② 中国科学院大学, 北京 100049)
我国西部新生代最为重要的地质事件是青藏高原在三维空间上的扩展及季风-干旱环境的形成与演化。前者决定了我国现今三级地貌特征及大江大河的基本形态,后者与前者密切相关,两者共同影响了我国甚至是亚洲气候格局与植被生态分布特征[1~9]。100多年来,特别是近30年来对于青藏高原生长过程的研究获得了大量的地质资料。关于高原的生长过程有多种观点,例如,高原中部在白垩纪已存在,新生代向周边生长[10~13],始新世开始高原从南部向东北部生长[14, 15],岩石圈下部的拆沉作用造成高原隆起及向周边生长[16]和高原在新生代大部分时段并不是很高,上新世强烈隆升形成现在意义的高原[17]等。这些观点都得到了众多断裂运动、火山岩侵入与喷出、快速剥蚀事件、地貌形态改变等资料的支持,也与部分资料相抵触[10~17]。高原面上及边缘新生代盆地沉积物记录了盆地周边山体运动的整个过程,同时记录了气候演化的历史,能够为高原本身的生长过程及其对气候特征的影响提供地质资料。但是由于陆相沉积物中化石资料较少而且连续性较差,其中的火山岩夹层很少或者没有,以及火山过程与沉积过程关系不清晰等特征,其年代学的研究一直制约着对于高原生长及其气候环境演化过程中一些重大事件的精细研究。而磁性地层学的发展为我国西部陆相沉积地层年代学的研究提供了可能。本文重点对我国西部新生代磁性地层部分研究进展进行总结,特别是对存在矛盾的结果进行分析,提出对于这一工作改进的一些建议。
1 磁性地层学独立学科的形成自19世纪中期Melloni对意大利火山岩的测量证实了火山岩剩磁是熔岩在冷却过程获得,开启了岩石记录的古地磁场特征研究[18];Brunhes在1906年首次进行了岩石中的剩磁方向的测量,并发现了法国中部中新世火山熔岩及下部被烘烤的沉积地层中记录了与现代地磁场方向相反的剩磁特征[19];Matuyama[20]第一次将日本和中国火山岩中记录的反向磁场归因于地磁场极性的变化,即岩石记录的地磁场参数反映岩石形成时地磁场特征,并根据岩石记录的地磁场极性特征进行地层的区分。所以从这个意义上来说,Matuyama是将极性倒转作为岩石序列地层划分标准的第一人[19];然而,20多年后Hospers[21, 22]在冰岛的研究才开始逐步完善以岩石磁性特征划分地层时代的方法。经过Cox等[23]、 McDougall和Tarling[24]火山岩的年代及其磁极性特征的数据积累,以及Doell和Dalrymple[25]、 Cox[26]结合自己的测试,分别在1966年和1969年提出了最近1.5Ma和4.5Ma以来的地磁极性变化过程;Opdyke等[27]通过北极深海钻探岩芯古地磁测量结果与前人建立的较为初步的极性变化过程对比,结合岩芯中4个动物带的研究,提出了古地磁年代学与生物地层学是两个相互独立的年代学分析方法,并提出了磁性地层学(magnetic stratigraphy)的概念。通过大量火山岩年代学与古地磁测量数据的积累,并与大洋磁异常条带研究结果的综合分析,Cande和Kent[28, 29]提出了晚白垩世以来较为全面的地磁极性年表并被大量应用。由于米兰科维奇理论的提出,使得结合磁性地层分析与气候变化曲线周期性的综合研究,可以通过调谐的办法获得更为精确的古地磁极性界限的年龄[30]。国际地层委员会在全球地层岩石记录的精细划分、放射性测年方法对于精度的改进、全球生物事件及地球化学指标漂移事件的研究、米兰科维奇轨道调谐对于气候曲线的分析等均为精确新生代地质年代表的建立补充了相当的数据[31]。
我国对于磁性地层学的早期研究主要在两个方面,一是关于中国黄土的年代学框架的建立,二是关于古人类在我国某些地区活动年代的确定。我国黄土作为亚洲季风及东亚地貌环境演变良好的沉积载体,由于年代学的问题使得其科学意义没有得到充分的认识。李华梅等[32]和安芷生等[33]早期通过古地磁的研究,给出了黄土高原黄土-古土壤序列的磁性地层的研究方法与初步结果;Heller和Liu[34, 35]对于洛川黑木沟沉积序列古地磁的研究提出我国黄土高原中部典型黄土-古土壤序列年代为晚上新世以来,并以磁化率作为气候代用指标与全球深海氧同位素曲线进行了对比,使得全球古气候学家认识到中国黄土可能成为区域与全球气候变化研究的重要对象。近20多年的黄土磁学研究不仅将风尘堆积的黄土年代学进一步延伸到晚中新世[36, 37]及晚渐新世-早中新世[6, 38],同时对于亚洲季风的成因及动力学研究也提出了一些重要的结论[4, 39, 40]。关于古人类在我国活动的年代学,李普等[41]在1976年根据古地磁研究结果,结合大量的哺乳动物化石、介形虫及孢粉等化石组合分析,提出元谋人的年龄为170万年左右;次年,浦庆余和钱方[42]的工作得出了相同的结论;最近对元谋人的高分辨率磁性地层学定年进一步证实了该结果[43]。An和Ho[44]经古地磁研究提出,蓝田公王岭直立人的年代为1.15Ma,陈家窝人的年代为0.65Ma。尽管后来对于元谋人的年代存在争议[45, 46],但是关于古人类在我国泥河湾盆地的活动时代得到了很好的年代限定[47~50],说明早更新世我国北方已经有了人类活动的痕迹。众多地质学研究者接受了磁性地层这一有效的年代学研究方法,在我国西部地质研究及青藏高原的演化过程中开展了大量的研究工作。
2 青藏高原北部磁性地层学研究在青藏高原地区,20世纪80年代对于西瓦里克(Siwalik)沉积物磁性地层学的研究,就给出了沉积物晚中新世-上新世的地层年代,并开展了地层古生物精细年代学的推断[51~53];90年代开始,我国地质学工作者开始了青藏高原东北缘新生代磁性地层工作[54, 55]。张鹏等[56]总结了青藏高原东北部陇中盆地新生代沉积磁性地层学研究结果,提出陇中盆地新生代地层底界年龄为58~52Ma,角度不整合覆盖于老地层之上。这些证据支持印度板块与欧亚板块碰撞之初的应力已经传递到了青藏高原的东北部边缘,造成了高原边部断裂等地质体构造运动再次活跃[57~59]。柴达木盆地磁性地层研究工作也揭示了盆地在新生代之初就有沉积物堆积,靠近昆仑山地区中晚始新世沉积速率提高,之后降低;盆地大部分区域在中中新世之后沉积速率再次快速提高,而上新世初期整个盆地的平均沉积速率提高,显示了高原南部陆陆碰撞应力传递到高原北部后造成不同单元的构造运动再次活跃和在不同构造带上的活动性差异[54, 60~71] (图 1)。磁性地层研究揭示的柴达木盆地不同部位构造活动与盆地物源变化[72~74]、生长地层与地层变形[14, 75~79]、热年代学[58, 80~82]、盆地中心迁移过程[57, 83, 84]等揭示的构造过程基本吻合。
![]() |
图 1 青藏高原东北部代表性剖面的磁性地层与地质事件对比 (a) 西岔沟剖面(38°26′N,90°52′E)位于青海省柴达木盆地西部[54];(b) 红三旱剖面(38°39′N,91°21′E)位于青海省柴达木盆地北部[60];(c) 大红沟剖面(37°30′N,95°11′E)位于青海省柴达木盆地东北部[62];(d) 乌兰剖面(37°07′N,98°22′E)位于青海省乌兰县[65];(e) 谢家剖面(36°32′N,101°49′E)位于青海省西宁市[71] Fig. 1 Magnetostratigraphy and geological events for representative sections in the northeastern Tibetan Plateau. (a) Xichagou section (38°26′N, 90°52′E) in the western Qaidam Basin in Qinghai Province[54]; (b) Hongsanhan section (38°39′N, 91°21′E) in the northern Qaidam Basin in Qinghai Province[60]; (c) Dahonggou section (37°30′N, 95°11′E) in the northeastern Qaidam Basin in Qinghai Province[62]; (d) Wulan section (37°07′N, 98°22′E) in Wulan in Qinghai Province[65]; (e) Xiejia section(36°32′N, 101°49′E) in Xining in Qinghai Province[71] |
特别是盆地中中新世开始的强烈构造运动,不仅沿阿尔金断裂带、昆仑山断裂带、祁连山断裂带构造运动均快速加剧,而且盆地内部断裂活动明显加剧,地貌变化也显著增强[78, 84~87]。这期构造运动的持续造成了盆地沉积相的变化和晚中新世10Ma左右的角度不整合面在青藏高原东北部广泛分布,尽管在不同的构造部位不整合面的时代稍有差异[70, 88~91]。而晚上新世的构造变形可能奠定了柴达木盆地现今周边断裂控制、内部褶皱断裂发育的构造地貌特征[69, 92, 93]。尽管沉积盆地的沉积物在风化、搬运及堆积过程中都受到地表水循环过程或者气候条件的明显控制与影响,晚中新世和晚上新世角度不整合面在不同部位的年代稍有差异却说明了这两期面状地貌的构造成因。因为气候变化在一定范围内同步进行,会造成地貌改造基本同时发生[94]。青藏高原东北缘边界断裂新生代的再次活跃可能比较早,上面的证据显示高原东北部地貌的明显改造可能发生在始新世-中新世开始,中-晚中新世的构造运动奠定了东北部广大区域进入高原的范围,而之后的构造运动揭示高原晚上新世之后的有限生长[95]。显然,新生代磁性地层年代学和沉积变形等特征的研究,为青藏高原东北缘构造变形过程及大地貌特征的形成提供了重要的证据。
印度板块与欧亚板块在新生代早期的陆陆碰撞过程,或碰撞及之后的构造运动引起高原隆升渐已成为地质学研究的热点问题。高原面上最为重要的磁性地层研究工作就是古近纪地层的年代学研究。Liu等[96]对于可可西里盆地近4782.8m厚的风火山群和670m厚的雅西错组开展了大范围调查与系统的磁性地层分析,提出风火山群的年代为51~31Ma,雅西错组整合覆盖于风火山群之上,而且渐新世以来盆地没有明显的旋转;Wang等[97]通过新增加剖面将青藏高原中部古近纪地层年代确定为风火山群约52.0~31.3Ma,雅西错组31.3~23.8Ma,并结合沉积相变化及低温热年代学数据,提出了始新世青藏高原中部首先隆起的观点。早期对于风火山群的时代归属主要通过生物地层对比分析确定。根据双壳类、孢粉组合、介形虫、轮藻等化石(组合)分析将风火山群的年代确定为晚白垩世[98~101]或者早白垩世[102]。吴珍汉等[103]在风火山地区侵入于雅西错组的花岗斑岩中获得了3颗平均年龄为35.6Ma的岩浆锆石,这说明雅西错组底部年龄至少应该延伸到始新世。前人在风火山群的野外调查中也发现了火山岩的存在[99],这为解决风火山群年代学的争议提供了重要线索。Staisch等[13]通过可可西里盆地的野外调查,发现沱沱河组中含有风火山群的碎屑颗粒,于是将其再次从风火山群中独立出来,观察到两者在风火山南侧为角度不整合接触,沱沱河组是风火山群发生构造变形时的同构造沉积;并测得风火山群上部顺层凝灰岩和顶部角度不整合接触的玄武岩熔岩的年代分别是59.27Ma和27.33Ma,结合前人磁性地层学数据和生物地层结果,给出了风火山群沉积年代为85~51Ma的结论(图 2)。随后的孢粉研究也显示,沱沱河组上部地层中孢粉组合与柴达木盆地晚始新世地层中的孢粉组合有很高的相似性,将其年代推测为晚始新世早期,再次证明其下部的风火山群至少应该老于这一时段[104];同样,最近通过从风火山北坡风火山群上部的孢粉化石研究,指出其时代为晚白垩世晚期[101]。风火山群的巨厚地层、砾岩与砂岩共生的河流相堆积及其强变形、沱沱河组的弱变形特征等说明,青藏高原(可能是现在高原的一部分)在晚白垩世就已经存在,并作为风火山群的物源区;沱沱河组地层沉积过程中部分风火山群已经发生了变形,造成沱沱河组地层中含有风火山群的碎屑。沱沱河组和雅西错组之间的关系较为复杂,在风火山地区及沱沱河盆地南侧,雅西错组位于沱沱河组之上,但在有些地区两者又存在同时代的特征。这些显示了两种可能性:1) 沱沱河组可能老于雅西错组,应该完全划分为两个不同的地层单元;2) 它们可能是时代相同(近) 、沉积相明显不同的地层,在高原面上盆地中心沉积了湖相与河流相交互出现的雅西错组,而在山前沉积了河流相的沱沱河组。对于这两个地层单元时空关系的最终确定,还需要从沉积分布范围、物源变化信息、生物地层学、沉积年代及变形特征等方面详细研究方有可能。
![]() |
图 2 可可西里盆地风火山群年代学限定 (a) Liu等[96] (2003)风火山群年龄模式;(b) Gradstein等[31] (2012)地质年代模式;(c) Staisch等[13] (2014)风火山群年龄模式;(d) 可可西里盆地古近纪地层柱[13] Fig. 2 Geochronology of the Fenghuoshan Group in the Hoh Xil Basin. (a) Age model for Fenghuoshan Group by Liu et al., 2003[96]; (b) GTS 2012 by Gradstein et al., 2012[31]; (c) Age model for Fenghuoshan Group by Staisch et al., 2014[13]; (d) Lithology of Paleogene in the Hoh Xil Basin[13] |
磁性地层研究工作本身就是沉积地层中正、负极性组合与地磁极性年表进行对比而获得地层的年代学框架。这一方法在没有生物地层或者是火山岩夹层等可获得相对或者是绝对年龄证据支持的情况下,对比方案可能存在不同的模式,这对磁性地层年代学的研究带来一些困惑。而且我国西部地区新生代以来构造运动活跃[13, 15, 58, 105~112],造成了地貌形态的不断改变[5]。在此过程会造成沉积盆地在不同时段沉积相的改变、沉积速率的急剧变化甚至区域环境由沉积变为剥蚀而出现(角度)不整合面。沉积速率的变化和沉积间断的出现,往往造成沉积物沉积时段正负极性组合与地磁极性年表模式差别较大,这对只依据磁性地层结果确定沉积物年代框架提出了挑战。最近发表的一些研究结果凸显了这方面的问题。
Wang等[113]根据生物化石组合的研究,对阿尔金山党河地区西水沟剖面Gilder等[114]的磁性地层年代框架进行了修订;Dai等[71]尽管在古地磁对比中提出了两种可能的对比模式,但是根据古生物化石等证据给出了西宁盆地新生代地层最为理想的年代学模式;Xiao等[115]在西宁盆地的工作对于不同地层的年代限定有一定的差别;Chang等[116]、 Ao等[117]对于柴达木盆地西北部及兰州盆地新生代地层的磁性地层数据所提出的两种可能对比方案中,即使地层中发现了一些古生物化石,也没有从两种可能性中确定出唯一的地层年代学框架。对于塔里木盆地麻扎塔格山同一套沉积物的磁性地层研究,由于缺乏其他较为准确的年代学证据的限定,不同的学者[118, 119]得出了相差较大的结果。一种结果认为这套地层的年代范围为晚中新世-早更新世[118],另一种结果认为可能是上新世-晚更新世[119]。在这两种年龄方案还没有被判定哪一种更为合适的时候,Zheng等[120]通过野外调查,发现昆仑山前阿尔塔什剖面和柯克亚剖面存在火山灰层,并根据火山灰中黑云母40 Ar/39 Ar测年和锆石U-Pb测年提出了火山灰的喷出年代为11.17Ma和11.18±0.13Ma。根据这一确定的地层年代“锚点”,将原来划为上新世(4.5~3.5Ma)的阿图什组的年代[121~123]下延到了晚渐新世或者是早中新世(26.7Ma或者是22.6Ma),同时提出了对于塔里木盆地中部的麻扎塔格剖面磁性地层结果[118, 119]的修正方案(修订为渐新世-早中新世);并根据最新结果推断塔克拉玛干沙漠形成于始新世-早中新世[120],这也说明形成塔里木盆地现今极端干旱气候特征的地貌形态(青藏高原-天山山脉大范围区域)与大气环流模式在当时就可能出现。这对前人在我国西部塔里木盆地和柴达木盆地近几十年的研究结果提出了挑战,很快就出现了质疑[124]。尽管Zheng等[125]对问题进行了回复,但是关于阿图什组地层的年代学争议还在继续。
另外一项关于库车凹陷逆冲-褶皱带的研究工作对于前人的磁性地层工作[126, 127]进行了重新解释。将吉迪克组与苏维依组、苏维依组与库姆格列木组的界限年龄分别由前人的26.4Ma和29.5Ma向下推到了36Ma和38Ma[128]。他们的主要依据是库姆格列木组地层上部以厚层石膏、紫红色泥岩-细粒岩夹有盐层为特点、前人古生物化石、其它区域对于同一套沉积物磁性地层的研究结果及李双建等[127]气候变化数据曲线与全球气候的对比。尽管在剖面中并没有出现海相地层及相应的化石,依然将库姆格列木组的界限下延[128];而Qiao等[129]的研究认为海侵及海退在塔里木盆地存在明显的穿时性,在盆地不同沉积单元中发现的沉积相变和化石不能限定其它区域相似地层的层位及时代。采用动态时间变化算法(Dynamics Time Warping Algorithm)的数值计算方法,结果显示Huang等[126]的磁性地层研究所给出的新生代地层年代范围更为合理,而且相同的气候变化曲线在这一年龄框架下同样能够反映始新世到晚中新世之间气候变化的主要突变事件[129]。这篇文章所提出作为构造沉积单元的西域砾岩是一套记录天山隆起过程的磨拉石建造,在盆地不同的沉积部位可能是穿时的,不同物源区的沉积盆地中对于同一地质事件记录的物质成分及其物理性质不一定相同[129]。这一观点与天山南北两侧西域砾岩在不同部位其底部年龄具有穿时性的观点一致[130]。
4 对于磁性地层研究工作的一些看法由于磁性地层研究工作本身采样、分析数据、对比的现状及存在的问题,我们建议磁性地层研究中注重4个方面的工作。
4.1 分析样品的代表性及进行各种检验Van der Voo[131]早在20多年前就针对磁性地层年代学研究中可能出现的问题提出了判定其可靠性的7个标准,并说明满足其中4个以上标准就能够较好地反映样品所记录的地磁场特征。随后的大多磁性地层研究工作均将退磁步骤的密度加大,并最终使得剩磁的值很低[132~134]。尽管这些标准大多是定性的描述,但是随后的研究给出了一些具体的方法。Tauxe和Gallet[135]提出了Jackknife检验方法。其原理是逐个减少所得的数据并统计极性变化的情况,得到一个Jackknife参数,如果这一参数在-0.5~0之间则说明采样精度达到了研究的要求,所获得的极性能够揭示沉积时段95 %的极性事件。这种检验的实质是一、两个或者很少的样品确定的极性可靠性并不是很高。褶皱检验是对样品可靠性分析非常重要的方法[136]。因为如果地层记录的极性是在沉积过程中产生的,那么在进行了地层产状校正后样品极性会更加收敛,这与统计分析的结果一致[136]。尽管褶皱检验对于地层倾角变化很小的剖面没有必要,但是对于我国西部变形较为强烈的新生代地层磁性地层结果的研究非常必要。倒转检验同样是检验磁性地层结果重要的方法之一[137]。开展新生代磁性地层研究较为理想的剖面为至少含有数个正、负极性,如果仅包含一个正极性或者是负极性的地层,在没有其它地质年代资料限定的情况下,很难给出准确的年代学框架。对于多个正负极性的剖面,其正负极性的统计结果应该正负匹配。也就是如果正极性样品磁偏角的统计结果接近0°,负极性样品磁偏角的统计结果应该接近180°,而且磁倾角大小相近。McFadden和McElhinny[137]给出了倒转检验的方法和标准。
由于沉积地层中某一极性事件的厚度不仅受到这一极性事件持续时间的影响,也与这一时段沉积物沉积速率密切相关,这为对比地层极性柱与标准极性柱带来了困难。Lallier等[138]提出了基于动态时间变化算法的数学方法,这一方法能够减小区域沉积速率变化的影响而有利于数据的进一步分析及解释。尽管不同沉积盆地或者是同一沉积盆地的不同构造部位的沉积速率会有很大的差异,但是这一方法给开展磁性地层工作提供了有效的帮助。要更为准确的确定沉积地层的年代学框架,其它年代学方法的帮助是非常必要的。
4.2 地层中矿物年代对于沉积地层年代的限定由于火山岩的形成与其中矿物的形成年代一致或非常接近,所以,如果在沉积地层序列中发现火山岩,并找到合适的矿物对火山岩的年龄进行限定,能够很好地确定沉积地层的年代范围。但是不同产状的火山岩可能与附近的沉积地层间有一定的时间差异。如雅西错组地层中发现的花岗岩等与沉积地层呈侵入接触关系[103],这说明沉积地层年代应该老于花岗岩等;风火山群顶部出露的未变形玄武岩覆盖在变形后的地层之上,给出了沉积地层年代的上限(地层及其变形事件均大于这一火山岩年龄) [13]。对于发现了火山岩的沉积地层,只有准确分析它们之间的接触关系,才能判定沉积地层与火山岩形成的先后顺序。Sun和Windley[139]在蒙古开展的工作由于地层中玄武岩的存在获得了年龄限定单一的磁性地层结果,并发现剖面存在长时间地层缺失。
沉积地层中发现上覆、下伏、穿层或者顺层的火山岩是可遇不可求的现象,在研究工作中并不普遍,在我国西部众多新生代研究中少有这种便利条件。但由于沉积物堆积时其中的矿物已经形成或者正在形成(火山灰),所以地层中最小的矿物年龄给出了地层可能年代或者是最大年代的限定[140]。对于沉积地层中锆石年龄的测定,能够有助于磁性地层年代框架限定的准确性。Sun等[141]最近帕米尔高原东北部前陆盆地新生代沉积物锆石年代学的研究,不仅分析了沉积物源区的变化过程,同时对于地层年代分布范围给出了很好地限定。尽管在全球范围沉积地层中的锆石年龄可能比地层年代老很多,但是青藏高原新生代以来发生多期火山活动[96, 109, 142~157],不管是火山喷发还是岩浆岩的侵入,喷发到空中的火山灰或者是侵入岩隆起风化剥蚀后进入新生代盆地沉积物中,对于新生代地层年龄的限定都是有帮助的。但是对于强烈变形或者发生变质作用的沉积地层,应该考虑可能由于这些地质过程改变了锆石等矿物中放射性子体的含量而造成锆石年轻的现象[158]。
最近几十年兴起的矿物低温热年代学也能给沉积地层的年代分析提供帮助[159~163]。热年代学是矿物通过地表下某一深度以来的年代。因为物质随地表隆起剥蚀后作为物源后才能将物质传递到沉积层中[159],所以沉积地层的年代总是小于其中记年矿物穿过某一深度以来的年代。
4.3 生物地层学等方法对于沉积地层年代的限定生物地层学是19世纪早期地质学家研究不同岩石中化石组合时提出的,根据化石组合判定地层相对年代的方法。当时地质学家提出年代相同的地层中应该具有相同或者是近似的生物化石组合[164]。新生代地层中生物化石的限定还是现在磁性地层对比过程中最为重要的年代学参考,Wang等[113]对于甘肃西部党河地区新生代地层年代学的重新限定以及对于柴达木盆地多个新生代剖面生物地层学研究对地层时代的限定[165],为磁性地层学的开展奠定了基础。尽管生物地层学只能给出古生物(组合)的大致范围,但是结合磁性地层研究中正负极性的组合特征就能够给出较为理想的对比方案[60, 62, 113, 115, 166, 167]。Miao等[104]根据青藏高原沱沱河组地层中孢粉组合与柴达木盆地下干柴沟组孢粉组合的对比分析,给出了沱沱河组可能的年代为始新世晚期,也限定了区域上在本层之下的风火山群的年代不可能比这一时段更年轻。
尽管有些地层中也发现有古生物化石,但是由于其年代范围很宽泛或者年代限定意义不是很明确,对磁性地层学的研究帮助不是很大。气候地层学等能够给出具有参考价值的年代学限定。由于盆地沉积物记录了沉积过程中的气候变化信息[168~172],而一定范围内的气候变化具有一致性,所以根据沉积物中代用指标记录的气候变化曲线与附近已发表的气候曲线对比结果和磁性地层数据,结合区域地质研究限定的沉积时段大致的年代范围,能够确定沉积地层的年代框架。这一方法与黄土高原根据磁化率及粒度变化曲线在3.6Ma开始变化幅度增加频率变化明显[173]等特征可以作为晚上新世开始的时间来确定地层层序是一致的。但是这一方法需要分辨对气候变化比较敏感的指标,因为我国西部沉积地层中的众多指标可能也受到了地貌演化过程中沉积物源改变造成的指标响应[62]。
4.4 沉积物记录的古地磁场强度变化与磁性地层的结合由于地球磁场变化具有全球一致的特点,古地磁场强度变化同样具有全球一致性。尽管受到地质体材料等因素的影响,地质学家开展了不同地质时期地磁场古强度测量的探索与分析。Tauxe和Wu[174]在1990年就开始尝试通过西太平洋钻孔岩芯测量古地磁场相对强度,并提出沉积物中不同的物质组成可能对记录有一定的影响;Schneider和Mello[175]则通过沉积速率约10cm/ka的4个大洋钻探岩芯(768A、 768B、 769A和769B)重建了130ka以来地球虚拟轴向偶极矩的变化曲线,显示了地球古地磁场强度似有一定的周期性;Brassart等[176]通过夏威夷地区10个具有准确定年的熔岩流的分析研究,并结合前人对于其它材料的研究提出了200ka以来古地磁场强度的变化规律,这一结果与Schneider和Mello[175]在1996年的结果尽管大部分时段相似,但是在40ka左右差别较大。这也显示了古强度研究的复杂性。随后的研究提出了对于古地磁场研究方法的改进[177, 178]。Pan等[179]也对我国黄土-古土壤序列开展了相对古地磁场强度记录的研究,显示除了古地磁场对于记录的影响之外,末次冰期极盛期的气候特征造成了20~10ka相对强度的明显偏低。由于载磁矿物主要为钛磁铁矿而且含量变化很小,西菲律宾海沉积岩芯记录能够重建2.14Ma以来古地磁场相对强度的变化过程[180];随后大量的研究在不同时段补充相当多的数据并开展了绝对强度的研究工作[181~184]。在地质历史时期,地球磁场发生过多次倒转,其中还有一些小的地磁漂移[185~187]。一般认为,地磁漂移往往伴随着地磁场强度的降低,基于此,一些学者根据古强度的降低识别出了一些漂移事件[188],如Tauxe和Yamazaki[189]综合了当时几乎所有已发表的相对古强度数据,提出具有独立年龄控制点的100ka以来古强度曲线,其中能够发现莫诺湖和拉尚事件;另外,也可以通过测定36 Cl和10 Be等核素的产率变化来确定地磁漂移[190, 191],其实这种方法的本质还是地磁场的强度变化,因为上面两种核素是由于宇宙射线的轰击在大气中形成的,其受控于地磁场和太阳风的强度,宇宙成因核素的变化很大程度上反映了地磁场的强度变化,因而可以用来识别地磁漂移。总之,尽管不同沉积物中不同盆地载磁矿物不同,同一剖面中由于物源区或者是气候变化也会造成载磁矿物种类及含量的变化,但是古地磁场强度曲线的逐步完善及盆地沉积物磁性地层分析和古地磁场强度的综合研究,能够为地层年代框架的建立提供更多的参考资料。
5 讨论磁性地层学是研究沉积地层年代学框架非常有效的工具之一,特别是我国西部缺少火山岩夹层及化石出露较少的新生代地层。磁性地层研究为盆地分析、青藏高原隆起及其可能的气候效应提供了大量的研究数据。但是由于这一方法本身的原因和我国西部新生代活跃的构造运动造成了盆地环境的快速变化,使得沉积地层极性序列与地磁极性年表对比过程中存在多种可能性,并可能造成对于地质过程认识的混乱。所以,磁性地层分析过程中应该结合其它可能对年代学有帮助的资料,特别是区域岩石地层对比、古生物地层学及沉积地层矿物年代学。通过这些方法的制约,我们可以更好地将剖面的极性序列与地磁极性年表进行对比。所以,磁性地层学在某种程度上又可以理解为综合地层年代学,正如Opdyke和Channel[192]提出的术语magnetobiochemochronology一样,磁性地层学的精髓就是年代综合、交叉印证。古地磁场强度的研究可能对于磁性地层的对比也有一定的帮助;另外在地质过程分析中应该注重一致性悖论(the paradox of unanimity)的思考,特别是关于青藏高原生长事件的认识。
最近的研究结果提出,除非是一个非常简单的过程,复杂过程中对于某个事件的判定,如果所有证据均指向一个结论,可能这一结论出现的可靠性就会降低[193]。这一逻辑学问题有很多实例,在地质学研究中也出现了类似的情况。对于青藏高原北部及东北部研究,不管是从地貌学还是沉积学,均提出在这一广大区域不同沉积物均记录了约3.6Ma山体生长的构造地貌事件[121, 122, 166, 167, 194, 195]。由于这么大范围内地貌沉积事件同时发生,而且黄土高原地区气候代用指标的研究显示这一时期也是气候明显变化的过渡期[4],所以这一时期沉积记录明显变化被用气候变化解释更容易接受[196],甚至被认为可能是沉积速率计算过程中存在一些问题造成了这种偶然性结果[197]。尽管在青藏高原东北部存在明显的晚上新世-早更新世之间的角度不整合面指示了构造运动的存在[166, 167, 194, 195],但由于已经获得的沉积物变化(沉积相、沉积速率等)年代过于接近3.6Ma这一个数值,造成了一种过分的好可能失实(Too good to be true)的印象。之前关于行为学研究中提出“最好的表演者并不是表演中好印象最为深刻者”的推论和这一结论表现出相似的逻辑关系[198]。Harmer和Abbott[199]在1999年提出在游戏中落败策略可能产生获胜结果的论断是这一结论的另一种阐述。地质事件不是一个(非常)简单的非此即彼的过程,由于不同研究方法对于同一地质事件的记录有时间上的先后顺序,所以,沉积速率、沉积相变、沉积物中物质成分变化及其矿物热年代学等记录对于同一地质事件的反映存在时间差异是正常的。为了追求沉积盆地记录的构造地质事件在广大范围内时间上的绝对一致,可能正好说明了这一事件也许是大范围内时间上一致的某个因素决定的,这为气候变化解释提供了可能。这也就是“绝对性的证据本身可能就是不确定性的证据”[193]。
致谢: 非常感谢邓成龙老师的指导与帮助,杨美芳老师和评审专家提出的宝贵意见对于文章修改有很大的帮助,在此表示感谢。
1 |
Kutzbach J E, Guetter P J, Ruddiman W F, et al. Sensitivity of climate to Late Cenozoic uplift in Southern Asia and the American West:Numerical experiments.
Journal of Geophysical Research,1989, 94 (D15) : 18393~18407.
doi:10.1029/JD094iD15p18393 (![]() |
2 |
Ruddiman W F, Prell W L, Raymo M E. Late Cenozoic uplift in Southern Asia and the American West:Rationale for General Circulation Modeling experiments.
Journal of Geophysical Research,1989, 94 (D15) : 18379~18391.
doi:10.1029/JD094iD15p18379 (![]() |
3 |
Ramstein G, Fluteau F, Besse J, et al. Effect of orogeny, plate motion and land-sea distribution on Eurasian climate change over the past 30 million years.
Nature,1997, 386 (6627) : 788~795.
doi:10.1038/386788a0 (![]() |
4 |
An Z S, Kutzbach J E, Prell W L, et al. Evolution of Asian monsoons and phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times.
Nature,2001, 411 (6833) : 62~66.
doi:10.1038/35075035 (![]() |
5 |
刘志飞, 汪品先, 王成善, 等. 中国新生代古地形演化的初步模型.
地质论评,2001, 47 (5) : 467~475.
Liu Zhifei, Wang Pinxian, Wang Chengshan, et al. Paleotopography of China during the Cenozoic:A preliminary study. Geological Review,2001, 47 (5) : 467~475. ( ![]() |
6 |
Guo Z T, Ruddiman W F, Hao Q Z, et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China.
Nature,2002, 416 (6877) : 159~163.
doi:10.1038/416159a (![]() |
7 |
Zhang Z S, Wang H J, Guo Z T, et al. Impacts of tectonic changes on the reorganization of the Cenozoic paleoclimatic patterns in China.
Earth and Planetary Science Letters,2007, 257 (3) : 622~634.
(![]() |
8 |
Zhang R, Yan Q, Zhang Z S et al. East Asian monsoon climate simulated in the PlioMIP. Climate of the Past, 9(5):2085~2099
(![]() |
9 |
Liu X D, Sun H, Miao Y F, et al. Impacts of uplift of northern Tibetan Plateau and formation of Asian inland deserts on regional climate and environment.
Quaternary Science Reviews,2015, 116 : 1~14.
doi:10.1016/j.quascirev.2015.03.010 (![]() |
10 |
Burg J P, Chen G M. Tectonics and structural zonation of southern Tibet, China.
Nature,1984, 311 (5983) : 219~223.
doi:10.1038/311219a0 (![]() |
11 |
Murphy M A, Yin A, Harrison T M, et al. Did the Indo-Asian collision alone create the Tibetan Plateau?.
Geology,1997, 25 (8) : 719~722.
doi:10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2 (![]() |
12 |
Molnar P, Stock J M. Slowing of India's convergence with Eurasia since 20Ma and its implications for Tibetan mantle dynamics.
Tectonics,2009, 28 (3) : TC3001.
doi:10.1029/2008TC002271 (![]() |
13 |
Staisch L M, Niemi N A, Chang H, et al. A Cretaceous-Eocene depositional age for the Fenghuoshan Group, Hoh Xil Basin:Implications for the tectonic evolution of the northern Tibet Plateau.
Tectonics,2014, 33 (3) : 281~301.
doi:10.1002/2013TC003367 (![]() |
14 |
Métivier F, Gaudemer Y, Tapponnier P, et al. Northeastward growth of the Tibet Plateau deduced from balanced reconstruction of two depositional areas:The Qaidam and Hexi Corridor basins, China.
Tectonics,1998, 17 (6) : 823~842.
doi:10.1029/98TC02764 (![]() |
15 |
Tapponnier P, Xu Z Q, Roger F, et al. Oblique stepwise rise and growth of the Tibet Plateau.
Science,2001, 294 (5547) : 1671~1677.
doi:10.1126/science.105978 (![]() |
16 |
Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the Indian monsoon.
Reviews of Geophysics,1993, 31 (4) : 357~396.
doi:10.1029/93RG02030 (![]() |
17 |
李吉均, 周尚哲, 赵志军, 等. 论青藏运动主幕.
中国科学:地球科学,2015, 45 (10) : 1597~1608.
Li Jijun, Zhou Shangzhe, Zhao Zhijun, et al. The Qingzang Movement:The major uplift of the Qinghai-Tibetan Plateau. Science China:Earth Sciences,2015, 45 (10) : 1597~1608. ( ![]() |
18 |
王俊达. 地质年代学, 第十讲——古地磁地质年龄测定.
地质地球化学,1982 (7) : 58~62.
Wang Junda. Geochronology——The tenth lesson——Measurement of the Paleomagnetic age. Geology-Geochemistry,1982 (7) : 58~62. ( ![]() |
19 |
Laj C. Geomagnetic Field, Polarity Reversal. In:Encyclopedia of Solid Earth Geophysics. Dordrecht:Springer, 2014. 386~393
(![]() |
20 |
Matuyama M. On the direction of magnetization of basalts in Japan, Tyosen and Manchuria.
Proceeding of the Imperial Academy,1929, 5 (5) : 203~205.
(![]() |
21 |
Hospers J. Remanent magnetism of rocks and the history of the geomagnetic field.
Nature,1951, 168 (4287) : 1111~1112.
doi:10.1038/1681111a0 (![]() |
22 |
Hospers J. Reversals of the main geomagnetic field I.
Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series C,1953, 56 (3) : 467~491.
(![]() |
23 |
Cox A, Doell R R, Dalrymple G B. Geomagnetic polarity epochs and Pleistocene geochronometry.
Nature,1963, 198 (4885) : 1049~1051.
doi:10.1038/1981049a0 (![]() |
24 |
McDougall I, Tarling D H. Dating geomagnetic polarity zones.
Nature,1964, 202 (4928) : 171~172.
(![]() |
25 |
Doell R R, Dalrymple G B. Geomagnetic polarity epochs:A new polarity event and the age of the Brunhes-Matuyama boundary.
Science,1966, 152 (3725) : 1060~1061.
doi:10.1126/science.152.3725.1060 (![]() |
26 |
Cox A. Geomagnetic reversal.
Science,1969, 163 (3864) : 237~245.
doi:10.1126/science.163.3864.237 (![]() |
27 |
Opdyke N D, Glass B, Hays J D, et al. Paleomagnetic study of Antarctic deep-sea cores.
Science,1966, 154 (3747) : 349~357.
doi:10.1126/science.154.3747.349 (![]() |
28 |
Cande S C, Kent D V. A new geomagnetic polarity time scale for the Late Cretaceous and Cenozoic.
Journal of Geophysical Research,1992, 97 (B10) : 13917~13951.
doi:10.1029/92JB01202 (![]() |
29 |
Cande S C, Kent D V. Revised calibration of the geomagnetic polarity timescale for the Late Cretaceous and Cenozoic.
Journal of Geophysical Research,1995, 100 (B4) : 6093~6095.
doi:10.1029/94JB03098 (![]() |
30 |
Lourens L, Hilgen F, Shackleton N J et al. The Neogene period. In:Gradstein F, Ogg J, Schmitz M et al. A Geologic Time Scale 2004. Cambridge:Cambridge University Press, 2004. 409~440
(![]() |
31 |
Gradstein F M, Ogg G, Schmitz M, et al.
The Geologic Time Scale 2012. Amsterdam: Elsevier, 2012 : 1 ~1165.
(![]() |
32 |
李华梅, 安芷生, 王俊达. 午城黄土剖面古地磁研究的初步结果.
地球化学,1974 (2) : 93~104.
Li Huamei, An Zhisheng, Wang Junda. Preliminary paleomagnetic results of the Wucheng loess section. Geochemistry,1974 (2) : 93~104. ( ![]() |
33 |
安芷生, 王俊达, 李华梅. 洛川黄土剖面的古地磁研究.
地球化学,1977 (4) : 239~249.
An Zhisheng, Wang Junda, Li Huamei. Paleomagnetic research of the Luochuan loess profile. Geochemistry,1977 (4) : 239~249. ( ![]() |
34 |
Heller F, Liu T S. Magnetostratigrpahical dating of loess deposits in China.
Nature,1982, 300 (5891) : 431~433.
doi:10.1038/300431a0 (![]() |
35 |
Heller F, Liu T S. Magnetism of Chinese loess deposits.
Geophysical Journal International,1984, 77 (1) : 125~144.
doi:10.1111/j.1365-246X.1984.tb01928.x (![]() |
36 |
Sun D H, An Z S, Shaw J, et al. Magnetostratigraphy and paleoclimatic significance of Late Tertiary aeolian sequences in the Chinese Loess Plateau.
Geophysical Journal International,1998, 134 (1) : 207~212.
doi:10.1046/j.1365-246x.1998.00553.x (![]() |
37 |
Qiang X K, Li Z X, Powell C M, et al. Magnetostratigraphic record of the Late Miocene onset of the East Asian monsoon, and Pliocene uplift of northern Tibet.
Earth and Planetary Science Letters,2001, 187 (1~2) : 83~93.
(![]() |
38 |
Qiang Xiaoke, An Zhisheng, Song Yonggui, et al. New eolian red clay sequence on the western Chinese Loess Plateau linked on onset of Asian desertification about 25Ma ago.
Science China:Earth Science,2011, 54 (1) : 136~144.
doi:10.1007/s11430-010-4126-5 (![]() |
39 |
Porter S C, An Z S. Correlation between climate events in the north Atlantic and China during the Last Glaciation.
Nature,1995, 375 (6529) : 305~308.
doi:10.1038/375305a0 (![]() |
40 |
Ding Z L, Xiong S F, Sun J M, et al. Pedostratigraphy and paleomagnetism of a~7.0Ma eolian loess-red clay sequence at Lingtai, Loess Plateau, north-central China and the implications for paleomonsoon evolution.
Palaeogeography, Palaeoclimatology, Palaeoecology,1999, 152 (1) : 49~66.
(![]() |
41 |
李普, 钱方, 马醒华, 等. 用古地磁方法对元谋人化石年代的初步研究.
中国科学,1976 (6) : 579~591.
Li Pu, Qian Fang, Ma Xinghua, et al. Preliminary research of the Yuanmou Homo man by paleomagnetic method. Scientia Sinica,1976 (6) : 579~591. ( ![]() |
42 |
浦庆余, 钱方. 对元谋人化石地层——元谋组的研究.
地质学报,1977 (1) : 89~100.
Pu Qingyu, Qian Fang. Study on the fossil human strata——The Yuanmou Formation. Acta Geologica Sinca,1977 (1) : 89~100. ( ![]() |
43 |
Zhu R X, Potts R, Pan Y X, et al. Early evidence of the genus Homo in East Asia.
Journal of Human Evolution,2008, 55 (6) : 1075~1085.
doi:10.1016/j.jhevol.2008.08.005 (![]() |
44 |
An Z S, Ho C K. New magnetostratigraphic dated of Lantian Homo erectus.
Quaternary Research,1989, 32 (2) : 213~221.
doi:10.1016/0033-5894(89)90077-X (![]() |
45 |
刘东生, 丁梦林. 关于元谋人化石地质时代的讨论.
人类学学报,1983, 2 (1) : 40~48.
Liu Tungsheng, Ding Menglin. Discussion about the geochronology of the Yuanmou Homo. Acta Anthropologica Sinica,1983, 2 (1) : 40~48. ( ![]() |
46 |
钱方. 关于元谋人的地质时代问题——与刘东生等同志商榷.
人类学学报,1985, 4 (4) : 324~332.
Qian Fang. Geochronology of the Yuanmou Homo——Discussion with Liu et al. Acta Anthropologica Sinica,1985, 4 (4) : 324~332. ( ![]() |
47 |
Zhu R X, Hoffman K A, Potts R, et al. Earliest presence of humans in Northeast Asia.
Nature,2001, 413 (6854) : 413~417.
doi:10.1038/35096551 (![]() |
48 |
Zhu R X, An Z S, Potts R, et al. Magnetostratigraphic dating of early humans in China.
Earth-Science Reviews,2003, 61 (3) : 341~359.
(![]() |
49 |
Zhu R X, Potts R, Xie F, et al. New evidence on the earliest human presence at high northern latitudes in Northeast Asia.
Nature,2004, 431 (7008) : 559~562.
doi:10.1038/nature02829 (![]() |
50 |
朱日祥, 邓成龙, 潘永信. 泥河湾盆地磁性地层定年与早期人类演化.
第四纪研究,2007, 27 (6) : 922~944.
Zhu Rixiang, Deng Chenglong, Pan Yongxin. Magnetochronology of the fluvio-lacustrine sequences in the Nihewan Basin and its implications for early human colonization of Northeast Asia. Quaternary Sciences,2007, 27 (6) : 922~944. ( ![]() |
51 |
Tauxe L, Kent D V, Opdyke N D. Magnetic components contributing to the NRM of middle Siwalik red beds.
Earth and Planetary Science Letters,1980, 47 (2) : 279~284.
doi:10.1016/0012-821X(80)90044-8 (![]() |
52 |
Tauxe L, Opdyke N D. A time framework based on magnetostratigraphy for the Siwalik sediments of the Khaur area, Northern Pakistan.
Palaeogeography, Palaeoclimatology, Palaeoecology,1982, 37 (1) : 43~61.
doi:10.1016/0031-0182(82)90057-8 (![]() |
53 |
Johnson G D, Opdyke N D, Tandon S K, et al. The magnetic polarity stratigraphy of Siwalik Group at Haritalyangar(India)and a new last appearance datum for Ramapithecus and Sivapithecus in Asia.
Palaeogeography, Palaeoclimatology, Palaeoecology,1983, 44 (3) : 223~237.
(![]() |
54 |
杨藩, 马志强, 许同春, 等. 柴达木盆地第三纪磁性地层柱.
石油学报,1992, 13 (2) : 97~101.
Yang Fan, Ma Zhiqiang, Xu Tongchun, et al. Tertiary magnetostratigraphy of the Qaidam Basin. Acta Petrolei Sinica,1992, 13 (2) : 97~101. ( ![]() |
55 |
黄华芳, 彭作林, 卢伟, 等. 酒西盆地、酒东盆地第三系磁性地层的划分与对比.
甘肃地质学报,1993, 2 (1) : 6~16.
Huang Huafang, Peng Zuolin, Lu Wei, et al. Tertiary magnetostratigraphy division and comparison between Jiuxi Basin and Jiudong Basin. Acta Geologica Gansu,1993, 2 (1) : 6~16. ( ![]() |
56 |
张鹏, 敖红, 安芷生. 陇中盆地古近纪-新近纪地层学与古气候学研究进展.
地球环境学报,2016, 7 (2) : 97~120.
Zhang Peng, Ao Hong, An Zhisheng. Paleogene-Neogene stratigraphy and paleoclimate research progress of the Longzhong Basin. Journal of Earth Environment,2016, 7 (2) : 97~120. ( ![]() |
57 |
Yin A, Dang Y Q, Zhang M, et al. Cenozoic tectonic evolution of Qaidam Basin and its surrounding regions(Part 2):Wedge tectonics in southern Qaidam Basin and the eastern Kunlun Range.
Geological Society of America, Special Papers,2007, 433 (18) : 369~390.
(![]() |
58 |
Clark M K, Farley K A, Zheng D W, et al. Early Cenozoic faulting of the northern Tibetan Plateau margin from apatite(U-Th)/He ages.
Earth and Planetary Science Letters,2010, 296 (3~4) : 173~796.
(![]() |
59 |
Duvall A R, Clark M K, Van der Pluijm B A, et al. Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry.
Earth and Planetary Science Letters,2011, 304 (3) : 520~526.
(![]() |
60 |
Sun Z M, Yang Z Y, Pei J L, et al. Magnetostratigraphy of Paleogene sediments from northern Qaidam Basin, China:Implications for tectonic uplift and block rotation in northern Tibetan Plateau.
Earth and Planetary Science Letters,2005, 237 (3~4) : 635~646.
(![]() |
61 |
Fang X M, Zhang W L, Meng Q Q, et al. High-resolution magnetostratigraphy of the Neogene Huaitoutala section in the eastern Qaidam Basin on the NE Tibetan Plateau, Qinghai Province, China and its implication on tectonic uplift of the NE Tibetan Plateau.
Earth and Planetary Science Letters,2007, 258 (1) : 293~306.
(![]() |
62 |
Lu H J, Xiong S F. Magnetostratigraphy of the Dahonggou section, northern Qaidam Basin and its bearing on Cenozoic tectonic evolution of the Qilian Shan and Altyn Tagh Fault.
Earth and Planetary Science Letters,2009, 288 (3) : 539~550.
(![]() |
63 |
Pei J L, Sun Z M, Wang X S, et al. Evidence for Tibetan Plateau uplift in Qaidam Basin before Eocene-Oligocene boundary and its climate implications.
Journal of Earth Science,2009, 20 (2) : 430~437.
doi:10.1007/s12583-009-0035-y (![]() |
64 |
Craddock W, Kirby E, Zhang H P. Late Miocene-Pliocene range growth in the interior of the northeastern Tibetan Plateau.
Lithosphere,2011, 3 (6) : 420~438.
doi:10.1130/L159.1 (![]() |
65 |
Lu H J, Wang E Q, Shi X H, et al. Cenozoic tectonic evolution of the Elashan range and its surroundings, northern Tibetan Plateau as constrained by paleomagnetisn and apatite fission track analyses.
Tectonophysics,2012, 580 : 150~161.
doi:10.1016/j.tecto.2012.09.013 (![]() |
66 |
Zhang W L, Fang X M, Song C H, et al. Late Neogene magnetostratigraphy in the western Qaidam Basin(NE Tibetan Plateau)and its constraints on active tectonic uplift and progressive evolution of growth strata.
Tectonophysics,2013, 599 : 107~116.
doi:10.1016/j.tecto.2013.04.010 (![]() |
67 |
Zhang W L, Appel E, Fang X M, et al. Magnetostratigraphy of drill-core SG-1b in the western Qaidam Basin(NE Tibetan Plateau)and tectonic implications.
Geophysical Journal International,2014, 197 (1) : 90~118.
doi:10.1093/gji/ggt439 (![]() |
68 |
Song C H, Hu S H, Han W X, et al. Middle Miocene to Earliest Pliocene sedimentological and geochemical records of climate change in the western Qaidam Basin on the NE Tibetan Plateau.
Palaeogeography, Palaeoclimatology, Palaeoecology,2014, 395 : 67~76.
doi:10.1016/j.palaeo.2013.12.022 (![]() |
69 |
Chang H, Ao H, An Z S, et al. Magnetostratigraphy of the Suerkuli Basin indicates Pliocene(3.2Ma)activity of the middle Altyn Tagh Fault, northern Tibetan Plateau.
Journal of Asian Earth Sciences,2012, 44 : 169~175.
doi:10.1016/j.jseaes.2011.10.013 (![]() |
70 |
Zhang T, Han W X, Fang X M, et al. Intensified tectonic deformation and uplift of the Altyn Tagh range recorded by rock magnetism and growth strata studies of the western Qaidam Basin, NE Tibetan Plateau.
Global and Planetary Change,2016, 137 : 54~68.
doi:10.1016/j.gloplacha.2015.12.017 (![]() |
71 |
Dai S, Fang X M, Dupont-Nivet G, et al. Magnetostratigraphy of Cenozoic sediments from the Xining Basin:Tectonic implications for the northeastern Tibetan Plateau.
Journal of Geophysical Research,2006, 111 : B11102.
doi:10.1029/2005JB004187 (![]() |
72 |
高军平, 李生喜, 戴霜, 等. 柴西西岔沟剖面新生界碎屑锆石裂变径迹年龄对物源区构造活动的制约.
兰州大学学报(自然科学版),2009, 45 (3) : 1~7.
Gao Junping, Li Shengxi, Dai Shuang, et al. Constraints of tectonic evolution in provenance from detrital zircon fission-track data of Cenozoic strata of Xichagou district in western Qaidam Basin. Journal of Lanzhou University(Natural Sciences),2009, 45 (3) : 1~7. ( ![]() |
73 |
Kent-Corson M L, Ritts B D, Zhuang G S, et al. Stable isotopic constraints on the tectonic, topographic, and climatic evolution of the northern margin of the Tibetan Plateau.
Earth and Planetary Science Letters,2009, 282 (1) : 158~166.
(![]() |
74 |
Zhuang G S, Brandon M T, Pagani M, et al. Leaf wax stable isotopes from northern Tibetan Plateau:Implications for uplift and climate since 15Ma.
Earth and Planetary Science Letters,2014, 390 : 186~198.
doi:10.1016/j.epsl.2014.01.003 (![]() |
75 |
Zhu L D, Wang C S, Zheng H B, et al. Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau.
Palaeogeography, Palaeoclimatology, Palaeoecology,2006, 241 (1) : 49~60.
doi:10.1016/j.palaeo.2006.06.019 (![]() |
76 |
Yin A, Dang Y Q, Zhang M, et al. Cenozoic tectonic evolution of the Qaidam Basin and its surrounding regions(Part 3):Structural geology, sedimentation, and regional tectonic reconstruction.
Geological Society of America Bulletin,2008, 120 (7~8) : 847~876.
(![]() |
77 |
Meng Q R, Fang X M. Cenozoic tectonic development of the Qaidam Basin in the northeastern Tibetan Plateau.
Geological Society of America Special Papers,2008, 444 (1) : 1~24.
(![]() |
78 |
Zhuang G S, Hourigan J K, Ritts B D, et al. Cenozoic multiphase tectonic evolution of the northern Tibetan Plateau:Constraints from sedimentary records from Qaidam Basin, Hexi Corridor, and Subei Basin, Northwest China.
American Journal of Science,2011, 311 : 116~152.
doi:10.2475/02.2011.02 (![]() |
79 |
Cheng F, Jolivet M, Fu S T, et al. Northward growth of the Qimen Tagh Range:A new model accounting for the Late Neogene strike-slip deformation of the SW Qaidam Basin.
Tectonophysics,2014, 632 : 32~47.
doi:10.1016/j.tecto.2014.05.034 (![]() |
80 |
王非, 罗清华, 李齐, 等. 柴达木盆地北缘30Ma左右的去顶剥蚀作用——40Ar/39Ar热年代学定量制约.
矿物岩石地球化学通报,2001, 20 (4) : 228~230.
Wang Fei, Luo Qinghua, Li Qi, et al. The cooling event around 30Ma in northern edge of Qaidam Basin——Constraints from 40Ar/39Ar and fission track thermochronology. Bulletin of Mineralogy, Petrology and Geochemistry,2001, 20 (4) : 228~230. ( ![]() |
81 |
Wang F, Lo Q H, Li Q, et al. Onset timing of significant unroofing around Qaidam Basin, northern Tibet, China:Constraints from 40Ar/39Ar and FT thermochronology on granitoids.
Journal of Asian Earth Sciences,2004, 24 (1) : 59~69.
doi:10.1016/j.jseaes.2003.07.004 (![]() |
82 |
孙国强, 苏龙, 王旭红, 等. 柴达木盆地西部地区构造演化的裂变径迹揭示.
天然气工业,2009, 29 (2) : 27~31.
Sun Guoqiang, Su Long, Wang Xuhong, et al. Characteristics of quality Tertiary source rocks in west Qaidam Basin. Natural Gas Industry,2009, 29 (2) : 27~31. ( ![]() |
83 |
Song T G, Wang X P. Structural styles and stratigraphic patterns of syndepositional faults in a contractional setting:Examples from Qaidam Basin, Northwestern China.
American Association of Petroleum Geologists Bulletin,1993, 77 (1) : 102~117.
(![]() |
84 |
Wang E Q, Xu F Y, Zhou J X, et al. Eastward migration of the Qaidam Basin and its implications for Cenozoic evolution of the Altyn Tagh Fault and associated river systems.
Geological Society of America Bulletin,2006, 118 (3~4) : 349~365.
(![]() |
85 |
Jolivet M, Brunel M, Seward D, et al. Neogene extension and volcanism in the Kunlun Fault Zone, northern Tibet:New constraints on the age of the Kunlun Fault.
Tectonics,2003, 22 (5) .
doi:10.1029/2002TC001428 (![]() |
86 |
Ritts B D, Yue Y J, Graham S A, et al. From sea level to high elevation in 15 million years:Uplift history of the northern Tibetan Plateau margin in the Altun Shan.
American Journal of Science,2008, 308 (5) : 657~678.
doi:10.2475/05.2008.01 (![]() |
87 |
Wang Y D, Zheng J J, Zhang W L, et al. Cenozoic uplift of the Tibetan Plateau:Evidence from the tectonic-sedimentary evolution of the western Qaidam Basin.
Geoscience Frontiers,2012, 3 (2) : 175~187.
doi:10.1016/j.gsf.2011.11.005 (![]() |
88 |
Zheng D W, Zhang P Z, Wan J L, et al. Rapid exhumation at~8Ma on the Liupan Shan thrust fault from apatite fission-track thermochronology:Implications for growth of the northeastern Tibetan Plateau margin.
Earth and Planetary Science Letters,2008, 248 (1) : 198~208.
(![]() |
89 |
Zheng D W, Clark M K, Zhang P Z, et al. Erosion, fault initiation and topographic growth of the north Qilian Shan(northern Tibetan Plateau).
Geosphere,2010, 6 (6) : 937~941.
doi:10.1130/GES00523.1 (![]() |
90 |
Lin X B, Chen H L, Wyrwoll K H, et al. Commencing uplift of the Liupan Shan since 9.5Ma:Evidences from the Sikouzi section at its east side.
Journal of Asian Earth Sciences,2010, 37 (4) : 350~360.
doi:10.1016/j.jseaes.2009.09.005 (![]() |
91 |
Yuan D Y, Ge W P, Chen Z W, et al. The growth of northeastern Tibet and its relevance to large-scale continental geodynamics:A review of recent studies.
Tectonics,2013, 32 (5) : 1358~1370.
doi:10.1002/tect.v32.5 (![]() |
92 |
孙镇城, 乔子真, 景明昌, 等. 柴达木盆地七个泉组和第四纪-新近系的分界.
石油天然气地质,2006, 27 (3) : 422~432.
Sun Zhencheng, Qiao Zizhen, Jing Mingchang, et al. Qigequan Formation and Quaternary-Neogene boundary in Qaidam Basin. Oil and Gas Geology,2006, 27 (3) : 422~432. ( ![]() |
93 |
Zhou J X, Xu F Y, Wang T C, et al. Cenozoic deformation history of the Qaidam Basin, NW China:Results from cross-section restoration and implications for Qinghai-Tibet Plateau tectonics.
Earth and Planetary Science Letters,2006, 243 (1) : 195~210.
(![]() |
94 |
Molnar P, England P. Cenozoic uplift of mountain ranges and global climate change:Chicken or egg?.
Nature,1990, 346 (6276) : 29~34.
(![]() |
95 |
An Zhisheng, Sun Youbin, Chang Hong et al. Late Cenozoic climate change in monsoon-arid Asia and global changes. In An Zhisheng et al.ed. Late Cenozoic Climate Change in Asia——Loess, Monsoon and Monsoon-arid Environment Evolution. Dordrecht:Springer, 2014. 491~581
(![]() |
96 |
Liu Z F, Zhao X X, Wang C S, et al. Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin:Implications for the Cenozoic tectonic history of the Tibetan Plateau.
Geophysical Journal International,2003, 154 (2) : 233~252.
doi:10.1046/j.1365-246X.2003.01986.x (![]() |
97 |
Wang C S, Zhao X X, Liu Z F, et al. Constraints on the early uplift history of the Tibetan Plateau.
Proceedings of the National Academy of Sciences of the United States of America,2008, 105 (13) : 4987~4992.
doi:10.1073/pnas.0703595105 (![]() |
98 |
芶金, 邢国忠. 对唐古拉地区风火山群时代归属的认识.
西北地质,1989, 22 (3) : 1~6.
Gou Jin, Xing Guozhong. Understanding the geochronology of the Fenghuoshan Group in the Tanggula Mountains area. Northwest Geology,1989, 22 (3) : 1~6. ( ![]() |
99 |
冀六祥. 关于青海唐古拉地区风火山群的定义问题.
中国区域地质,1994 (4) : 374~380.
Ji Liuxiang. On the problem of the definition of the Fenghuoshan Group in the Tanggula Mountains area, Qinghai. Regional Geology of China,1994 (4) : 374~380. ( ![]() |
100 |
安勇胜, 邓中林, 庄永成. 风火山群的物质特征及时代讨论.
西北地质,2004, 37 (1) : 63~68.
An Yongsheng, Deng Zhonglin, Zhuang Yongcheng. Characteristics of the Fenghuoshan Group's material and its era discussion. Northwestern Geology,2004, 37 (1) : 63~68. ( ![]() |
101 |
Li Jianguo, Peng Jungang, Batten D J. Palynomorph assemblages from the Fenghuoshan Group, southern Qinghai, China:Their age and palaeoenvironmental significance.
Science Bulletin,2015, 60 (4) : 470~476.
doi:10.1007/s11434-014-0677-8 (![]() |
102 |
李炳有, 袁立善. 风火山群的孢粉组合及时代意义.
西北地质,1990, 23 (4) : 6~9.
Li Bingyou, Yuan Lishan. The Fenghuoshan Group of palynological assemblages and their meaning. Northwestern Geology,1990, 23 (4) : 6~9. ( ![]() |
103 |
吴珍汉, 叶培盛, 胡道功, 等. 青藏高原北部风火山花岗斑岩锆石U-Pb同位素测年及其地质意义.
现代地质,2007, 21 (3) : 435~442.
Wu Zhenhan, Ye Peisheng, Hu Daogong, et al. U-Pb isotopic dating of zircons from porphyry granite of the Fenghuoshan Mountains, northern Tibetan Plateau and its geological significance. Geoscience,2007, 21 (3) : 435~442. ( ![]() |
104 |
Miao Y F, Wu F L, Chang H, et al. A Late-Eocene palynological record from the Hoh Xil Basin, northern Tibetan Plateau, and its implications for stratigraphic age, paleoclimate and paleoelevation.
Gondwana Research,2016, 31 : 241~252.
doi:10.1016/j.gr.2015.01.007 (![]() |
105 |
Molnar P, Tapponnier P. Cenozoic tectonics of Asia:Effects of a continental collision.
Science,1975, 189 (4201) : 419~426.
doi:10.1126/science.189.4201.419 (![]() |
106 |
Molnar P, Tapponnier P. Active tectonics of Tibet.
Journal of Geophysical Research,1978, 83 (B11) : 5361~5375.
doi:10.1029/JB083iB11p05361 (![]() |
107 |
Besse J, Courtillot V, Pozzi J P, et al. Palaeomagnetic estimates of crustal shortening in the Himalayan thrusts and Zangbo suture.
Nature,1984, 311 (5987) : 621~626.
doi:10.1038/311621a0 (![]() |
108 |
Patriat P, Achache J. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates.
Nature,1984, 311 (5987) : 615~621.
doi:10.1038/311615a0 (![]() |
109 |
Harrison T M, Copeland P, Kidd W S F, et al. Raising Tibet.
Science,1992, 255 (5052) : 1663~1670.
doi:10.1126/science.255.5052.1663 (![]() |
110 |
Chung S L, Lo C H, Lee T Y, et al. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago.
Nature,1998, 394 (6695) : 769~773.
doi:10.1038/29511 (![]() |
111 |
Yin A, Harrison T M. Geological evolution of the Himalayan-Tibetan orogen.
Annual Review of Earth and Planetary Science,2000, 28 (1) : 211~280.
doi:10.1146/annurev.earth.28.1.211 (![]() |
112 |
Rowley D B, Currie B S. Palaeo-altimetry of the Late Eocene to Miocene Lunpola Basin, central Tibet.
Nature,2006, 439 (7077) : 677~681.
doi:10.1038/nature04506 (![]() |
113 |
Wang X M, Wang B Y, Qiu Z X, et al. Danghe area(west Gansu, China)biostratigraphy and implications for depositional history and tectonics of northern Tibetan Plateau.
Earth and Planetary Science Letters,2003, 208 (3) : 253~269.
(![]() |
114 |
Gilder S, Chen Y, Sen S. Oligocene-Miocene magnetostratigraphy and rock magnetism of the Xishuigou section, Subei(Gansu Province, Western China), and implications for shallow inclination in Central Asia.
Journal of Geophysics Research,2001, 106 (B12) : 30505~30521.
doi:10.1029/2001JB000325 (![]() |
115 |
Xiao G Q, Guo Z T, Dupong-Nivet G, et al. Evidence for northeastern Tibetan Plateau uplift between 25 and 20Ma in the sedimentary archive of the Xining Basin, Northwestern China.
Earth and Planetary Science Letters,2012, 317~318 : 185~195.
(![]() |
116 |
Chang H, Li L Y, Qiang X K, et al. Magnetostratigraphy of Cenozoic deposits in the western Qaidam Basin and its implication for the surface uplift of the northeastern margin of the Tibetan Plateau.
Earth and Planetary Science Letters,2015, 430 : 271~283.
doi:10.1016/j.epsl.2015.08.029 (![]() |
117 |
Ao H, Zhang P, Dekkers M J, et al. New magnetostratigraphy of Late Miocene mammal fauna, NE Tibetan Plateau, China:Mammal migration and paleoenvironments.
Earth and Planetary Science Letters,2015, 434 : 220~230.
(![]() |
118 |
Sun D H, Bloemendal J, Yi Z Y, et al. Palaeomagnetic and palaeoenvironmental study of two parallel section of Late Cenozoic strata in the central Taklimakan Desert:Implications for the desertification of the Tarim Basin.
Palaeogeography, Palaeoclimatology, Palaeoecology,2011, 300 (1) : 1~10.
(![]() |
119 |
Sun J M, Zhang Z Q, Zhang L Y. New evidence on the age of the Taklimakan Desert.
Geology,2009, 37 (2) : 159~162.
doi:10.1130/G25338A.1 (![]() |
120 |
Zheng H B, Wei X C, Tada R, et al. Late Oligocene-Early Miocene birth of the Taklimakan Desert.
Proceedings of the National Academy of Sciences of the United States of America,2015, 112 (25) : 7662~7667.
doi:10.1073/pnas.1424487112 (![]() |
121 |
Zheng H B, Powell C M, An Z S, et al. Pliocene uplift of the northern Tibetan Plateau.
Geology,2000, 28 (8) : 715~718.
doi:10.1130/0091-7613(2000)28<715:PUOTNT>2.0.CO;2 (![]() |
122 |
Zheng Hongbo, Chen Huizhong, Cao Junji. Palaeoenvironmental implication of the Plio-Pleistocene loess deposits in southern Tarim Basin.
Chinese Science Bulletin,2002, 47 (8) : 700~704.
(![]() |
123 |
Zheng H B, Powell C M, Butcher K, et al. Late Neogene loess deposition in southern Tarim Basin:Tectonic and palaeoenvironmental implications.
Tectonophysics,2003, 375 (1) : 49~59.
(![]() |
124 |
Sun J M, Alloway B, Fang X M, et al. Refuting the evidence for an earlier birth of the Taklimakan Desert.
Proceedings of the National Academy of Sciences of the United States of America,2015, 112 (41) : E5556~E5557.
doi:10.1073/pnas.1517525112 (![]() |
125 |
Zheng H B, Wei X C, Tada R et al. Reply to Sun et al.:Confirming the evidence for Late Oligocene-Early Miocene birth of the Taklimakan Desert. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(41):E5558~E5559
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4485093/ (![]() |
126 |
Huang B C, Piper J D A, Peng S T, et al. Magnetostratigraphic study of the Kuche depression, Tarim Basin, and Cenozoic uplift of the Tian Shan Range, Western China.
Earth and Planetary Science Letters,2006, 251 (3) : 346~364.
(![]() |
127 |
李双建, 张然, 王清晨. 沉积物颜色和粘土矿物对库车凹陷第三纪气候变化的指示.
沉积学报,2006, 24 (4) : 521~530.
Li Shuangjian, Zhan Ran, Wang Qingchen. Implications of the color of sediments and clay minerals for Tertiary climatic changes of Kuqa depression. Acta Sedimentologica Sinica,2006, 24 (4) : 521~530. ( ![]() |
128 |
Zhang T, Fang X M, Song C H, et al. Cenozoic tectonic deformation and uplift of the south Tian Shan:Implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa depression.
Tectonophysics,2014, 628 : 172~187.
doi:10.1016/j.tecto.2014.04.044 (![]() |
129 |
Qiao Q Q, Huang B C, Piper J D A. Comment on "Cenozoic tectonic deformation and uplift of the south Tian Shan:Implications from magnetostratigraphy and balanced cross-section restoration of the Kuqa depression" by Tao Zhang, Xiaomin Fang, Chunhui Song, Erwin Appel, Yadong Wang[Tectonophysics, 2014, doi:10.1016/j.tecto.2014.04.044]. Tectonophysics, 2016, doi:10.1016/j.tecto.2016.03.011
(![]() |
130 |
Charreau J, Gumiaux C, Avouac J P, et al. The Neogene Xiyu Formation, a diachronous prograding gravel wedge at front of the Tianshan:Climatic and tectonic implications.
Earth and Planetary Science Letters,2009, 287 (3) : 298~310.
(![]() |
131 |
Van der Voo R. The reliability of paleomagnetic data.
Tectonophysics,1990, 184 (1) : 1~9.
doi:10.1016/0040-1951(90)90116-P (![]() |
132 |
王红强, 邓成龙, 朱日祥, 等. 泥河湾盆地岑家塆旧石器遗址的古地磁定年.
中国科学(D辑),2006, 49 (3) : 295~303.
Wang Hongqiang, Deng Chenglong, Zhu Rixiang, et al. Paleomagnetic dating of the Cenjiawan Paleolithic site in the Nihewan Basin, Northern China. Science in China(Series D),2006, 49 (3) : 295~303. doi:10.1007/s11430-006-0295-7 ( ![]() |
133 |
程瑜, 乔彦松, 刘宗秀, 等. 甘肃灵台邵寨红粘土的磁性地层及其色度记录.
第四纪研究,2014, 34 (2) : 391~398.
Cheng Yu, Qiao Yansong, Liu Zongxiu, et al. Magnetostratigraphy and chorma records of a red clay formation near Lingtai County of Gansu Province. Quaternary Sciences,2014, 34 (2) : 391~398. ( ![]() |
134 |
胥勤勉, 袁桂邦, 秦雅飞, 等. 滦河三角洲南部MT04孔磁性地层研究及其构造与气候耦合关系的探讨.
第四纪研究,2014, 34 (3) : 540~552.
Xu Qinmian, Yuan Guibang, Qin Yafei, et al. Magnetostratigraphy and discussion of coupling relationship between tectonic movement and climate change of MT04 borehole in southern Luanhe River delta. Quaternary Sciences,2014, 34 (3) : 540~552. ( ![]() |
135 |
Tauxe L, Gallet Y. A Jackknife for magnetostratigraphy.
Geophysical Research Letters,1991, 18 (9) : 1783~1786.
doi:10.1029/91GL01223 (![]() |
136 |
McElhinny M W. Statistical significance of the fold test in palaeomagnetism.
Geophysical Journal International,1964, 8 (3) : 338~340.
(![]() |
137 |
McFadden P J, McElhinny M W. Classification of the reversal test in palaeomagnetism.
Geophysical Journal International,1990, 103 (3) : 725~729.
doi:10.1111/gji.1990.103.issue-3 (![]() |
138 |
Lallier F, Antoine C, Charreau J, et al. Management of ambiguities in magnetostratigraphic correlation.
Earth and Planetary Science Letters,2013, 371~372 : 26~36.
(![]() |
139 |
Sun J M, Windley B F. Onset of aridification by 34Ma across the Eocene-Oligocene transition in Central Asia.
Geology,2015, 43 (11) : 1015~1018.
doi:10.1130/G37165.1 (![]() |
140 |
Wu F Y, Clift P D, Yang J H. Zircon Hf isotopic constraints on the sources of the Indus Molasse, Ladakh Himalaya, India.
Tectonics,2007, 26 (2) : TC2014.
doi:10.1029/2006TC002051 (![]() |
141 |
Sun J M, Xiao W J, Windley B F, et al. Provenance change of sediment input in the northeastern foreland of Pamir related to collision of the Indian plate with the Kohistan-Ladakh arc at around 47Ma.
Tectonics,2016, 35 .
doi:10.1002/2015TC003974 (![]() |
142 |
邓万明. 青藏高原北部新生代钾质火山岩微量元素和Sr、Nd同位素地球化学研究.
岩石学报,1993, 9 (4) : 379~387.
Deng Wanming. Study on trace element and Sr、Nd isotopic geochemistry of Cenozoic potassic volcanic rocks in north Tibet. Acta Petrologica Sinica,1993, 9 (4) : 379~387. ( ![]() |
143 |
钟大赉, 丁林. 青藏高原的隆起过程及其机制探讨.
中国科学(D辑),1996, 26 (4) : 289~295.
Zhong Dalai, Ding Lin. Probing into the Tibet uplifting processes and mechanisms. Science in China(Series D),1996, 26 (4) : 289~295. ( ![]() |
144 |
Chung S L, Chu M F, Zhang Y, et al. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism.
Earth-Science Reviews,2005, 68 (3) : 173~196.
(![]() |
145 |
Ding L, Kapp P, Zhong D L, et al. Cenozoic volcanism in Tibet:Evidence for a transition from ocean to continental subduction.
Journal of Petrology,2003, 44 (10) : 1833~1865.
doi:10.1093/petrology/egg061 (![]() |
146 |
Ding L, Kapp P, Yue Y H, et al. Postcollisional calc-alkaline lavas and xenoliths from the southern Qiangtang terrane, central Tibet.
Earth and Planetary Science Letters,2007, 254 (1) : 28~38.
(![]() |
147 |
Nomade S, Renne P P, Mo X X, et al. Miocene volcanism in the Lhasa block, Tibet:Spatial trends and geodynamic implications.
Earth and Planetary Science Letters,2004, 221 (1) : 227~243.
(![]() |
148 |
Wang Q, McDermott F, Bellon H, et al. Cenozoic K-rich adakitic volcanic rocks in the Hohxil area, northern Tibet:Lower-crustal melting in an intracontinental setting.
Geology,2005, 33 (6) : 464~468.
(![]() |
149 |
Wang Q, Wyman D A, Xu J F, et al. Eocene melting of subducting continental crust and early uplifting of central Tibet:Evidence from central-western Qiangtang high-K calc-alklineandesites, dacites and rhyolites.
Earth and Planetary Science Letters,2008, 272 (1) : 158~171.
(![]() |
150 |
Wang Q, Wyman D A, Li Z X, et al. Eocene north-south tending dikes in central Tibet:New constraints on the timing of east-west extension with implications for early plateau uplift?.
Earth and Planetary Science Letters,2010, 298 (1) : 205~216.
(![]() |
151 |
段志明, 李勇, 张毅, 等. 青藏高原唐古拉山中新生代花岗岩锆石U-Pb年龄、地球化学特征及其大陆动力学意义.
地质学报,2005, 79 (1) : 88~97.
Duan Zhiming, Li Yong, Zhang Yi, et al. Zircon U-Pb age, continent dynamics significance and geochemical characteristics of the Mesozoic and Cenozoic granites from the Tanggula Range in the Qinghai-Tibet Plateau. Acta Geologica Sinica,2005, 79 (1) : 88~97. ( ![]() |
152 |
董方浏, 侯增谦, 高永丰, 等. 滇西腾冲新生代花岗岩:成因类型与构造意义.
岩石学报,2006, 22 (4) : 927~937.
Dong Fangliu, Hou Zengqian, Gao Yongfeng, et al. Cenozoic granitoid in Tengchong, western Yunnan:Genesis type and implications for tectonics. Acta Petrologica Sinica,2006, 22 (4) : 927~937. ( ![]() |
153 |
Mo X X, Hou Z Q, Niu Y L, et al. Mantle contributions to crustal thickening during continental collision:Evidence from Cenozoic igneous rocks in southern Tibet.
Lithos,2007, 96 (1) : 225~242.
(![]() |
154 |
Wang S F, Wang E Q, Fang X M, et al. U-Pb SHRIMP and 40Ar/39Ar ages constrain the deformation history of the Karakoram fault zone(KFZ), SW Tibet.
Tectonophysics,2011, 509 (3) : 208~217.
(![]() |
155 |
Chen J L, Xu J F, Wang B D, et al. Cenozoic Mg-rich potassic rocks in the Tibetan Plateau:Geochemical variations, heterogeneity of subcontinental lithospheric mantle and tectonic implications.
Journal of Asian Earth Sciences,2012, 53 : 115~130.
doi:10.1016/j.jseaes.2012.03.003 (![]() |
156 |
Zhang L Y, Ding L, Yang D, et al. Origin of Middle Miocene leucogranites and rhyolites on the Tibetan Plateau:Constraints on the timing of crustal thickening and uplift of its northern boundary.
Chinese Science Bulletin,2012, 57 (5) : 511~524.
doi:10.1007/s11434-011-4813-4 (![]() |
157 |
Liu D, Zhao Z D, Zhu D C, et al. Zircon xenocrysts in Tibetan ultrapotassic magmas:Imaging the deep crust through time.
Geology,2014, 42 (1) : 43~46.
doi:10.1130/G34902.1 (![]() |
158 |
Gehrels G. Detrial zircon U-Pb geochronology applied to tectonics.
Annual Review of Earth and Planetary Sciences,2014, 42 : 127~149.
doi:10.1146/annurev-earth-050212-124012 (![]() |
159 |
郑德文, 张培震, 万景林, 等. 碎屑颗粒热年代学——一种揭示盆山耦合过程的年代学方法.
地震地质,2000, 22 (Suppl.) : 25~36.
Zheng Dewen, Zhang Peizhen, Wan Jinglin, et al. Detrital grain thermochronology——A potential method for research on coupling process between basin and mountain. Seismology and Geology,2000, 22 (Suppl.) : 25~36. ( ![]() |
160 |
Wang Y D, Zheng J J, Zheng Y W, et al. Paleocene-Early Eocene uplift of the Altyn Tagh Mountain:Evidence from detrital zircon fission track analysis and seismic sections in the northwestern Qaidam Basin.
Journal of Geophysical Research:Solid Earth,2015, 120 (12) : 8534~8550.
doi:10.1002/2015JB011922 (![]() |
161 |
吕红华, 王玮, 常远, 等. 新疆天山造山带新生代多期次剥露作用过程.
第四纪研究,2013, 33 (4) : 812~822.
Lü Honghua, Wang Wei, Chang Yuan, et al. Cenozoic episodic exhumation of the Tian Shan range, NW China. Quaternary Sciences,2013, 33 (4) : 812~822. ( ![]() |
162 |
张志诚, 郭召杰, 李建锋, 等. 阿尔金断裂带中段中新生代隆升历史分析:裂变径迹年龄制约.
第四纪研究,2012, 32 (3) : 499~509.
Zhang Zhicheng Guo Zhaojie Li Jianfeng, et al. Mesozoic and Cenozoic uplift-denudation along the Altyn Tagh Fault, Northwestern China:Constraits from apatite fission track data. Quaternary Sciences,2012, 32 (3) : 499~509. ( ![]() |
163 |
肖萍, 刘静, 王伟, 等. 青藏高原东南缘芒康地区河流地貌演化的磷灰石U-Th/He记录.
第四纪研究,2015, 35 (2) : 433~444.
Xiao Ping, Liu Jing, Wang Wei, et al. The evoluiton of fluvial geomorphology of Mangkang area(southeastern Tibetan Plateau)recorded by apatite U-Th/He thermochronology. Quaternary Sciences,2015, 35 (2) : 433~444. ( ![]() |
164 |
Gluyas J, Swarbrick R.
Petroleum Geoscience. Oxford: Blackwell Publishing, 2004 : 80 ~82.
(![]() |
165 |
Wang X M, Qiu Z D, Li Q, et al. Vertebrate paleontology, biostratigraphy, geochronology, and paleoenvironment of Qaidam Basin in northern Tibetan Plateau.
Palaeogeography, Palaeoclimatology, Palaeoecology,2007, 254 (3) : 363~385.
(![]() |
166 |
Fang X M, Garzione C N, Van der Voo R, et al. Flexural subsidence by 29Ma on the NE edge of Tibet from the magnetostratigraphy of Linxia Basin, China.
Earth and Planetary Science Letters,2003, 210 (3) : 545~560.
(![]() |
167 |
Fang X M, Yan M D, Van der Voo R, et al. Evidence from high-resolution magnetostratigraphy of the Guide Basin, Qinghai Province, China.
Geological Society of America Bulletin,2005, 117 (9~10) : 1208~1225.
(![]() |
168 |
安芷生, 张培震, 王二七, 等. 中新世以来我国季风-干旱环境演化与青藏高原的生长.
第四纪研究,2006, 26 (5) : 678~693.
An Zhisheng, Zhang Peizhen, Wang Erchie, et al. Changes of the monsoon-arid environment in China and growth of the Tibetan Plateau since the Miocene. Quarternary Sciences,2006, 26 (5) : 678~693. ( ![]() |
169 |
赵秀丽, 张春霞, 吴海斌, 等. 西宁盆地始新世/渐新世过渡期孢粉植物群特征及其意义.
第四纪研究,2015, 35 (6) : 1489~1499.
Zhao Xiuli, Zhang Chunxia, Wu Haibin, et al. Significance of Eocene-Oligocene transition pollen record from Xining Basin, China. Quaternary Sciences,2015, 35 (6) : 1489~1499. ( ![]() |
170 |
何同, 刘连文, 陈旸, 等. 晚中新世-上新世黄土高原佳县红粘土剖面碳同位素记录与C4植被演化.
第四纪研究,2015, 35 (4) : 791~800.
He Tong, Liu Lianwen, Chen Yang, et al. Carbon isotope record of authigenic calcite from the northern Chinese Loess Plateau:Implications for C4 vegetation evolution during Late Miocene-Pliocene. Quaternary Sciences,2015, 35 (4) : 791~800. ( ![]() |
171 |
吴福莉, 赵艳, 方小敏, 等. 兰州盆地44~15Ma地层的有机碳同位素记录.
第四纪研究,2015, 35 (4) : 847~855.
Wu Fuli, Zhao Yan, Fang Xiaomin, et al. A δ13CTOC record during 44~15Ma in Lanzhou Basin. Quaternary Sciences,2015, 35 (4) : 847~855. ( ![]() |
172 |
脱世博, 方小敏, 宋春晖, 等. 青藏高原东北部西宁盆地晚渐新世-早中新世沉积物岩石磁学特征及其古环境意义.
第四纪研究,2013, 33 (5) : 829~838.
Tuo Shibo, Fang Xiaomin, Song Chunhui, et al. Rock magnetic characteristics of the Late Oligocene to Early Miocene sediments in the Xining Basin, northeastern Tibetan Plateau. Quaternary Sciences,2013, 33 (5) : 829~838. ( ![]() |
173 |
安芷生, 孙东怀, 陈明扬, 等. 黄土高原红粘土序列与晚第三纪的气候事件.
第四纪研究,2000, 20 (5) : 435~446.
An Zhisheng, Sun Donghuai, Cheng Mingyang, et al. Red clay sequences in Chinese Loess Plateau and recorded paleoclimate events of the Late Tertiary. Quaternary Sciences,2000, 20 (5) : 435~446. ( ![]() |
174 |
Tauxe L, Wu G P. Normalized remanence in sediments of the Western Equatorial Pacific:Relative paleointensity of the geomagnetic field?.
Journal of Geophysical Research,1990, 95 (B8) : 12337~12350.
doi:10.1029/JB095iB08p12337 (![]() |
175 |
Schneider D A, Mello G A. A high-resolution marine sedimentary record of geomagnetic intensity during the Brunhes Chron.
Earth and Planetary Science Letters,1996, 144 (1) : 297~314.
(![]() |
176 |
Brassart J, Tric E, Valet J P, et al. Absolute paleointensity between 60 and 400ka from the Kohala Mountain(Hawaii).
Earth and Planetary Science Letters,1997, 148 (1) : 141~156.
(![]() |
177 |
Carlut J, Kent D V. Paleointensity record in zero-age submarine basalt glasses:Testing a new dating technique for recent MORBs.
Earth and Planetary Science Letters,2000, 183 (3) : 389~401.
(![]() |
178 |
Valet J P, Herrero-Bervera E. Paleointensity experiments using alternating field demagnetization.
Earth and Planetary Science Letters,2000, 177 (1) : 43~58.
(![]() |
179 |
Pan Y X, Zhu R X, Shaw J, et al. Can relative paleointensities be determined from the normalized magnetization of the wind-blown loess of China.
Journal of Geophysical Research,2001, 106 (B9) : 19221~19232.
doi:10.1029/2001JB000360 (![]() |
180 |
Horng C S, Robert A P, Liang W T. A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea.
Journal of Geophysical Research,2003, 108 (B1) .
doi:10.1029/2001JB001698 (![]() |
181 |
Herrero-Bervera E, Valet J P. Absolute paleointensity and reversal records from the Waianae sequence(Oahu, Hawaii, USA).
Earth and Planetary Science Letters,2005, 234 (1) : 279~296.
(![]() |
182 |
Pressling N, Laj C, Kissel C, et al. Palaeomagnetic intensities from 14C-dated lava flows on the Big Island, Hawaii:0-21 kyr.
Earth and Planetary Science Letters,2006, 247 (1) : 26~40.
(![]() |
183 |
Voorhies C V. A geomagnetic estimate of mean paleointensity.
Journal of Geophysical Research,2006, 111 (B11) .
doi:10.1029/2005JB003874 (![]() |
184 |
Biggin A J, Perrin M, Dekkers M J. A reliable absolute palaeointensity determination obtained from a non-ideal recorder.
Earth and Planetary Science Letters,2007, 257 (3) : 545~563.
(![]() |
185 |
Takatsugi K O, Hyodo M. A geomagnetic excursion during the late Matuyama Chron, the Isaka Group, Southwest Japan.
Earth and Planetary Science Letters,1995, 136 (3) : 511~524.
(![]() |
186 |
刘进峰, 郭正堂, 郝青振, 等. 甘肃秦安糜子湾剖面中新世风尘堆积的磁性地层学研究.
第四纪研究,2005, 25 (4) : 503~509.
Liu Jinfeng, Guo Zhengtang, Hao Qingzhen, et al. Magnetostratigraphy of the Miziwan Miocene eolian deposits in Qin'an County(Gansu Province). Quaternary Sciences,2005, 25 (4) : 503~509. ( ![]() |
187 |
Nowaczyk N R, Arz H W, Frank U, et al. Dynamics of the Laschamp geomagnetic excursion from Black Sea sediments.
Earth and Planetary Science Letters,2012, 351~352 : 54~69.
(![]() |
188 |
Guyodo Y, Valet J P. Global changes in intensity of the Earth's magnetic field during the past 800 kyr.
Nature,1999, 399 (6733) : 249~252.
doi:10.1038/20420 (![]() |
189 |
Tauxe L, Yamazaki T. Paleointensities.
Treatise on Geophysics,2007, 5 (Chapter 13) : 509~563.
(![]() |
190 |
Xian F, An Z S, Wu Z K, et al. A simple model for reconstructing geomagnetic field intensity with 10Be production rate and its application in Loess studies.
Science in China (Series D),2008, 51 (6) : 855~861.
doi:10.1007/s11430-008-0054-z (![]() |
191 |
Muscheler R, Beer J, Kubik P W, et al. Geomagnetic field intensity during the last 60, 000 years based on 10Be and 36Cl from the Summit ice cores and 14C.
Quaternary Science Reviews,2005, 24 (16) : 1849~1860.
(![]() |
192 |
Opdyke M D, Channell J E T.
Magnetic stratigraphy. California: Academic Press, 1996 : 1 ~361.
(![]() |
193 |
Gunn L J, Chapeau-Blondeau F, McDonnell M D, et al. Too good to be true:When overwhelming evidence fails to convince.
Proceedings of Royal Society A,2016, 472 (2187) .
doi:10.1098/rspa.2015.0748 (![]() |
194 |
李吉均, 方小敏. 青藏高原隆起与环境变化研究.
科学通报,1998, 43 (15) : 1569~1574.
Li Jijun, Fang Xiaomin. Research about Tibetan Plateau uplift and environmental change. Chinese Science Bulletin,1998, 43 (15) : 1569~1574. ( ![]() |
195 |
李吉均. 青藏高原隆升与晚新生代环境变化.
兰州大学学报(自然科学版),2013, 49 (2) : 154~159.
Li Jijun. Tibetan Plateau uplift and Late Cenozoic environmental change. Journal of Lanzhou University(Natural Sciences),2013, 49 (2) : 154~159. ( ![]() |
196 |
Zhang Peizhen, Molnar P, Downs W R. Increased sedimentation rates and grain sizes 2~4 Myr ago due to the influence of climate change on erosion rates.
Nature,2001, 410 (6831) : 891~897.
doi:10.1038/35073504 (![]() |
197 |
Willenbring J K, von Blanckenburg F. Long-term stability of global erosion rates and weathering during Late-Cenozoic cooling.
Nature,2010, 465 (7295) : 211~214.
doi:10.1038/nature09044 (![]() |
198 |
Denrell J, Liu C W. Top performers are not the most impressive when extreme performance indicates unreliabiliry.
Proceedings of the National Academy of Sciences of the United States of America,2012, 109 (24) : 9331~9336.
doi:10.1073/pnas.1116048109 (![]() |
199 |
Harmer G P, Abbott D. Game theory:Losing strategies can win by Parrondo's paradox.
Nature,1999, 402 (6764) : 864~864.
doi:10.1038/47220 (![]() |
② University of Chinese Academy of Sciences, Beijing 100049)
Abstract
Magnetostratigraphic analysis is a key method to constrain the geochronology of sedimentary stratum, which can provide important data for the Cenozoic basins in western China especially, including chronostratigraphic and geological evolution.Detailed magnetostratigraphic analyses in Western China(e.g., the Qaidam Basin, Kunlun Mountains, Xining Basin, Qilian Shan, and so on) have contributed to a better understanding of the processes and intensity of Cenozoic tectonic uplift and deformation in the northeastern Tibetan Plateau.However, there are still some problems to assign ages only on the base of correlation between the Geomagnetic Polarity Time Scale and the obtained polarity sequences documented in sedimentary basins.For example, the correlation is not unique and parts of stratum may have been eroded.In this paper, we discuss some problems and controversies in correlating polarity patterns to Geologic Time Scale in some sections in Western China.Additional studies should be very important to constraints age of the Cenozoic sediments besides magnetostratigraphy, including radiometric dating of volcanic ash in sediments(if there is) which can hammer "age anchor" in sedimentary sequences, biostratigraphy which can constrain age span, and the minimum mineral chronologies which can reveal the possibly maximum age of sediments.Because geological events are not very simple processes, several factors will influence its record in sedimentary sequences.So, we argue that geological events recorded by the sedimentary indexes or others may have time lag, and we should take into consideration the paradox of unanimity when analyzing some geological events, because of theory of too good to be true.