2 中国科学技术大学, 苏州高等研究院, 江苏 苏州 215123;
3 中国科学院城市环境研究所, 区域大气环境研究卓越创新中心, 福建 厦门 361021)
持久性有机污染物(Persistent Organic Pollutants,简称POPs),是能够长期存在于环境、易于生物富集并对人类健康和环境具有严重危害的天然或人工合成的有机污染物质[1~2],例如有机氯农药(Organochlorine Pesticides,简称OCPs)和多氯联苯(Polychlorinated Biphenyls,简称PCBs)。由于其具有半挥发性、不易降解等特点,它们一旦释放到环境中就会在全球范围内扩散,并沉降和富集在低温地区,包括偏远的北极地区[3],对生态环境造成影响。为限制或消除这些化学品带来的环境危害,国际间实施了相应的环境条约,主要包括《斯德哥尔摩持久性有机污染物公约》和《长距离越境污染物公约》。这些公约的相继实施使OCPs和PCBs等POPs被禁止或限制使用,POPs的直接排放量有很明显的降低,但许多研究表明在北极地区OCPs和PCBs仍普遍存在[4~6]。
人类活动正在对地球气候和生态系统产生越来越大的影响[7~8],“人类世”一词被用来描述当前的地质时代。在“人类世”时期,人类活动导致大气中几种重要的温室气体(例如CO2、CH4)大幅增加,对20世纪观测到的全球平均气温上升约0.5℃有很大贡献[9]。在全球变暖的背景下,北极独特的地理环境使得其变暖速度几乎是全球平均速度的两倍[10~11],这加速了北极海冰的消融,使得北冰洋中部冰层厚度减小,多年冰层转变为不到一年冰[12]。开放水域的增加会增强热量输入,导致海冰融化加快,使得海冰和海水中的POPs重新释放到大气中,预计融冰区大气POPs含量会增加[4, 13~18]。Ma等[15]通过分析2000~2009年Zeppelin和Alert站观测到的北极大气中POPs的时间序列,揭示了由于北极变暖和海冰减少,北极环境汇(冰雪、陆地和水)中POPs再释放的证据;Wu等[5, 13, 19]对2008年中国北极科考采集的大气样品POPs的分析表明,大部分的有机氯污染物在北极浮冰区高于北极开放性海域和北极块冰区,且其浓度随着海冰浓度的升高表现出明显的降低,这个现象也说明了夏季海冰消融加速了OCPs从海洋的释放过程;Duart等[20]提出,2000年以来北极大气中PCBs的增加趋势与海冰快速融化的趋势相吻合。研究表明,在未来气候持续变暖的情况下北极大气中包括OCPs和PCBs在内的POPs会更多地受到海洋等二次释放的影响[11]。
尽管模型模拟表明POPs会随海冰消融释放到大气中,但不同类型的POPs对北极海冰变化的响应仍有很大的不确定性。本文利用北极海冰面积数据与北极监测计划提供的近30年(1993~2019年)的POPs大气浓度数据,以OCPs(包括DDTs,HCB,α-HCH,γ-HCH)和PCBs(包括PCB-28,52,101,118,138,153,180)为主要研究对象,通过比较海冰面积和各观测站点POPs浓度的变化关系,结合互相关分析,探究北极大气中不同POPs对海冰变化的响应情况。
1 数据采集及分析方法 1.1 数据采集本研究选取了Alert(82°30′N,62°20′W)、Zeppelin(78°54′N,11°53′E)、Stórhöfði(63°24′N,20°17′ W)、Pallas(68°00′N,24°15′E) 这4个北极长期监测站点的OCPs和PCBs的大气浓度(包括气相和颗粒相)数据,站点位置信息见图 1,数据长度见表 1。相关数据由北极监测计划(The Arctic Monitoring and Assessment Programme,简称AMAP)提供,可从EBAS数据库(http://ebas.nilu.no/)获取。Hung等[4]给出了4个站点在样品采集、化学分析、数据处理、质量保证和质量控制的详细信息。需要指出的是,Alert站点在2002年由于实验室搬迁导致PCBs数据受到了影响,因此,2002年的PCBs大气浓度数据不包括在本分析中。海冰面积数据从美国国家冰雪数据中心(Sea Ice Snow & Ice Date Center,简称NSIDC)所提供的网站(https://nsidc.org/data/seaice_index/archives.html)获取。
![]() |
图 1 4个北极大气POPs长期监测站点Alert、Zeppelin、Stórhöfði和Pallas站点位置用红色五角星标注, 蓝色线条代表河流 Fig. 1 Four Arctic atmospheric POPs long-term monitoring stations: Alert, Zeppelin, Stórhöfði and Pallas. The stations locations are marked with red stars and the blue lines represent rivers |
![]() |
表 1 4个北极监测站点典型POPs的数据长度(年) Table 1 The length of the typical POPs data at the four Arctic monitoring stations(year) |
本研究使用大气OCPs和PCBs月平均浓度的一阶导数(称之为“OCPs/PCBs变率”),将其与月海冰范围的一阶导数(称之为“海冰变率”)进行比较。一阶导数的近似计算方法如下:第2个月的变化率为第2个月的值减去第1个月的值,绘制在第2个月。因为“OCPs/PCBs变率”还会受到其他环境因素(温度、降水等)的影响,为了消除由此引起的噪声,本研究以EBAS数据库提供的数据为原始数据,在Origin2020里面选择Savitzky-Golay方法[21]平滑曲线,从而消除部分干扰因素,增加结果的可靠性。平滑之后的数据使用R语言进行互相关分析。互相关函数ccf用于计算时间序列之间滞后时间为±12个月时的互相关程度。利用Hmisc包中的rcorr函数,得到了在给出最高互相关关系处的显著性。在存在正或负滞后(即下文的lag值)的情况下,ACF图中的最高点用于推断最可能的滞后或提前信号[22]。
2 结果与讨论 2.1 OCPs对海冰变化的响应本文研究的OCPs浓度(DDTs,HCB,α-HCH,γ-HCH)变率与海冰面积变率的关系如图 2a~2d所示。
![]() |
图 2 1993~2019年4个站点OCPs变率(红色)对比海冰变率(蓝色):(a)DDTs,(b)HCB,(c)α-HCH,(d)γ-HCH 其中水平黑色虚线对应纵坐标为0,正值表示海冰面积或者OCPs浓度增加,负值反之,图 3同;图 2c和2d中黑色虚线框出的时间长度为2009~2019年,放大图见图 3a和3b Fig. 2 OCPs rates(red) vs sea ice rates(blue)at four stations from 1993~2019: (a)DDTs, (b)HCB, (c)α-HCH, (d)γ-HCH. The horizontal black dashed lines correspond to the ordinate value of zero. A positive value indicates an increase in sea ice extent or OCPs concentration, and a negative value is the opposite, the same as Figure 3; In Fig. 2c and 2d, the length of time framed by the black dotted line is from 2009 to 2019. See Fig. 3a and 3b for an enlarged view |
DDTs包括两种DDT同分异构体(o,p′-DDT,p,p′-DDT)以及4种降解产物(o,p′-DDE,p,p′-DDE,o,p′-DDD,p,p′-DDD)(见表 1)。对于Zeppelin和Alert站,在1994~2008年这十几年里的DDTs变化与海冰变化有一定的正相关关系(在P < 0.01水平下,r分别为0.43和0.38,表 2),而在2009年附近DDTs出现滞后海冰变化的现象(在P < 0.01水平下,Zeppelin站lag=-4时,r=-0.85;Alert站lag=-3时,r=-0.57,表 2),且Zeppelin站点这种滞后关系更显著。Stórhöfði站在近30年除了1996~1998年、2002~2004年、2013~2014年这几个时间段DDTs变率相对偏大外(图 2a),其余时间变化率很小,即浓度基本稳定,且与海冰变化不相关。Pallas站近30年DDTs变率也较小,但2009年后却类似Zeppelin和Alert站出现了滞后海冰变化的现象(当lag=-4时,r=-0.63,P < 0.01,表 2)。
![]() |
表 2 4个站点海冰变率与OCPs变率之间的互相关分析* Table 2 Cross-correlations between sea ice rates and OCPs rates at four stations |
2009年之前在Alert和Zeppelin站点,DDTs变率与海冰变率均呈现正相关关系说明随季节变化两者变化一致,即DDTs浓度夏季较低,而冬季较高。据Halsall等[23]的研究,由于DDTs易与颗粒结合,所以在北极雾霾发生的春冬季节,其输送到北极的更多,而夏季较高的降水率会增强清除作用,可能导致传输到北极的颗粒态DDTs浓度较低。研究表明20世纪末和21世纪初DDTs在北极大部分地区均处于平衡或净沉积状态[24~25]。例如Lohmann等[24]通过海水和大气中的p,p′-DDE浓度发现了其向海洋净沉积的现象;Bossi等[25]通过对Nord站点(81°36′N,16°40W) 连续3年(2008~2010年)OCPs的浓度监测,发现DDTs(例如p,p′-DDT,p,p′-DDE)的浓度主要由一次源控制,而不是二次释放。Nord站点位于Alert和Zeppelin之间,一次源主导DDTs的大气水平可能是在本世纪初期之前这两个北极监测站点与海冰呈现较同步变化的原因。
随着DDTs的使用减少,一次源的长距离输送作用对北极地区的DDTs浓度水平影响减弱。而近年来气候变暖导致海冰加速融化,很多研究阐明了北极地区海洋作为二次源对DDTs大气浓度的重要性[5, 26]。Alert站更接近极地,大气温度较低,且该站点被崎岖的丘陵和山谷包围,相比于周围多为浮冰区的Zeppelin站点[27],受到海冰变化的影响可能相对较小。夏季海冰融化可能会使DDTs再释放进入大气[5],这解释了Zeppelin站点在2009年之后DDTs与海冰变率的显著负相关关系。互相关分析表明(表 2),DDTs变率约滞后海冰变率3~4个月,这种滞后可能是由于DDTs更多地存在于海水中,在海冰融化过程中被隔绝的海水还未来得及与大气进行海气交换。
2.1.2 HCBPallas站点没有HCB浓度的观测数据,其他站点HCB浓度变率与海冰面积变率的变化如图 2b所示。2009年之前,HCB在Alert和Zeppelin站点变率较大且与海冰变率相关关系不显著,Stórhöfði站点除了部分年份变率较大,其他时间较平缓(图 2b和表 2)。而之后在Zeppelin站点,HCB表现出和海冰变率较显著的负相关关系(r=-0.59,P < 0.01),且有相当多年份(如2010年、2017年等)海冰变率最高(低)值对应HCB变率最低(高)值,说明这些年份暖季海冰消融和冷季海冰冻结恰好对应相应时间段HCB大气浓度的快速增加和减少。之前的研究证明了21世纪初期HCB在北冰洋经历了净沉积过程[24, 28~29],而由于气候变暖,Zeppelin站点所在的斯瓦尔巴特群岛周围海域无冰月份的增加[30]可能会促进HCB的再释放。相对于其他的POPs(如PCBs、DDTs),HCB的亨利系数更大,表明其从水体挥发到大气的趋势较强,更有可能受到海冰融化等水气分配平衡的影响,从而经历环境循环[15]。前人提到季节性海冰对于HCB的海气交换相当重要[15, 31],一方面夏季海冰破裂导致开放水域增加,大气和表层水之间的直接交换作用增强,另一方面HCB可以从融化的海冰/雪中释放[19]。Wu等[19]通过对比2008年和2010年两次北极科考的HCB浓度发现,由于2008年夏季海冰融化较2010年更强烈,所以HCB的浓度也相对高于2010年,且多年冰覆盖区域HCB含量最低;Hung等[4]也指出海冰融化可能是HCB大气浓度上升的一个重要原因。相对于Alert和Stórhöfði站,周围多为浮冰区的Zeppelin站受季节性海冰的影响可能更大,从而HCB变率与海冰变率呈显著负相关关系。
2.1.3 HCH在2003年之前,4个站点的α-HCH和γ-HCH变率均较大,除了Pallas站点的α-HCH与海冰变率存在一定程度的负相关关系(r=-0.55,P < 0.01),其他站点HCH与海冰变率均无显著相关性(图 2c和2d,表 2)。为了方便与DDTs和HCB做比较,这里着重关注2009年之后HCH与海冰变率的互相关关系。图 3显示了2009~2019年HCH变率与海冰变率的波动图,以便结合表 2的互相关分析更直观地呈现出了2009年后两者的变化。如表 2所示,对于α-HCH,除了Stórhöfði站,其他3个站点其变率与海冰变率均呈现良好的负相关关系,其中Zeppelin站相关性最强(r=-0.84,P < 0.01),几乎所有年份海冰变率最大(小)的时间点对应的α-HCH变率最小(大)(图 3a)。对于γ-HCH,其变率小于α-HCH,除了Stórhöfði站,其他3个站点的某些年份(如2013年、2017年等)海冰变率的最大(小)的时间点与γ-HCH变率的最小(大)时间点对应(图 3b),但是大部分年份与海冰变率的相关关系没有α-HCH显著(表 2)。相对γ-HCH来说,α-HCH对海冰变化的响应更敏感。
![]() |
图 3 2009~2019年4个站点HCH变率(红色)对比海冰变率(蓝色):(a)α-HCH,(b)γ-HCH Fig. 3 HCH rates(red) vs sea ice rates(blue)at four stations from 2009 to 2019: (a)α-HCH, (b)γ-HCH |
20世纪末期,由于全球HCH使用量的减少,在北冰洋发现α-HCH的净海气交换方向已经从净沉积转变为净挥发[32],这很好地解释了21世纪前后α-HCH与海冰变率从不同步到出现负相关关系的转变。Ding等[33]的研究表明,2003年γ-HCH的海气交换方向已经发生了改变,海洋逐渐成为北极重要的二次源,而本研究中γ-HCH变率与海冰变率的关系在2003年前后恰好也发生了改变,与前人研究结果一致。且几乎所有国家都减少了对该农药的使用,导致γ-HCH浓度较低,变率不大。Pucko等[34~38]对北极海冰影响POPs水平的研究表明,一年冰形成时保留了海水中很大比例的HCH,所以一旦发生融化,HCH就可能迅速释放到大气中。相对于α-HCH,挥发性较低、水溶性更强的γ-HCH能在环境汇(如海冰/水)中停留更长的时间[15],所以对海冰变化响应的敏感性相对较弱,与海冰变率的负相关关系没有α-HCH显著。Bossi等[25]对格林兰Nord站点OCPs的观测也发现α-HCH浓度和海冰面积显著负相关,而γ-HCH和海冰面积无显著相关关系。
2.2 PCBs对海冰变化的响应2009年之前,对于Pallas和Stórhöfði站,PCBs变率在lag=0时与海冰变率均无显著相关性(图 4a~4g和表 3),但是Pallas站点数据的互相关分析表明在lag=2时,相关性最显著,分别为PCB28(r=-0.68,p<0.01),PCB52(r=-0.76,p<0.01),PCB101(r=-0.69,p<0.01),PCB118(r=-0.6,p<0.01),PCB138(r=-0.32,p<0.01),PCB153(r=-0.31,p<0.01),PCB180(r=-0.17,p=0.05)。2009年之后,两个站点的PCBs变率均在lag为正值时与海冰变率显著负相关。其中Pallas站的PCB180与海冰变率无显著相关性,其他PCBs在lag=1或2时与海冰变率具有较显著的负相关性。Stórhöfði站低分子量PCBs(PCB-28,52,101)与海冰变率在lag=1时的相关性显著高于高分子量PCBs,表明该站点低分子量PCBs的变率提前海冰变率约1个月的时间,即当PCBs变化最大(小)时,海冰还未到达其变率的最大(小)值。
![]() |
图 4 4 1993~2019年4个站点PCBs变率(红色)对比海冰变率(蓝色):(a)PCB28,(b)PCB52,(c)PCB101,(d)PCB118,(e)PCB138,(f)PCB153,(g)PCB180 其中水平黑色虚线对应纵坐标为0,正值表示海冰面积或者PCBs浓度增加,负值反之,图 5同;图 4a和4b中黑色虚线框出的时间长度为2009~2019年,放大图见图 5a和5b Fig. 4 PCBs rates(red)vs sea ice rates(blue)at four stations from 1993~2019: (a)PCB28, (b)PCB52, (c)PCB101, (d)PCB118, (e)PCB138, (f)PCB153, (g)PCB180. The horizontal black dashed lines correspond to the ordinate value of zero. A positive value indicates an increase in sea ice extent or PCBs concentration, and a negative value is the opposite, the same as Fig. 5; In Fig. 4c and 4d, the length of time framed by the black dotted line is from 2009 to 2019. See Fig. 5a and 5b for an enlarged view |
![]() |
表 3 4个站点海冰变率与PCBs变率之间的互相关分析 Table 3 Cross-correlations between sea ice rates and PCBs rates at four stations |
Pallas站点除了PCB180,其他PCBs近30年均提前于海冰变率,而Stórhöfði站2009年后的互相关分析表明低分子量PCBs(PCB-28,52,101)也出现了这种现象,说明海冰变化不是影响这两个站点PCBs大气浓度的主要因素。Ubl等[39]对Birkenes站(挪威)2004~2009年的PCBs数据分析发现PCBs较高的浓度与该站靠近欧洲污染源有关,大气长距离输送对该站点PCBs浓度贡献很大;Shen等[40]也报道了大气长距离输送是影响北极大气中PCBs浓度的关键因素之一。模型预测支持了此观点,即含有3和4氯的PCB28和PCB52具有相对较高的长距离输送潜力[41]。现有数据表明,在海洋的大部分地区发生了PCBs的净沉积[14, 42~43],而随着PCBs的限制使用使得它的大气浓度易受到海洋、土壤等二次源的影响。Ubl等[39]提到土壤二次释放可能发生在靠近一次源的地区,且21世纪初期土壤-空气交换的方向是从土壤到空气。由于Pallas和Stórhöfði站靠近欧洲一次源地区,土壤作为二次源可能发挥了重要作用[44~46],尤其是在夏季,较高的温度可能促进土壤和大气的交换过程,导致沉积的PCBs再释放,且较轻的POPs挥发作用更加明显[47~49]。长距离输送以及土壤再释放可能对Pallas和Stórhöfði站点的PCBs大气浓度发挥了主要作用,超过了海冰消融再释放的贡献,且土壤作为二次源对Stórhöfði站点分子量较小的PCBs的作用更显著[50~51]。
Alert站点纬度最高,不论是低分子量还是高分子量的PCBs,近30年与海冰变化均无显著的相关性,即对海冰的响应不敏感(图 4a~4g和表 3)。Zeppelin站点在2009年之前所有PCBs与海冰变率均不相关(表 3),但从2009年之后的互相关分析可以看出,大多PCBs和海冰变率在lag=-4时有一定的负相关关系,图 5显示了该站点在2009~2019年PCB28、PCB52变率与海冰变率的变化。与Pallas和Stórhöfði站点PCBs提前海冰变化的现象不同,PCBs在Zeppelin站点滞后海冰4个月左右的时间,这可能和DDTs在此站点滞后海冰变化的原因类似。
![]() |
图 5 2009~2019年Zeppelin站点PCBs变率(红色)对比海冰变率(蓝色):(a)PCB28,(b)PCB52 Fig. 5 PCBs rates(red)vs. sea ice rates(blue)at Zeppelin from 2009 to 2019: (a)PCB28, (b)PCB52 |
本研究比较了北极大气中典型持久性有机污染物在4个长期监测站点对海冰的响应情况,为研究北极海冰加速消融对大气POPs浓度的影响提供了新的分析思路,提高了对海洋作为二次源重要性的认知。本文主要结论如下:
(1) 在时间上,2009年之前,除DDTs外,其他OCPs变率与海冰变率无显著相关关系,这与一次源主导大气浓度有关,OCPs在这个时期以净沉积为主。而2009年之后,大部分OCPs变率与海冰变率显著负相关,这个时期海气交换方向已从净沉积转变为净挥发,海洋作为二次源超过了一次源对OCPs大气浓度的影响。PCBs与OCPs有所不同,在2009年之前与海冰无显著相关性或提前海冰变化,2009年之后与海冰变率的相关关系站点间差异较大。
(2) 在空间上,OCPs在周围多为浮冰区的Zeppelin站点与海冰变率的负相关关系最显著,即响应最敏感,而在其他站点显著性较低或无显著相关性。其中,HCB和α-HCH由于自身的理化性质,相比其他OCPs与海冰变率的负相关关系更显著(在Zeppelin站点lag=0时,p<0.01水平下,r分别-0.84和-0.59),而DDTs变率滞后于海冰变率可能因为海冰阻碍了海气交换。与OCPs不同,PCBs在Stórhöfði和Pallas站点出现提前海冰变化的现象,相比于海洋的二次释放,长距离输送和土壤充当二次源对这两个站点大气PCBs浓度的影响似乎更大,且对Stórhöfði站点低分子量PCBs的作用更显著,而PCBs在Zeppelin站点出现的滞后海冰变化的现象可能与DDTs在此站点出现滞后的原因类似。
本研究表明,不同类型的POPs对海冰变化的时空响应不同,有些POPs的大气浓度会随海冰消融增大,有些则与海冰变化无关。由于目前对气候变暖下POPs源和汇研究还不足,未来要更加重视POPs在极地各环境介质中(如冰雪-海水、海水-沉积物等)的迁移转化,加强对POPs在极地地区环境归趋的认识。
致谢: 感谢AMAP提供的POPs浓度数据和NSIDC提供的海冰数据;感谢审稿专家和编辑部老师建设性的修改意见。
[1] |
Wang S, Wu X, Zou J, et al. Survey of organochlorine pesticides in the atmosphere and soil of two typical landforms of Southern Anhui Province, China: Sources and air-soil exchange[J]. Atmospheric Pollution Research, 2017, 8(4): 619-627. DOI:10.1016/j.apr.2016.12.016 |
[2] |
Yu S, Liu W, Xu Y, et al. Organochlorine pesticides in ambient air from the littoral cities of Northern China: Spatial distribution, seasonal variation, source apportionment and cancer risk assessment[J]. Science of the Total Environment, 2019, 652: 163-176. DOI:10.1016/j.scitotenv.2018.10.230 |
[3] |
Wania F, Mackay D. Tracking the distribution of persistent organic pollutants[J]. Environmental Science & Technology, 1996, 30(9): A390-A396. |
[4] |
Hung H, Kallenborn R, Breivik K, et al. Atmospheric monitoring of organic pollutants in the Arctic under the Arctic Monitoring and Assessment Programme(AMAP): 1993-2006[J]. Science of the Total Environment, 2010, 408(15): 2854-2873. DOI:10.1016/j.scitotenv.2009.10.044 |
[5] |
Wu X, Lam J C W, Xia C, et al. Atmospheric concentrations of DDTs and chlordanes measured from Shanghai, China to the Arctic Ocean during the third China Arctic research expedition in 2008[J]. Atmospheric Environment, 2011, 45(22): 3750-3757. DOI:10.1016/j.atmosenv.2011.04.012 |
[6] |
Muir D C G, de Wit C A. Trends of legacy and new persistent organic pollutants in the circumpolar Arctic: Overview, conclusions, and recommendations[J]. Science of the Total Environment, 2010, 408(15): 3044-3051. DOI:10.1016/j.scitotenv.2009.11.032 |
[7] |
IPCC. Climate Change 2013: The physical science basis[M]//Stocker T F, Qin D, Plattner G-K, et al. eds. Contribution of Working Group Ⅰto the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press, 2013: 1535.
|
[8] |
Kallenborn R. Implications and Consequences of Anthropogenic Pollution in Polar Environments[M]. Berlin, Heidelberg: Springer 2016: 214-221.
|
[9] |
Crutzen P J. The "Anthropocene"[J]. Journal De Physique Iv, 2002, 12(PR10): 1-5. |
[10] |
Steele M, Ermold W, Zhang J. Arctic Ocean surface warming trends over the past 100 years[J]. Geophysical Research Letters, 2008, 35(2): L02614. DOI:10.1029/2007GL031651 |
[11] |
Ma J, Hung H, Macdonald R W. The influence of global climate change on the environmental fate of persistent organic pollutants: A review with emphasis on the Northern Hemisphere and the Arctic as a receptor[J]. Global and Planetary Change, 2016, 146: 89-108. DOI:10.1016/j.gloplacha.2016.09.011 |
[12] |
Grannas A M, Bogdal C, Hageman K J, et al. The role of the global cryosphere in the fate of organic contaminants[J]. Atmospheric Chemistry and Physics, 2013, 13(6): 3271-3305. DOI:10.5194/acp-13-3271-2013 |
[13] |
Wu X, Lam J C W, Xia C, et al. Atmospheric HCH concentrations over the marine boundary layer from Shanghai, China to the Arctic Ocean: Role of human activity and climate change[J]. Environmental Science & Technology, 2010, 44(22): 8422-8428. |
[14] |
Gioia R, Nizzetto L, Lohmann R, et al. Polychlorinated Biphenyls (PCBs) in air and seawater of the Atlantic Ocean: Sources, trends and processes[J]. Environmental Science & Technology, 2008, 42(5): 1416-1422. |
[15] |
Ma J, Hung H, Tian C, et al. Revolatilization of persistent organic pollutants in the Arctic induced by climate change[J]. Nature Climate Change, 2011, 1(5): 255-260. DOI:10.1038/nclimate1167 |
[16] |
Bogdal C, Nikolic D, Luthi M P, et al. Release of legacy pollutants from melting glaciers: Model evidence and conceptual understanding[J]. Environmental Science & Technology, 2010, 44(11): 4063-4069. |
[17] |
Blais J M, Schindler D W, Muir D C G, et al. Melting glaciers: A major source of persistent organochlorines to subalpine Bow Lake in Banff National Park, Canada[J]. Ambio, 2001, 30(7): 410-415. DOI:10.1579/0044-7447-30.7.410 |
[18] |
Bigot M, Hawker D W, Cropp R, et al. Spring melt and the redistribution of organochlorine pesticides in the sea-ice environment: A comparative study between Arctic and Antarctic regions[J]. Environmental Science & Technology, 2017, 51(16): 8944-8952. |
[19] |
Wu X, Lam J C W, Xia C, et al. Atmospheric hexachlorobenzene determined during the third China Arctic research expedition: Sources and environmental fate[J]. Atmospheric Pollution Research, 2014, 5(3): 477-483. DOI:10.5094/APR.2014.056 |
[20] |
Duarte C M, Lenton T M, Wadhams P, et al. Commentary: Abrupt climate change in the Arctic[J]. Nature Climate Change, 2012, 2(2): 60-62. DOI:10.1038/nclimate1386 |
[21] |
李鑫, 陈争光. 基于Origin 8.0的马铃薯光谱图像处理[J]. 黑龙江农业科学, 2015(2): 132-135. Li Xin, Chen Zhengguang. Potato spectral image processing based on Origin 8.0[J]. Heilongjiang Agricultural Sciences, 2015(2): 132-135. |
[22] |
Humlum O, Stordahl K, Solheim J E. The phase relation between atmospheric carbon dioxide and global temperature[J]. Global and Planetary Change, 2013, 100: 51-69. DOI:10.1016/j.gloplacha.2012.08.008 |
[23] |
Halsall C J, Bailey R, Stern G A, et al. Multi-year observations of organohalogen pesticides in the Arctic atmosphere[J]. Environmental Pollution, 1998, 102(1): 51-62. DOI:10.1016/S0269-7491(98)00074-8 |
[24] |
Lohmann R, Gioia R, Jones K C, et al. Organochlorine pesticides and PAHs in the surface water and atmosphere of the North Atlantic and Arctic Ocean[J]. Environmental Science & Technology, 2009, 43(15): 5633-5639. |
[25] |
Bossi R, Skjoth C A, Skov H. Three years (2008-2010) of measurements of atmospheric concentrations of organochlorine pesticides (OCPs) at Station Nord, North-East Greenland[J]. Environmental Science: Processes & Impacts, 2013, 15(12): 2213-2219. |
[26] |
Halsall C J. Investigating the occurrence of persistent organic pollutants(POPs) in the Arctic: Their atmospheric behaviour and interaction with the seasonal snow pack[J]. Environmental Pollution, 2004, 128(1-2): 163-175. DOI:10.1016/j.envpol.2003.08.026 |
[27] |
Lu P, Li Z, Cheng B, et al. Sea ice surface features in Arctic summer 2008:Aerial observations[J]. Remote Sensing of Environment, 2010, 114(4): 693-699. DOI:10.1016/j.rse.2009.11.009 |
[28] |
Su Y, Hung H, Blanchard P, et al. Spatial and seasonal variations of hexachlorocyclohexanes(HCHs) and hexachlorobenzene(HCB) in the Arctic atmosphere[J]. Environmental Science & Technology, 2006, 40(21): 6601-6607. |
[29] |
Wong F, Jantunen L M, Pucko M, et al. Air-water exchange of anthropogenic and natural organohalogens on International Polar Year(IPY) Expeditions in the Canadian Arctic[J]. Environmental Science & Technology, 2011, 45(3): 876-881. |
[30] |
Kallenborn R, Christensen G, Evenset A, et al. Atmospheric transport of persistent organic pollutants(POPs) to Bjornoya(Bear Island)[J]. Journal of Environmental Monitoring, 2007, 9(10): 1082-1091. DOI:10.1039/b707757m |
[31] |
MacDonald R W, Barrie L A, Bidleman T F, et al. Contaminants in the Canadian Arctic: 5 years of progress in understanding sources, occurrence and pathways[J]. Science of the Total Environment, 2000, 254(2-3): 93-234. DOI:10.1016/S0048-9697(00)00434-4 |
[32] |
Jantunen L M, Bidleman T F. Reversal of the air-water gas-exchange direction of hexachlorocyclohexanes in the Bering and Chukchi seas: 1993 versus 1988[J]. Environmental Science & Technology, 1995, 29(4): 1081-1089. |
[33] |
Ding X, Wang X, Xie Z, et al. Atmospheric hexachlorocyclohexanes in the North Pacific Ocean and the adjacent Arctic region: Spatial patterns, chiral signatures, and sea-air exchanges[J]. Environmental Science & Technology, 2007, 41(15): 5204-5209. |
[34] |
Pućko M, Stern G A, Macdonald R W, et al. The influence of the atmosphere-snow-ice-ocean interactions on the levels of hexachlorocyclohexanes in the Arctic cryosphere[J]. Journal of Geophysical Research: Oceans, 2011, 116(C2): C02035. DOI:10.1029/2010JC006614 |
[35] |
Pućko M, Stern G A, Macdonald R W, et al. α-and γ-hexachlorocyclohexane measurements in the brine fraction of sea ice in the Canadian high Arctic using a sump-hole technique[J]. Environmental Science & Technology, 2010, 44(24): 9258-9264. |
[36] |
Pućko M, Stern G A, Macdonald R W, et al. The delivery of organic contaminants to the Arctic food web: Why sea ice matters[J]. Science of the Total Environment, 2015, 506: 444-452. DOI:10.1016/j.scitotenv.2014.11.040 |
[37] |
Pućko M, Stern G A, Barber D G, et al. The international polar year (IPY) circumpolar flaw lead (CFL) system study: The importance of brine processes for α-and γ-hexachlorocyclohexane (HCH) accumulation or rejection in sea ice[J]. Atmosphere-Ocean, 2010, 48(4): 244-262. DOI:10.3137/OC318.2010 |
[38] |
Pućko M, Stern G A, Barber D G, et al. Mechanisms and implications of α-HCH enrichment in melt pond water on Arctic sea ice[J]. Environmental Science & Technology, 2012, 46(21): 11862-11869. |
[39] |
Ubl S, Scheringer M, Stohl A, et al. Primary source regions of polychlorinated biphenyls (PCBs) measured in the Arctic[J]. Atmospheric Environment, 2012, 62: 391-399. DOI:10.1016/j.atmosenv.2012.07.061 |
[40] |
Shen L, Wania F, Lei Y D, et al. Polychlorinated biphenyls and polybrominated diphenyl ethers in the North American atmosphere[J]. Environmental Pollution, 2006, 144(2): 434-444. DOI:10.1016/j.envpol.2005.12.054 |
[41] |
Wania F, Shen L, Lei Y D, et al. Development and calibration of a resin-based passive sampling system for monitoring persistent organic pollutants in the atmosphere[J]. Environmental Science & Technology, 2003, 37(7): 1352-1359. |
[42] |
Gioia R, Lohmann R, Dachs J, et al. Polychlorinated biphenyls in air and water of the North Atlantic and Arctic Ocean[J]. Journal of Geophysical Research: Atmospheres, 2008, 113(D19): D19302. DOI:10.1029/2007jd009750 |
[43] |
Iwata H, Tanabe S, Sakal N, et al. Distribution of persistent organochlorines in the oceanic air and surface seawater and the role of ocean on their global transport and fate[J]. Environmental Science & Technology, 1993, 27(6): 1080-1098. |
[44] |
Casal P, Castro-Jimenez J, Pizarro M, et al. Seasonal soil/snow-air exchange of semivolatile organic pollutants at a coastal Arctic site (Tromso, 69 degrees N)[J]. Science of the Total Environment, 2018, 636: 1109-1116. DOI:10.1016/j.scitotenv.2018.04.330 |
[45] |
Hansen K M, Christensen J H, Geels C, et al. Modelling the impact of climate change on the atmospheric transport and the fate of persistent organic pollutants in the Arctic[J]. Atmospheric Chemistry and Physics, 2015, 15(11): 6549-6559. DOI:10.5194/acp-15-6549-2015 |
[46] |
Bidleman T F, Leone A D. Soil-air exchange of organochlorine pesticides in the Southern United States[J]. Environmental Pollution, 2004, 128(1-2): 49-57. DOI:10.1016/j.envpol.2003.08.034 |
[47] |
Cabrerizo A, Dachs J, Jones K C, et al. Soil-air exchange controls on background atmospheric concentrations of organochlorine pesticides[J]. Atmospheric Chemistry and Physics, 2011, 11(24): 12799-12811. DOI:10.5194/acp-11-12799-2011 |
[48] |
Cabrerizo A, Dachs J, Moeckel C, et al. Ubiquitous net volatilization of polycyclic aromatic hydrocarbons from soils and parameters influencing their soil-air partitioning[J]. Environmental Science & Technology, 2011, 45(11): 4740-4747. |
[49] |
Cabrerizo A, Dachs J, Moeckel C, et al. Factors influencing the soil-air partitioning and the strength of soils as a secondary source of polychlorinated biphenyls to the atmosphere[J]. Environmental Science & Technology, 2011, 45(11): 4785-4792. |
[50] |
Wang X, Wang C, Zhu T, et al. Persistent organic pollutants in the polar regions and the Tibetan Plateau: A review of current knowledge and future prospects[J]. Environmental Pollution, 2019, 248: 191-208. DOI:10.1016/j.envpol.2019.01.093 |
[51] |
Pokhrel B, Gong P, Wang X, et al. Distribution, sources, and air-soil exchange of OCPs, PCBs and PAHs in urban soils of Nepal[J]. Chemosphere, 2018, 200: 532-541. DOI:10.1016/j.chemosphere.2018.01.119 |
2 Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou 215123, Jiangsu;
3 Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, Fujian)
Abstract
In the Anthropocene, human activities are exerting increasing impacts on global warming, and the unique geographical environment in the Arctic has caused it to warm almost twice as fast as the global average. This has exacerbated the melting of sea ice in the Arctic, in which deposited persistent organic pollutants(POPs) are thought to be re-released into the atmosphere. This study uses the atmospheric POPs concentration and sea ice extent data in the Arctic for the past 30 years to compare the rates of changes of typical POPs such as organochlorine pesticides(OCPs) and polychlorinated biphenyls(PCBs) at four long-term monitoring stations, i.e., Alert, Zeppelin, Stórhöfði and Pallas, combined with cross-correlation analysis, to explore the response of POPs to sea ice changes. Results show that most OCPs rates were not correlated with sea ice rates before 2009. After 2009, OCPs(especially HCB and α-HCH) rates at Zeppelin, where the surrounding area is mostly floating ice, were significantly negatively correlated with sea ice rates, possibly because the effects of sea ice/water as secondary sources on atmospheric OCPs concentrations were greater than that of the primary source. At other stations, the correlations between the two were not significant. PCBs, especially low-molecular-weight PCBs, predated sea ice changes at Stórhöfði and Pallas. This may be due to the greater impact of long-distance transport and soil acting as secondary sources compared to sea ice melting. At Zeppelin, PCBs showed a phenomenon of lagging sea ice changes similar to DDTs. This study reveals that different types of POPs have different temporal and spatial responses to sea ice changes, atmospheric concentrations of some POPs increase with sea ice melting, while others do not.