② 西北大学地质系, 大陆动力学国家重点实验室, 西安 710069)
风成沉积的研究直接关系到亚洲内陆干旱化发展的过程,因而黄土高原风成沉积的研究是近年来气候和环境变化研究的热点之一[1~4];此外更多的风成沉积堆积在山前,在堆积过程中会有近源物质的混入,因此风成沉积的研究还能为山体隆升提供证据[5~7]。
尽管目前对塔里木盆地风成沉积的起始时间尚有争议[8~11],但在更北的蒙古南部发现了34Ma的风成沉积[12]。就黄土高原内部来说,六盘山以西的陇东盆地沉积记录显示在22~25Ma就开始堆积风成沉积[2, 13~16],而六盘山以东的黄土高原风成沉积的起始年龄却集中在8~11Ma[17~34]。我们认为造成六盘山两侧风成沉积差异如此之大的主要原因是8~11Ma之前鄂尔多斯高原一直处于隆升剥蚀,这种持久抬升接受剥蚀的环境不利于粉尘物质和冲积物的堆积[35]。最近也有人认为西风绕流、狭管效应及冬季风增强是导致六盘山东西两侧风成沉积年龄差异的原因,但地形为风成沉积提供了必要条件[36]。吕梁山山前在新近纪沉积了较厚的风成沉积,有迹象表明该处风成沉积厚度较大,年龄较老[31, 37],本文拟对其起始年龄进行对比研究进而探讨黄土高原东西部风成沉积年龄差异的原因。
吕梁山西麓红粘土堆积之初,受吕梁山快速隆升影响,地表基岩遍遭剥蚀。由于植被疏矮,基岩疏松,在风力以及流水的交互作用下,产生大量砾、砂、粉尘物质,混入到早期红粘土中[37]。红粘土的下部普遍存在有水流作用的痕迹,表现为含有数层砾石层和化石层[37~39]。部分红粘土层中含有明显经水流改造的层段,野外表现为出现红粘土泥砾、沉积粒序及层理等特征;但也有部分红粘土序列非常“纯净”,整个剖面未见水流改造痕迹,野外特征也与黄土高原典型红粘土特征相似。究竟是什么原因导致吕梁山山前红粘土沉积特征差异如此之大?本文将根据吕梁山西麓卫家洼、复兴和石楼剖面的红粘土物质组成及沉积特征,对比研究吕梁山山前红粘土的堆积过程。
2 剖面特征吕梁山呈北北东-南南西走向(图 1),长约450km,宽约40~120km。吕梁山西部前新生代基岩之上不整合覆有薄层的新生代地层,包括新近纪晚期保德组、静乐组以及第四纪黄土-古土壤序列[37, 38]。该区地形高差较大,地势切割剧烈,不少天然剖面裸露地表,著名的保德、静乐、午城、离石等新生代地层命名剖面均位于本区。该区红粘土厚度一般为60~80m,最厚可达100m以上,个别剖面下部含有厚层砾石层。
|
图 1 研究区位置图及各剖面野外特征 Fig. 1 Schematic map showing the locations and field characteristics of the Weijiawa, Fuxing and Shilou sections |
卫家洼剖面(37°21′42″N,110°45′07″E)位于吕梁山西麓,行政区划为柳林县卫家洼村。剖面总厚100余米,可分为上下两部分(图 1),上部风成段与下部经水流改造段。上部风成段厚近30m,具有典型红粘土的特征:颜色较红,呈深棕红色,深褐红色,发育有铁猛斑点,粘粒胶膜,质地均一;风成段顶部钙质结核细小,而且稀少,粒径一般都不超过5cm;中下部钙质结核密集成层状,结核较粗大,外形不规则,呈倒锥状、串珠状分布在红粘土层中。总之,上部风成段较“纯净”,颜色较红,呈现出典型红粘土的特征。下部经水流改造段红粘土较上部风成段颜色浅,呈淡黄色、浅棕红色,部分层段为灰白色,主要岩性为:红粘土或者砂质粘土夹灰白色的砂层、砂砾石层、砾岩层,灰白色、灰绿色泥岩层等水成堆积物。砂层厚度一般不大,大多为2~5cm,最厚达30cm,多为细砂到中砂。砂层中可见水平层理、斜层理等特征。砂砾石层、砾岩层厚度一般为0.5~2.0m,砾石成分主要为灰岩,其次为砂岩,砾石粒径变化较大,2~20cm者均有。泥岩层质地坚硬,在风化面上成明显的陡坎状,特征明显,走向上延伸较远。
复兴剖面(37°10′57″N,110°56′14″E)位于柳林县复兴村。剖面厚50余米,由上部红粘土层和下部砂质粘土层夹砂层与砾石层组成(图 1)。上部粘土层成壤作用较强,由约20个粘土层与钙质结核层旋回组成,呈现出典型红粘土的特征。下部砂质粘土层夹砂层与砾石层,呈浅黄褐色,砂质含量明显加大,部分层位则为细砂层。砂质粘土层中钙板层较致密,较均一,明显区别于上部层位的钙质结核层。下部砂质粘土层中夹有厚层砂砾石层,最厚处大于3m,砾石成分主要为灰岩,其次为砂岩和钙质结核。剖面底部发现两层化石层。
石楼剖面(36°55′31″N,110°56′19″E)位于石楼县下田庄村,属吕梁山西麓(图 1)。剖面厚70余米,剖面顶部与黄土接触部位有一过渡带,过渡带之中岩性混杂。石楼剖面上下两分性特别明显。上部厚26m,呈深红棕色,与下部明显区分。上部整体铁锰胶膜和粘粒胶膜发育。钙质结核粗大,呈倒锥状、棒状、串珠状垂直分布于粘土之中,多数都结成厚层板状,呈明显的陡坎,顶底面凹凸不平,走向上稳定。下部红粘土厚40多米,颜色较上部粘土浅,钙质结核颗粒较小,密集结成板状,厚度为0.1~0.3m,红粘土作为基质充填于空隙之中。
3 吕梁山西麓南部红粘土的古地磁年代本文综合卫家洼、复兴和石楼等剖面的磁性地层结果[24, 37, 39],对吕梁山西麓红粘土的堆积时间和过程进行对比。各剖面代表性样品的退磁结果如图 2所示。
|
图 2 卫家洼(W-0799、W-1550)、复兴(F-057、F-107)和石楼(S-443、S-235)剖面代表性样品系统退磁结果实心/空心圆圈代表垂直/水平投影 Fig. 2 Orthogonal thermal demagnetization plots of representative samples in the Weijiawa, Fuxing and Shilou sections. Small solid (open) symbols refer to the projection on the vertical (horizontal) plane in geographic coordinates |
卫家洼剖面顶部缺失高斯正极性带(C2A)和吉尔伯特负极性带(C3)上部。吉尔伯特负极性带(C3)对应于剖面的0~47.2m,包括4个正极性亚带C3n.1n、C3n.2n、C3n.3n和C3n.4n及其间的负极性亚带,古地磁年龄约为4.18~6.00Ma。C3A对应于剖面的47.2~68.5m,其中记录了两个正极性亚带,为C3An.1n和C3An.2n和对应的负极性亚带,对应的古地磁年龄约为6.00~7.14Ma。其下的长正极性带对应于C3Br到C4n.2n之间的正极性段。剖面底部结束于一个负极性段,对应于C4r.2r。因此剖面底部对应的古地磁年龄约为8.3Ma(图 3a和3b)。剖面下段由于有过多的水成堆积物,且水成堆积物中的粗砾岩及松散砂层无法取样,可能漏掉了一两个短暂的极性段,且由于其沉积速率远大于风成红粘土,所以下部的极性柱与上部极性柱存在比例失调现象。在C3Ar负极性带中产Hipparion和Samotherium可与保德剖面相应层位的古生物化石对应[41],另外C3r、C3An.2n、C3Ar等几个较长的极性柱也为与标准极性柱对比提供依据。
|
图 3 卫家洼[37](a,b)、复兴[39](c,d)和石楼剖面[24](e,f)古地磁极性柱与标准极性柱[40]对比 Fig. 3 Magnetic polarity sequences of the Weijiawa[37](a, b), Fuxing[39](c, d) and Shilou[24](e, f) sections, and correlation with the Geomagnetic Polarity Time Scale[40] |
复兴剖面记录了7个负极性段和8个正极性段(图 3c和3d),顶部的黄土(0~1.9m)记录了松山负极性带的底部。高斯正极性带(C2A)对应于剖面的1.9~19.3m,其中包括了两个负极性亚带,Kaena和Mammoth极性亚带。吉尔伯特负极性带(C3)对应于剖面的19.3~40.5m,其中包括了3个极性亚带,分别对应于Cochiti、Sidufjall和Thvera,由于下部砂质粘土颗粒较粗,记录得不是很好,可能漏掉了其中的Nunivak。C3A对应于剖面的40.5~47.4m,其中记录了一个正极性亚带,为C3An.1n,中部有沉积间断,缺失了一个正极性亚带C3An.2n。剖面底部结束于一个正极性段,对应于C3Bn正极性亚带。在剖面的底部发现的两层化石层,经西北大学地质系的张云翔教授鉴定,主要有Gazellasp.(cf.paotehensis)(保德羚羊)、Hipparion plocodus(环齿三趾马)、Myospalax sp.(鼢鼠)和Cervidae(鹿科),认为与保德第30地点的化石非常相似[41],并且估计其生活在中新世晚期。保德第30地点的化石的古地磁年龄为6.7~7.0Ma[41],复兴剖面的两个化石层的年龄分别为6.8~6.9Ma和7.0~7.2Ma[39],与化石所反映的年龄完全吻合,这也就保证了古地磁结果的准确性。
石楼剖面松山(C2)/高斯(C2A)(M/G)界限位于剖面的2.8m处。高斯正极性带(C2A)对应于剖面的2.8~12.2m。吉尔伯特负极性带(C3)对应于剖面的12.2~35.8m。C3A极性段对应于剖面的35.8~39.8m,但是没有记录到C3An.1n和C3An.2n之间的负极性亚带。C3B极性段对应于剖面的39.8~43.0m,其中包括了3个正极性亚带C3Bn、C3Br.1n和C3Br.2n,但是没有记录到负极性亚段C3Br.2r。C4极性段对应于剖面的43.0~54.0m,其中包含了3个正极性亚段C4n.1n、C4n.2n和C4r.1n。石楼粘土剖面底部对应于正极性段C5n.2n,由于底部有将近8m的正极性段,根据整个剖面以及底部的沉积速率,推断石楼红粘土剖面底界年龄为11Ma(图 3e和3f)。
4 吕梁山西麓红粘土的起始时间通过以上3个剖面对比,结合之前府谷[41]和保德[23, 31]剖面古地磁结果,认为吕梁山西麓红粘土的起始年龄集中在7~8Ma,与六盘山以东的黄土高原腹地相似[17~23];但最老的红粘土年龄(石楼地区)达到了11Ma,与黄土高原南缘相近[25]。
最近有学者通过轨道调谐的方法对石楼剖面的古地磁年代提出异议,认为其底界年龄为5.2Ma[42],此结果与黄土高原特别是吕梁山两侧区域地层相矛盾。众所周知,吕梁山山前红粘土地层上下两分性明显,上部静乐组颜色呈深红棕色,成壤作用非常强,其下保德组颜色稍浅,钙质结核层密集。石楼剖面出露非常好,野外地层极易划分,上下两段特征异常明显(图 4b)。前人诸多研究认为仅静乐组底界年龄都达到了5.23Ma[23, 31, 43, 44];Anwar等[42]也提出经过更正的静乐组年龄为2.58~3.66Ma,与静乐贺丰剖面年龄[45]一致。殊不知早有古生物学家认为贺丰剖面地层不全,缺失下部地层,不适合作为层型剖面,提出黄土高原南部段家坡剖面作为其候选的次层型剖面,以与榆社期对应[46]。Anwar等[42]还指出保德剖面和黄土高原其他地区红粘土古地磁年龄可能都存在问题。保德剖面以其蕴藏着大量的古生物化石而驰名中外,对其生物地层的研究程度已经非常高[23, 31, 43, 44, 47~49];另外,黄土高原红粘土的古地磁结果和其中所含古生物化石是相辅相成,相互印证的,也与欧洲的同期动物期进行了对应[43, 49]。此次虽然在石楼剖面中没有发现大型哺乳类动物化石,但在附近的沙窑发现有Hipparion richthofeni(李氏三趾马)、Gazellasp.(羚羊)、Chilotheriumsp.(大唇犀)等[38]属于保德期的典型动物群;另外,石楼剖面红粘土的气候指标如磁化率[50]表现出与黄土高原其他剖面非常相似的变化趋势[2, 19, 22, 51](图 4a)。因此,我们认为没有考虑区域地层进行的轨道调谐结果是不可靠的。
|
图 4 (a)石楼剖面磁化率[50](黑色)与黄土高原秦安-1[2](绿色)、佳县[19](黄色)、朝那[22](红色)和灵台[51](蓝色)剖面磁化率对比;(b)石楼剖面野外特征 Fig. 4 (a)Comparison of the magnetic susceptibility from different red clay sections(Shilou, black; Qinan-1[2], green; Jiaxian[19], yellow; Chaona[22], red; and Lingtai[51], blue); (b)Lithostratigraphic features of Shilou red clay section |
那么何种原因导致六盘山以西风成沉积的底界年龄为22~25Ma[2, 13~16],而六盘山以东的黄土高原风成沉积的年龄不超过8~11Ma[17~34]?我们认为造成如此差异的主要原因是8~11Ma之前鄂尔多斯高原一直处于隆升剥蚀,这种持久抬升接受剥蚀的环境不利于风成沉积和冲积物的堆积[35]。8~11Ma开始鄂尔多斯高原周缘出现差异隆升,周边山体隆升幅度较大,开始在山前堆积风成沉积。也有学者认为西风绕流和狭管效应作用及冬季风的增强是导致六盘山东西两侧风成沉积起始年龄差异较大的主要原因[36]。前人的诸多研究也认为7~8Ma以来东亚冬季风增强,携带来大量的粉尘物质在黄土高原东部大面积堆积[26]。不过最近对黄土高原红粘土粒度的研究发现7.6~5.2Ma,粒度中粗细颗粒均呈减小的趋势,显示此时季风和西风均出现减弱的趋势[52]。在8.0~6.2Ma,石楼剖面红粘土粒度也呈现出逐渐减弱的趋势[53]。因此我们认为22~11Ma之前黄土高原东部并不是没有出现风成沉积,而是粉尘物质没有能较好的保存。至11Ma起,鄂尔多斯高原内部出现了差异隆升[22, 35],在合适的地貌位置开始保存完整的风成沉积。此时吕梁山北部有较明显的隆升,导致吕梁山西麓大部分地区并没有保存>8Ma的风成沉积。早期风成沉积在抬升作用下,受水流作用等的影响,未能保留,在个别剖面中作为后期红粘土的砾石出现[54]。而在南部石楼地区构造稳定,在合适的地貌位置保存了11Ma以来的风成沉积。
5 吕梁山西麓红粘土的堆积过程吕梁山山前红粘土多数由上下两部分组成(图 1),如卫家洼和复兴剖面。上部为典型的风成红粘土,与黄土高原其他地区[17~24]典型风成红粘土表现出相同或者相似的特征,在野外表现为红棕色粘土夹数层钙质结核或钙板层,粘土中黑色铁猛斑点和透明的粘土胶膜较为发育,显示出较强的成壤作用;下部则在红粘土层中夹有明显经受过水流作用改造的层位。在粘土层中出现了砂层、砂砾石层的透镜体(图 5a),砂层中可见小型斜层理和交错层理(图 5b);在砂砾石层或者砂质粘土层中含有哺乳动物化石(图 5d),部分剖面出现了更老的红粘土和钙质结核作为砾石出现在后期的粘土中(图 5c)。李建星等[54]对其进行了详细地研究认为,底部堆积物的碎屑主要是未成岩的红粘土和钙质结核,碎屑具有明显的分选和磨圆度,可见由粗变细的沉积旋回A、B和C(图 5c),显然经过水流搬运。其沉积速率也较上部红粘土大很多,红粘土和钙质结核作为砾石单独成层出现说明周缘存在更老的粘土,经过搬运在低洼的地区堆积。
|
图 5 卫家洼红粘土剖面中水流作用痕迹 (a)砾石层(gravel layers);(b)交错层理(cross bedding);(c)经水流改造红粘土的沉积序列(sedimentary sequence of transformed red clay);(d)犀牛化石(Chilotherium sp.) Fig. 5 Water flow actions in Weijiawa red clay section |
另外,从复兴剖面下部红粘土的粒度分布曲线(图 6d)可见,红粘土粒度呈现出三峰或者多峰分布,分别在1~2μm、10μm和100μm出现峰值[39]。还有个别红粘土层段更粗,表现为100μm的峰值为其主峰,与石楼和复兴上部典型红粘土[24]中几乎不存在大于100μm的颗粒形成鲜明对比(图 6a~6c)。
|
图 6 红粘土粒度频率分布曲线 (a)石楼上部(upper part of Shilou red clay section);(b)石楼下部(lower part of Shilou red clay section);(c)复兴上部(upper part of Fuxing red clay section);(d)复兴下部(lower part of Fuxing red clay section) Fig. 6 Frequency distribution curves of red clay |
因此吕梁山山前部分红粘土主要保存在山前低洼的谷地(图 7)。由于早期吕梁山存在快速隆升[55],地形高差较大,从远处带来的风成物质和山前堆积物质以及山体剥蚀物在降水或者洪水的搬运下到达低洼地段堆积。较老的红粘土受到过后期水流作用的影响,混杂有粗粉砂和砂粒,粒度明显较粗(图 6d),磁化率值较低。野外表现为有水流作用的特征,如出现砂砾石层,发育有层理等。红粘土堆积区域常含有大型哺乳动物化石。化石层的厚度从几十厘米至数米不等,很多化石层为砂质粘土或者砂层、砂砾石层(图 5)。这些特征在北部保德和府谷一带也非常常见[31, 41]。化石埋藏学与沉积学角度分析,红粘土最终堆积的地理环境应为洼地或小型盆地[35]。卫家洼和复兴属于此类沉积,此类沉积在吕梁山山前较为常见。由于早期红粘土受水流改造消失不见或者作为泥砾出现在后期红粘土层中,因此该类红粘土堆积起始年龄不大。但由于水流作用影响导致红粘土层段沉积速率较大,因此剖面较厚。
|
图 7 吕梁山西麓红粘土堆积示意图 Fig. 7 Schematic diagram of red clay accumulation in the western piedmont of the Lüliang Mountains |
石楼剖面与卫家洼和复兴剖面明显不同,整个红粘土序列表现为典型风成红粘土的特征,野外表现为多层红粘土和钙质结核组合(图 4b),部分层位表现出非常强的成壤特征。红粘土的粒度也非常细,集中在粘土和粉砂,砂粒含量非常少(图 6a和6b)。总体上看,石楼红粘土序列非常纯净,剖面中未见有任何水流作用的痕迹,与卫家洼和复兴剖面的下部夹有砂层、砂砾石层、化石层明显不同。造成这种差异的主要原因是石楼地区位于构造稳定区山麓或者山脊两侧的稳定台地上(图 7),地形相对比较高,几乎不受水流作用影响,风成沉积从源区搬运到山脊两侧的稳定台地上堆积。由于降落在其周围较高地形上的风力搬运而来的沉积物有限,因此,沉积速度较小,沉积厚度不大,但沉积物的底界年龄相对较老[56]。
6 结论通过对吕梁山西麓中部的卫家洼、复兴和石楼3个剖面的磁性地层和沉积特征进行对比,结合前人在北部府谷和保德地区的磁性地层结果,认为吕梁山西麓红粘土起始年龄集中在7~8Ma,与六盘山以东的黄土高原其他红粘土序列底界年龄一致;但在石楼地区出现了较老的红粘土,古地磁年龄为11Ma。我们认为自此时起,鄂尔多斯高原内部出现差异隆升,在东缘和南缘适合的地理位置开始保存风成沉积;但此时吕梁山北部有较明显的抬升,导致吕梁山西麓大部分地区并没有保存>8Ma的风成沉积。早期风成沉积在抬升作用下,受水流作用等的影响,未能保留,在个别剖面中作为后期红粘土的砾石出现,而在南部构造稳定的台地,在合适的地貌位置保存了11Ma以来的风成沉积。
通过沉积特征对比认为吕梁山山前红粘土堆积之初,由于周缘山体的快速隆升剥蚀和水流作用的影响,早期堆积红粘土粒度较粗,颜色较浅,出现了砂层、砾石层、化石层等夹层,发育有水平层理,小型交错层理及透镜等沉积构造。部分早期堆积的红粘土在水流作用的影响下,经再次搬运在低洼地段堆积,沉积速率较大,剖面厚度较大;但较老的红粘土层被水流改造消失不见或者作为泥砾出现在后期红粘土层中,因此起始堆积年龄不大。在构造稳定的台地,红粘土堆积几乎不受水流作用影响,降落在其四周的粉尘物质又非常有限,因此整个红粘土剖面厚度较小,但起始堆积年龄较老。
致谢: 非常感谢中国科学院地质与地球物理研究所邓成龙研究员和孙蕗博士对该文章提出的宝贵意见;感谢孙勃、孙蕗、张佳音、马冀、刘永强和王建其等在野外采样及室内测试中的帮助;审稿专家和编辑部老师提出了非常有益的建议和修改意见,在此表示感谢。
| 1 |
An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times.
Nature,2001, 411 (6833) : 62~66.
doi:10.1038/35075035 ( 0)
|
| 2 |
Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China.
Nature,2002, 416 (6877) : 159~163.
doi:10.1038/416159a ( 0)
|
| 3 |
鹿化煜, 王先彦, 李郎平. 晚新生代亚洲干旱气候发展与全球变冷联系的风尘沉积证据.
第四纪研究,2008, 28 (5) : 949~956.
Lu Huayu, Wang Xianyan, Li Langping. Aeolian dust records indicate the linkage of global cooling and Asian drying in Late Cenozoic. Quaternary Sciences,2008, 28 (5) : 949~956. ( 0)
|
| 4 |
安芷生, 张培震, 王二七, 等. 中新世以来我国季风-干旱环境演化与青藏高原的生长.
第四纪研究,2006, 26 (5) : 678~693.
An Zhisheng, Zhang Peizheng, Wang Erchie, et al. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene. Quaternary Sciences,2006, 26 (5) : 678~693. ( 0)
|
| 5 |
宋友桂, 方小敏, 李吉均, 等. 六盘山东麓朝那剖面红粘土年代及其构造意义.
第四纪研究,2000, 20 (5) : 457~463.
Song Yougui, Fang Xiaomin, Li Jijun, et al. Age of red clay at Chaona section near eastern Liupan Mountain and its tectonic significance. Quaternary Sciences,2000, 20 (5) : 457~463. ( 0)
|
| 6 |
Song Yougui, Fang Xiaomin, Li Jijun, et al. The Late Cenozoic uplift of the Liupan Shan, China.
Science in China (Series D),2001, 43 (1) : 176~184.
( 0)
|
| 7 |
张培震, 郑德文, 尹功明, 等. 有关青藏高原东北缘晚新生代扩展与隆升的讨论.
第四纪研究,2006, 26 (1) : 5~13.
Zhang Peizheng, Zheng Dewen, Yin Gongming, et al. Discussion on the Late Cenozoic growth and rise of northeastern margin of the Tibetan Plateau. Quaternary Sciences,2006, 26 (1) : 5~13. ( 0)
|
| 8 |
Sun J M, Zhang Z Q, Zhang L Y. New evidence on the age of the Taklimakan Desert.
Geology,2009, 37 (2) : 159~162.
doi:10.1130/G25338A.1 ( 0)
|
| 9 |
Sun J M, Alloway B, Fang X M, et al. Refuting the evidence for an earlier birth of the Taklimakan Desert.
Proceeding of the National Academy of Sciences of the United States of America,2015, 112 (41) : 1~6.
( 0)
|
| 10 |
Sun D H, Bloemendal J, Yi Z Y, et al. Palaeomagnetic and palaeoenvironmental study of two parallel sections of Late Cenozoic strata in the central Taklimakan Desert:Implications for the desertification of the Tarim Basin.
Palaeogeography, Palaeoclimatology, Palaeoecology,2011, 300 (1-4) : 1~10.
doi:10.1016/j.palaeo.2010.11.015 ( 0)
|
| 11 |
Zheng H B, Wei X C, Tadad R, et al. Late Oligocene-Early Miocene birth of the Taklimakan Desert.
Proceeding of the National Academy of Sciences of the United States of America,2015, 112 (25) : 7662~7667.
doi:10.1073/pnas.1424487112 ( 0)
|
| 12 |
Sun J M, Windley B F. Onset of aridification by 34Ma across the Eocene-Oligocene transition in Central Asia.
Geology,2015, 43 (11) : 1015~1018.
doi:10.1130/G37165.1 ( 0)
|
| 13 |
Hao Q Z, Guo Z T. Magnetostratigraphy of an Early-Middle Miocene loess-soil sequence in the western Loess Plateau of China.
Geophysical Research Letters,2004, 34 : L18305.
doi:10.1029/2007GL031162 ( 0)
|
| 14 |
Qiang X K, An Z S, Song Y G, et al. New eolian red clay sequence on the western Chinese Loess Plateau linked to onset of Asian desertification about 25Ma ago.
Science China:Earth Sciences,2011, 54 (1) : 136~144.
doi:10.1007/s11430-010-4126-5 ( 0)
|
| 15 |
刘进峰, 郭正堂, 郝青振, 等. 甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究.
第四纪研究,2005, 25 (4) : 503~509.
Liu Jinfeng, Guo Zhengtang, Hao Qingzhen, et al. Magnetostratigraphy of the Miziwan Miocene eolian deposits in Qin'an County(Gansu Province). Quaternary Sciences,2005, 25 (4) : 503~509. ( 0)
|
| 16 |
赵辉, 强小科, 敖红, 等. 黄土高原西部红粘土岩石磁学性质及其指示的亚洲内陆中中新世气候变化特征.
第四纪研究,2012, 32 (4) : 690~699.
Zhao Hui, Qiang Xiaoke, Ao Hong, et al. Mid-Miocene climate in the Asian interior, based on the mineral-magnetic record of the red clay sequence on the western Chinese Loess Plateau. Quaternary Sciences,2012, 32 (4) : 690~699. ( 0)
|
| 17 |
Ding Z L, Sun J M, Liu T S, et al. Wind-blown origin of the Pliocene red clay formation in the central Loess Plateau, China.
Earth and Planetary Science Letters,1998, 161 (1-4) : 135~143.
doi:10.1016/S0012-821X(98)00145-9 ( 0)
|
| 18 |
Sun D H, An Z S, Shaw J, et al. Magnetostratigraphy and paleoclimatic of Late Tertiary aeolian sequences in the Chinese Loess Plateau.
Geophysical Journal International,1998, 134 (1) : 207~212.
doi:10.1046/j.1365-246x.1998.00553.x ( 0)
|
| 19 |
Qiang X K, Li Z X, Powell C M, et al. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet.
Earth and Planetary Science Letters,2001, 187 (1-2) : 83~93.
doi:10.1016/S0012-821X(01)00281-3 ( 0)
|
| 20 |
Liu X M, Rolph T, An Z S, et al. Paleoclimatic significance of magnetic properties on the Red Clay underlying the loess and paleosols in China.
Palaeogeography, Palaeoclimatology, Palaeoecology,2003, 199 (1) : 153~166.
( 0)
|
| 21 |
Guo Z T, Peng S Z, Hao Q Z, et al. Late Miocene-Pliocene development of Asian aridification as recorded in the red-earth formation in Northern China.
Global and Planetary Change,2004, 41 (3-4) : 135~145.
doi:10.1016/j.gloplacha.2004.01.002 ( 0)
|
| 22 |
Song Y G, Fang X M, Torii M, et al. Late Neogene rock magnetic record of climatic variation from Chinese eolian sediments related to uplift of the Tibetan Plateau.
Journal of Asian Earth Science,2007, 30 (2) : 324~332.
doi:10.1016/j.jseaes.2006.10.004 ( 0)
|
| 23 |
Zhu Y M, Zhou L P, Mo D W, et al. A new magnetostratigraphic framework for Late Neogene Hipparion red clay in the eastern Loess Plateau of China.
Palaeogeography, Palaeoclimatology, Palaeoecology,2008, 268 (1-2) : 47~57.
doi:10.1016/j.palaeo.2008.08.001 ( 0)
|
| 24 |
Xu Y, Yue L P, Li J X, et al. An 11-Ma-old red clay sequence on the eastern Chinese Loess Plateau.
Palaeogeography, Palaeoclimatology, Palaeoecology,2009, 284 (3) : 383~391.
( 0)
|
| 25 |
Wang B, Zheng H B, He Z, et al. Middle Miocene eolian sediments on the southern Chinese Loess Plateau dated by magnetostratigraphy.
Palaeogeography, Palaeoclimatology, Palaeoecology,2014, 411 (1) : 257~266.
( 0)
|
| 26 |
An Zhisheng, Sun Youbin, Zhou Weijian et al. Chinese loess and the East Asian Monsoon. In:An Zhisheng et al. eds. Late Cenozoic Climate Change in Asia——Loess, Monsoon and Monsoon-arid Environment Evolution. Amsterdam:Springer, 2014. 23~143
http://cn.bing.com/academic/profile?id=70754172&encoded=0&v=paper_preview&mkt=zh-cn ( 0)
|
| 27 |
丁仲礼, 孙继敏, 朱日祥, 等. 黄土高原红粘土成因及上新世北方干旱化问题.
第四纪研究,1997 (2) : 147~157.
Ding Zhongli, Sun Jimin, Zhu Rixiang, et al. Eolian origin of the red clay deposits in the Loess Plateau and implications for Pliocene climatic changes. Quaternary Sciences,1997 (2) : 147~157. ( 0)
|
| 28 |
杨石岭, 侯圣山, 王旭, 等. 泾川晚第三纪红粘土的磁性地层及其与灵台剖面的对比.
第四纪研究,2000, 20 (5) : 423~434.
Yang Shiling, Hou Shengshan, Wang Xu, et al. Completeness and continuity of the Late Tertiary red clay sequence in Northern China:Evidence from the correlation of magnetostratigraphy and pedostratigraphy between Jingchuan and Lingtai. Quaternary Sciences,2000, 20 (5) : 423~434. ( 0)
|
| 29 |
薛祥煦, 张云翔, 岳乐平. 黄土高原一个连续的晚新生代剖面及其划分与对比.
地层学杂志,2001, 25 (2) : 81~88.
Xue Xiangxu, Zhang Yunxiang, Yue Leping. Subdivision and correlation of a nearly continuous Late Cenozoic profile in Loess Plateau. Journal of Stratigraphy,2001, 25 (2) : 81~88. ( 0)
|
| 30 |
陈宝群, 孙东怀, 安芷生. 蓝田白鹿原晚第三纪风成红粘土序列的古季风气候记录.
陕西师范大学学报(自然科学版),2001, 29 (4) : 112~117.
Chen Baoqun, Sun Donghuai, An Zhisheng. Palaeoclimatic record from red clay sequence at Bailuyuan of Lantian, Shaanxi Province. Journal of Shaanxi Normal University(Natural Science Edition),2001, 29 (4) : 112~117. ( 0)
|
| 31 |
岳乐平, 邓涛, 张云翔, 等. 保德阶层型剖面磁性地层学研究.
,2004, 28 (1) : 48~51.
Yue Leping, Deng Tao, Zhang Yunxiang, et al. Magnetostratigraphy of stratotype section of the Baode stage. Journal of Stratigraphy,2004, 28 (1) : 48~51. ( 0)
|
| 32 |
王先彦, 鹿化煜, 弋双文, 等. 晚新生代洛川典型风尘堆积序列的延伸.
海洋地质与第四纪地质,2006, 26 (1) : 89~92.
Wang Xianyan, Lu Huayu, Yi Shuangwen, et al. Extension of the typical aeolian sequences at Luochuan, central Chinese Loess Plateau. Marine Geology & Quaternary Geology,2006, 26 (1) : 89~92. ( 0)
|
| 33 |
孙蕗, 岳乐平, 王建其, 等. 黄土高原北部晚新近纪"吴起古湖"的古地磁年代学与古环境记录.
地球物理学报,2010, 53 (6) : 1451~1462.
Sun Lu, Yue Leping, Wang Jianqi, et al. Palaeomagnetic chronology and paleoenvironmental records of Late Neogene Wuqi paleolake in northern Chinese Loess Plateau. Chinese Journal of Geophysics,2010, 53 (6) : 1451~1462. ( 0)
|
| 34 |
程瑜, 乔彦松, 刘宗秀, 等. 甘肃灵台邵寨红粘土的磁性地层及其色度记录.
第四纪研究,2014, 34 (2) : 391~398.
Cheng Yu, Qiao Yansong, Liu Zongxiu, et al. Magnetostratigraphy and chorma records of a red clay formation near Lingtai County of Gansu Province. Quaternary Sciences,2014, 34 (2) : 391~398. ( 0)
|
| 35 |
Yue Leping, Li Jianxing, Zheng Guozhang, et al. Evolution of the Ordos Plateau and environmental effects.
Science in China (Series D),2007, 50 (Suppl. Ⅱ) : 19~26.
( 0)
|
| 36 |
李乐意, 常宏. 六盘山东西两侧红粘土沉积起源年龄差异原因初探.
地质论评,2015, 61 (4) : 861~872.
Li Leyi, Chang Hong. Preliminary interpretation to Diachroneity of the Red Clay in two flanks of the Liupan Mountain. Geological Review,2015, 61 (4) : 861~872. ( 0)
|
| 37 |
李建星, 岳乐平, 徐永, 等. 再搬运红粘土的发现及地质意义.
沉积学报,2009, 27 (6) : 1184~1190.
Li Jianxing, Yue Leping, Xu Yong, et al. Discovery and geological significance of Red Clay in the Liulin section in the west part of Lüliang Mountains. Acta Sedimentologica Sinica,2009, 27 (6) : 1184~1190. ( 0)
|
| 38 |
王兴武.山西省的晚新生代地层.榆次:山西省地矿局, 1985. 24~26
Wang Xingwu. Late Cenozoic Strata in Shanxi Province. Yuci:Bureau of Geology Exploration in Shanxi Province. 1985. 24~26 ( 0)
|
| 39 |
徐永, 岳乐平, 李建星, 等. 吕梁山西麓复兴剖面红粘土的磁性地层学研究.
地层学杂志,2013, 37 (1) : 33~40.
Xu Yong, Yue Leping, Li Jianxing, et al. Magnetostratigraphy of Late Neogene red clays in the Fuxing area of western foothills of the Lüliang Mountains. Journal of Stratigraphy,2013, 37 (1) : 33~40. ( 0)
|
| 40 |
Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic.
Journal of Geophysical Research,1995, 100 (4) : 6093~6095.
( 0)
|
| 41 |
张云翔, 薛祥煦, 岳乐平. 陕西府谷老高川新第三纪"红层"的划分与时代.
地层学杂志,1995, 19 (3) : 214~219.
Zhang Yunxiang, Xue Xiangxu, Yue Leping. Age and division of Neogene "Red Clay" of Laogaochuan, Fugu County, Shaanxi. Journal of Stratigraphy,1995, 19 (3) : 214~219. ( 0)
|
| 42 |
Anwar T, Kravchinsky V A, Zhang R. Magneto-and cyclostratigraphy in the red clay sequence:New age model and paleoclimatic implication for the eastern Chinese Loess Plateau.
Journal of Geophysical Research:Solid Earth,2015, 120 (10) : 6758~6770.
doi:10.1002/2015JB012132 ( 0)
|
| 43 |
Kaakinen A, Passey B H, Zhang Z Q, et al.
Stratigraphy and paleoecology of the classical dragon bone localities of Baode County, Shanxi Province. In:Wang X, Flynn L J, Fortelius M eds. Fossil Mammals of Asia:Neogene Biostratigraphy and Chronology. New York: Columbia University Press, 2013 : 203 ~217.
( 0)
|
| 44 |
岳乐平, 张云翔, 王建其, 等. 山西静乐和陕西榆林地区红色土与黄土-古土壤序列之关系.
中国区域地质,1999, 18 (1) : 69~72.
Yue Leping, Zhang Yunxiang, Wang Jianqi, et al. The relationship between the red soil and loess-paleosol sequence in Jingle, Shanxi Province and Yulin, Shaanxi Province. Regional Geology of China,1999, 18 (1) : 69~72. ( 0)
|
| 45 |
陈晓峰. 山西静乐县"静乐期"地层及大哺乳动物化石.
第四纪研究,1994 (4) : 339~353.
Chen Xiaofeng. Stratigraphy and large mammals of the "Jinglean" stage, Shanxi, China. Quaternary Sciences,1994 (4) : 339~353. ( 0)
|
| 46 |
张云翔, 岳乐平, 薛祥煦. 陕晋上第三系静乐红粘土及有关问题的初步讨.
地层学杂志,1999, 23 (4) : 310~315.
Zhang Yunxiang, Yue Leping, Xue Xiangxu. The division and correlation of the Upper Neogene Jingle Red Clay in Shaanxi and Shanxi. Journal of Stratigraphy,1999, 23 (4) : 310~315. ( 0)
|
| 47 |
邓涛, 王伟铭, 岳乐平. 新近纪保德阶研究新进展.
地层学杂志,2004, 28 (1) : 41~47.
Deng Tao, Wang Weiming, Yue Leping. New advances in the establishment of the Neogene Baode stage. Journal of Stratigraphy,2004, 28 (1) : 41~47. ( 0)
|
| 48 |
Xue Xiangxi, Zhang Yunxiang, Yue Leping. Paleoenvironments indicated by the fossil mammalian assemblages from red clay-loess sequence in the Chinese Loess Plateau since 8.0Ma B.P.
Science in China (Series D),2006, 49 (5) : 518~530.
doi:10.1007/s11430-006-0518-y ( 0)
|
| 49 |
Zhang Z, Kaakinen A, Liu L, et al.
Mammalian biochronology of the Late Miocene Bahe formation. In:Wang X, Flynn L J, Fortelius M eds. Fossil Mammals of Asia:Neogene Biostratigraphy and Chronology. New York: Columbia University Press, 2013 : 187 ~202.
( 0)
|
| 50 |
Xu Y, Yue L P, Li J X, et al. Red clay deposits on the Chinese Loess Plateau during 11.0-2.6Ma and its implications for long-term evolution of East Asian monsoon.
Environmental Earth Sciences,2012, 66 (7) : 2021~2030.
doi:10.1007/s12665-011-1427-8 ( 0)
|
| 51 |
Ding Z L, Xiong S F, Sun J M, et al. Pedostraigraphy and paleomagnetism of a-7.0Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution.
Palaeogeography, Palaeoclimatology, Palaeoecology,1999, 152 (1-2) : 49~66.
doi:10.1016/S0031-0182(99)00034-6 ( 0)
|
| 52 |
Sun D H, Su R X, Bloemendal J, et al. Grain-size and accumulation rate records from Late Cenozoic aeolian sequences in Northern China:Implications for variations in the East Asian winter monsoon and westerly atmospheric circulation.
Palaeogeography, Palaeoclimatology, Palaeoecology,2008, 264 (1-2) : 39~53.
doi:10.1016/j.palaeo.2008.03.011 ( 0)
|
| 53 |
Xu Y, Li J X, Yue L P, et al. Grain-size characteristics of red clay deposits on the eastern edge of Chinese Loess Plateau and its implications for Neogene evolution of East Asian winter monsoon.
Environmental Earth Sciences,2015, 73 (11) : 7445~7456.
doi:10.1007/s12665-014-3918-x ( 0)
|
| 54 |
李建星, 岳乐平, 徐永, 等. 吕梁山西麓红粘土和水成堆积物之间的关系.
沉积学报,2009, 27 (3) : 518~524.
Li Jianxing, Yue Leping, Xu Yong, et al. Relationship between red clay and aqueous accumulation in the west part of Lüliang Mountain. Acta Sedimentoloica Sinica,2009, 27 (3) : 518~524. ( 0)
|
| 55 |
李建星, 岳乐平, 刘池洋, 等. 中新世以来吕梁山及邻区构造-沉积演化.
地层学杂志,2013, 37 (1) : 93~100.
Li Jianxing, Yue Leping, Liu Chiyang, et al. The tectonic-sedimentary evolution of the Lüliang Moutains since the Miocene. Journal of Stratigraphy,2013, 37 (1) : 93~100. ( 0)
|
| 56 |
弓虎军.中国黄河中游地区新近纪红粘土的成因.西安:西北大学博士论文, 2007. 103~106
Gong Hongjun. The Origin of Neogene's Red Clay in the Middle Reaches of Yellow River. Xi'an:The Doctoral Dissertation of Northwest University, 2007. 103~106 ( 0)
|
② State Key Laboratory of Continental Dynamics, Department of Geological Sciences, Northwest University, Xi'an 710069)
Abstract
The Lüliang Mountains extends NNE-SSW direction, and is about 450km in length, and 40~120km in width.Thick red clays were deposited in the western piedmont of Lüliang Mountains during the Neogene period.The region has experienced strong erosion and the landform is characterized by loess and red clay gullies and valleys sitting on a Mesozoic basement.The red clay profiles are mainly about 60~80m thick, with the thickest more than 100m.There are gravel layers in some of the red clay profiles.Based on the previous studies, the Weijiawa(37°21'42"N, 110°45'07"E), Fuxing(37°10'57"N, 110°56'14"E) and Shilou(36°55'31"N, 110°56'19"E) red clay sections were chosen, detailed magnetostratigraphic dating was studied.The results showed that basal ages of the red clay in western piedmont of Lüliang Mountains were mainly at 7~8Ma, the same to that of the main part of the eastern Chinese Loess Plateau.However, the basal age of the red clay at Shilou area is about 11Ma, similar to the southern edge of the eastern Chinese Loess Plateau.So the piedmont of Lüliang Mountains started to accumulate red clay since 11Ma as a result of differential uplifting of the Ordos Plateau.However, the thickness, sedimentary characteristics and material composition of red clay varied largely in different sections because of the quiet different tectonic and paleo-geomorphic position.In the low-lying land, water may carry the denuded materials, the dead animals and even the red clays already deposit to its center and then conserved.So the red clay deposited in the low lying land or uplifting area was thick because large amount of denuded materials added in.However, the basal ages are younger because older red clay disappeared or as red clay gravels appeared in the later red clay strata owning to fluvial washing and short-distance re-transportation.In contrast, on the highland or platform in tectonic stability region the dust materials were hardly influenced by the water flow, so the red clay sections were thinner but the basal ages were older compared with the red clay deposit in the low lying land or uplifting area.
2016, Vol.36

0)