Theory Diff Equa, 2007, 16: 1-10.
[13]
Raffoul Y N. Periodic solutions for scalar and vector nonlinear difference equations, Panamer[J]. Math J, 1999, 9: 97-111.
[14]
Raffoul Y N. Stability in neutral nonlinear differential equations with functional delay using fixed point theory[J]. Math Comput Modelling, 2004, 40(7-8): 691-700. DOI: 10.1016/j.mcm.2004.10.001.
[15]
Yankson E. Existence of periodic solutions for totally nonlinear neutral differential equations with functional delay[J]. Opuscula Mathematica, 2012, 32(3): 617-627. DOI: 10.7494/OpMath.2012.32.3.617.