理解自然状态下气候的变化,有助于评估人类对近代和未来气候的影响[1~3]。由于缺少长尺度的器测气象数据,从自然记录中获取气候变化的信息成为我们了解过去的重要手段。距今2000年以来的时段是衔接地质记录和器测、文献资料,进而预测未来人类生存环境变化的一个重要“时间窗”,因此一直是过去全球变化(PAGES)、气候变率与可预测性(CLIVAR)研究的重点之一[4~11]。大量记录表明古温度变化存在一定的相似性,能够区分温暖和寒冷时期,例如现代暖期(CWP)发生在1850A.D.之后,小冰期(LIA)发生在1400A.D.到1850A.D.,中世纪暖期(MWP)或中世纪气候异常(MCA)发生在800A.D.到1400A.D.[12~14];此外,稍长尺度的记录显示其他的暖期/冷期振荡,例如黑暗时代冷期(DACP)和罗马暖期(RWP)[15]。然而,全球范围内的湿度记录则表现出截然不同的特点,在不同的气候模式影响下,有些甚至是相反的。从某种意义上说,包括降水与蒸发、河流径流、洪水与干旱等水文变化更能够反映区域大气环流以及相关的气候变化[16]。因此,研究过去湿度变化有助于进一步解读气候过程,理解自然气候变化的驱动机制。
青藏高原北部对研究古气候具有重要的意义,该地区受到亚洲季风与中纬度西风环流的共同影响[17],能够提供大量有关于高、低海拔气候过程的记录[18]。目前,青藏高原地区研究成果多集中在晚冰期-全新世阶段[19~21],而短时间尺度的树轮[22~26]等高分辨率记录主要集中在过去几个世纪,对该地区2000年时间尺度上的研究相对匮乏。前人利用库赛湖沉积物TOC及粒度指标,探讨了青藏高原北部晚全新世以来十年-百年尺度上亚洲季风的演化历史及对太阳活动的响应[27, 28];通过对库赛湖年纹层的研究,探讨了库赛湖年纹层的形成机制,并利用纹层厚度重建了过去1600年以来的温度和风成活动序列[29]。然而这些研究并没有通过湖水状况来探讨气候的演化。本项研究中,我们将对青藏高原北部库赛湖的沉积岩芯进行自生碳酸盐稳定同位素的分析,重建该地区1600年以来的高分辨率气候演化序列,探讨全新世晚期青藏高原北部温度-湿度组合模式及气候驱动机制。
1 研究区概况库赛湖(35°37′~35°50′N,93°15′~93°38′E),湖面海拔为4475m,位于青藏高原北部可可西里地区。库赛湖水深为10~50m,西北部较深,东南部较浅( 图 1)。湖泊面积254.4km2,流域面积3700km2,主要依靠西南缘的库赛河补给,无河流流出,导致现今矿化度为28.54g/L,属硫酸镁亚型微咸水湖。根据位于库赛湖西南约50km处五道梁气象站(35°13′N,93°05′E)53年(1957~2009年)的气象数据显示,库赛湖地区属大陆性气候,年内温度波动频繁且温差大(年均温度为-5.4℃),年均降水量(283mm)明显低于年均蒸发量(1600mm)造成了干旱的气候特点,植被类型为高寒草原,以藜科(Chenopodiaceae)和蒿属(Artemisia)为主[29, 30]。
![]() |
图 1 库赛湖及钻孔位置[29] Fig. 1 Location of Kusai Lake and the core site |
2010年9月,利用奥地利产UWITEC水上平台,在库赛湖东南部水深14.5m处,利用重力取芯器采得一根350cm长的连续岩芯(KSS-V)和两根平行短岩芯(分别长29cm、43cm),用于年代测定及稳定同位素研究。
2.2 自生碳酸盐稳定同位素测定将岩芯按0.5cm的间隔进行分样,用63μm筛子过筛后研磨,取2g样品加入10 %的双氧水浸泡去除有机物,之后用去离子水冲洗,烘干后研磨。自生碳酸盐的碳、氧同位素采用磷酸酸解法,将碳酸盐与磷酸在相应真空度和温度条件下进行反应、纯化,收集生成的CO2,然后用MAT 253稳定同位素质谱仪的Kiel IV-IRMS双路测试方法离线进样分析。室温为22±1℃,湿度为50 %RH±5 %,参比标准GBW-04405,δ13CPDB和δ18OPDB测定值标准偏差分别小于0.030‰和0.080‰。以上实验均在中国科学院南京地质古生物研究所现代古生物学和地层学国家重点实验室完成。
2.3 有机碳、氮测定岩芯样品0.5cm分样,烘干后研磨至80目左右的粉状样品,加入5 %的HCl溶液反复搅拌,浸泡过夜去除无机碳酸盐后用去离子水清洗至中性(pH=7),烘干后研磨至150目左右。称取一定量的样品用EA3000型元素分析仪进行有机碳、氮含量的测定。
3 结果 3.1 年代序列根据AMS14C、137Cs和210 Pb测年及纹层计年结果,综合确立库赛湖KSS-V(长度为350cm)岩芯年代序列为400~2000A.D.(即距今1600年),具体年代序列详见Liu等[29]的研究。
3.2 自生碳酸盐碳、氧同位素组成特征库赛湖碳酸盐平均含量为18.8 %,以文石为主,平均含量为12.3 %,根据姚波等[31]的研究认为库赛湖碳酸盐是自生的。库赛湖自生碳酸盐碳、氧稳定同位素值如图 2a和2b所示,δ13C 的变化范围为-0.31‰~5.09‰,变化幅度为5.40‰,平均为3.48‰;δ18O的变化范围为-5.73‰~4.01‰,变化幅度为9.74‰,平均为-0.27‰。总体上看,δ18O与δ13C 曲线同步变化,具有较高的相关性。
![]() |
图 2 1600年来库赛湖自生碳酸盐稳定同位素变化曲线(31点滑动平均值) DACP、MWP、LIA和CWP分别指代黑暗冷期、中世纪暖期、小冰期和近代暖期,虚线为每个阶段的平均值 Fig. 2 Variation of stable isotope in authigenic carbonate during the past 1600 years from Kusai Lake(31-point running means).DACP, MWP, LIA and CWP refer to Dark Age Cold Period, Medieval Warm Period, Little Ice Age and Contemporary Warm Period, respectively. The dashed lines indicate average for each phase |
湖泊沉积物中的有机物主要为内源和外源两种类型,可以通过湖泊沉积物的C/N比值区分这两种类型来源[27, 32]以及反映湖泊的环境演变[33~36]。湖泊内藻类的C/N比值通常小于10,沉水植物和浮游植物或有机混合物的比值介于10到20之间,挺水植物和陆地植物的C/N比值则大于20[37, 38]。库赛湖沉积物中有机物C/N比值基本上小于10,指示其有机物主要来源于湖泊内源,TOC含量可反映湖泊的初级生产力[39, 40]。TOC和TN的曲线变化表现出明显的一致性,变化的范围分别为0.16 %~5.21 %(变化幅度为5.05 %)和0.02 %~0.69 %(变化幅度为0.67 %);C/N比值的变化范围为5.40~16.76(变化幅度为11.36),比值总体小于10,平均值为7.55( 图 3)。
![]() |
图 3 库赛湖总有机碳、总有机氮及C/N比值变化曲线 Fig. 3 Variations of TOC, TN and C/N from Kusai Lake |
湖泊沉积物中的碳酸盐氧、碳同位素变化受到各种因素的控制[41, 42]。一般湖泊沉积物中自生碳酸盐的碳、氧同位素变化可以用来指示湖泊的封闭性和开放性,在水文条件开放、水体停留时间短的湖泊中,自生碳酸盐碳、氧同位素组分的变化是各自独立的;而水文条件封闭、水体停留时间长的湖泊中,自生碳酸盐碳、氧同位素组分之间则显示出明显的线性相关关系[43]。如图 4所示,库赛湖自生碳酸盐碳、氧同位素分析结果表明两者显示出明显的线性相关(R2=0.667),表明库赛湖晚全新世以来的水文条件未发生变化,为封闭性湖泊。
![]() |
图 4 库赛湖自生碳酸盐δ18O与δ13C间关系 Fig. 4 Relationship between δ18O andδ13C of authigenic carbonate from Kusai Lake |
湖泊自生碳酸盐δ18O由湖水的δ18O、水温及碳酸盐矿物组分决定[44]。温度的变化引起18 O从湖水中分馏到碳酸盐中并不是控制碳酸盐δ18O的决定因素,因为温度每上升1℃造成碳酸盐δ18O的变化仅为0.24‰[45]。如果水温是造成碳酸盐δ18O变化的单一因素,那么在1440A.D.前后,δ18O值从4.0‰降至-4.4‰,变化幅度达到8.4‰(图 2b),则需要温度上升35℃,这显然是不成立的。库赛湖碳酸盐的组成以文石为主[31],证明矿物组分的变化也不能解释δ18O变化。因此影响碳酸盐δ18O的主要因素必然是湖水的同位素组成,这取决于入湖水体的同位素组成和水的输入与输出平衡(P/E)。根据卫克勤和林瑞芬[46]的研究,结合库赛湖的水文特征,经计算湖水的平均停留时间约为20年,氧同位素波动发生的频率一般小于这个时间,故波动发生的频率在滞留时间内。湖水的δ18O受入湖水体(大气降水、融水、地下水)和蒸发作用的影响,通常一个地区降水的δ18O在短时间内大幅波动的可能性不大[47],因此,库赛湖自生碳酸盐δ18O的大幅波动,可能主要与其他入湖水体的δ18O大幅波动和蒸发作用有关。青藏高原大型河流水体δ18O均值接近于年均降水δ18O值[48],全球年均降水δ18O值偏负,而封闭性湖泊现代湖水δ18O均值偏正,因此相对于入湖水体,18O富集于湖水中,说明湖水经历了蒸发作用,即湖水主要由蒸发作用富集重同位素[44]。库赛湖地区海拔高、气候寒冷,冰川相对发育。冷期时,蒸发较弱,受冰融水的影响,湖水同位素偏负;而如果温度升高,则蒸发强烈,使得湖水同位素偏正,可能说明了库赛湖地区气候的频繁变化导致了湖水δ18O的频繁大幅波动,从而造成库赛湖碳酸盐氧同位素在短时间内的频繁波动( 图 2b)。总体而言,在封闭性的湖泊中,湖泊水位、化学过程及湖水δ18O的变化,通常是由有效湿度P(降水)/E(蒸发)的变化引起的,当P/E下降时,由于蒸发过程中16O首先逃逸出去导致湖水中的18 O富集,即湖水δ18O值偏正[49, 50];相反,当湖水δ18O值偏负时,表明流域有效湿度上升[49, 50]。因此库赛湖自生碳酸盐δ18O能够指示流域有效湿度的变化。
在封闭湖泊中,碳、氧同位素的共变性可能反映了湖水溶解无机碳与大气CO2的平衡,这发生在蒸发时H216 O的水分子率先逃逸,因此一定程度上为δ18O与δ13C的共变提供了条件[49, 51]。湖水溶解无机碳的13 C/12 C指示湖泊碳酸盐的碳同位素比,受到流域及湖泊形成过程的影响。湖泊自生碳酸盐δ13C 主要受径流同位素组成、湖水与大气CO2交换以及湖泊中植物光合/呼吸作用的控制[49]。在与大气CO2平衡状态下,湖水δ13C 值能达到3‰[49],埃塞俄比亚Hayq湖δ13C 值最大值达到了8‰,可能是由于水生植物光合作用优先利用水中12C[51]。库赛湖自生碳酸盐δ13C 值变化范围较大,为-0.31‰~5.09‰,平均为3.48‰,最大值达到了5.09‰,表明湖水与大气CO2交换的同时,库赛湖自生碳酸盐δ13C 可能还受水生植物光合作用的影响。在湖泊内,水生植物和藻类长期光合作用,优先利用12C,使得13 C在总溶解无机碳(TDIC)中相对富集;有机物分解,释放同位素较轻的12C并进入总溶解无机碳库,这些过程都会影响δ13C 的值[3]。如图 3,库赛湖沉积物中C/N比值总体小于10,表明有机物主要来源于湖泊水生植物或藻类。当温度升高时,湖泊水生植物和藻类数量增加,湖泊初级生产力增大,导致TOC值上升[52, 53]。由于水生植物和藻类光合作用优先利用12C,使得13 C在总溶解无机碳(TDIC)中相对富集,造成自生碳酸盐δ13C 值上升[49, 54]。库赛湖TOC含量与自生碳酸盐δ13C 之间具有很好的正相关关系( 图 5)。由此可见,库赛湖自生碳酸盐δ13C 的变化一定程度上可指示区域温度的变化,即δ13C 值上升反映了升温过程。
![]() |
图 5 库赛湖自生碳酸盐δ13C 与TOC间关系 Fig. 5 Relationship betweenδ13C of authigenic carbonate and TOC from Kusai Lake |
根据以上分析,1600年以来库赛湖沉积物自生碳酸盐稳定同位素记录的气候变化可划分为4个阶段( 图 2):
阶段1(400~600A.D.),碳、氧同位素的均值分别为3.16‰和-0.92‰,相对较低。在600A.D.前后达到此阶段最低值,且在达到最小值前还有一次较大的波动,振幅分别为4.8‰和6.4‰。δ13C 值下降表明该时期温度较低,δ18O值下降指示湿度增加。此阶段对应黑暗冷期(DACP),这与基于多指标重建的北半球温度变化结果一致[29]。Wang等[55]对该地区的孢粉组合的研究表明0~600A.D.有效湿度处于高值且比较稳定,但在大约500A.D.花粉总浓度有短暂下降的趋势,对应于本研究δ18O值的上升( 图 2b),可能是由极端湿度下降事件引起的。因此,阶段1总体为冷湿气候。
阶段2(600~1400A.D.),碳、氧同位素的均值分别为3.53‰和-0.09‰,较前一阶段分别上升了0.37‰和0.83‰,处于高值段,总体上反映了暖干的气候特征。此阶段碳同位素值共经历了3次偏正过程,分别对应于610~740A.D.、960~1160A.D.和1180~1280A.D.,指示温度上升、湿度下降。该阶段也出现了数次碳、氧同位素同时偏负的情况,其中在609A.D.达到最低值( 图 2),指示了多次弱的冷湿气候波动事件。Liu等[29]对库赛湖研究指出本阶段包括了600~720A.D.和800~1100A.D.两个暖期,分别对应中国的隋朝和唐朝以及欧洲的中世纪暖期(MWP)。此外,强明瑞等[4]对苏干湖研究认为580~1200A.D.时间段气候特点为暖干,对应中世纪暖期,这与库赛湖的研究结果基本一致。
阶段3(1400~1900A.D.),碳、氧同位素波动频繁,均值分别为3.44‰和-0.52‰,反映了气候的不稳定性。碳、氧同位素均在1430A.D.达到最高值,分别为5.09‰和4.01‰(图 2),指示了一次较强的暖干事件。以上都体现了该阶段气候不稳定的特点。总体上,同位素值处于较低水平,指示冷湿的气候特征,对应于小冰期(LIA)。此外,库赛湖所处的亚洲干旱中心区,LIA期间流域有效湿度增加导致碳酸盐δ18O值降低,被认为可能是由于冷空气致使蒸发作用减弱,西风增强导致降水增加[56]。西风带来的降水冬季多于夏季[57],冬季降水在春季融化,补给湖泊会导致湖水δ18O偏负。冷期时,明显的温度效应导致降水δ18O值降低,在一定程度上也会影响碳酸盐δ18O值[44]。
阶段4(20世纪至今),进入20世纪,碳、氧同位素值上升趋势显著,均值分别为3.90‰和0.87‰,指示了现代暖期(CWP)的气候特征为暖干。表层沉积物在埋藏过程中,有机质没有完全降解,导致TOC快速增加而δ13C 未出现较大幅度的偏重响应。同时人类活动更加频繁,加剧了全球变暖的趋势,使得干旱地区的干旱程度日趋严重。
强明瑞等[5]对苏干湖碳酸盐稳定同位素的研究,指出碳同位素指示了湖面冰封时间的长短,进而指示了冬半年气温的变化( 图 6b),结果表明1600年来主要的冷期出现在400~580A.D.和1200~1800A.D.;暖期为580~1200A.D.和1800A.D.至今;Yang等[58]综合树木年轮、湖泊沉积、冰芯等古气候代用指标重建了我国区域面积加权温度曲线( 图 6c),暖期为600~1400A.D.和1920A.D.至今;冷期出现在400~600A.D.和1400~1920A.D.。库赛湖δ13C 记录了400~600A.D.、MWP、LIA、CWP等时期的气候变化过程,并且与上述记录反映的气候变化有较好的可比性。
![]() |
图 6 1600年来库赛湖δ13C 值曲线(a)与苏干湖δ13C 值曲线[5](b)和我国区域面积加权温度曲线[58](c)的对比 Fig. 6 δ13C record from Kusai Lake (a) and its comparison with the δ13C record from Sugan Lake (b) and temperature reconstruction for“Weighted”China (c) during the past 1600 years |
综上所述,库赛湖沉积物自生碳酸盐稳定同位素记录揭示该地区1600年以来基本表现为冷湿-暖干的气候组合模式,这与亚洲干旱中心区的其他研究结果一致[59, 60]。可能是由于库赛湖地处我国极端干旱区,该区域降水量远低于蒸发量,蒸发作用显著导致区域有效湿度低,只有在冷期温度下降的情况下,蒸发量减小,才会使湿度有所增加。此外,中纬度环流活动频繁,具体表现为西风急流的增强,导致降水增加,同样可能影响冷期有效湿度[56]。库赛湖碳酸盐稳定同位素不仅能够记录1600年以来特征时期,如DACP、MWP、LIA以及20世纪暖期的气候变化阶段,而且气候变化的过程与突变性也与其他记录[5, 58]有很好的一致性。
5 结论库赛湖沉积物自生碳酸盐稳定同位素记录为研究青藏高原北部晚全新世以来气候演化模式提供了可靠的高分辨率证据,反映了气候变化组合特征,碳、氧同位素分别指示了区域温度及有效湿度的变化。1600年以来库赛湖地区气候变化经历了4个阶段:1)400~600A.D.的冷湿,对应黑暗时代冷期(DACP);2)600~1400A.D.的暖干,对应中世纪暖气(MWP);3)1400~1900A.D.的冷湿,对应小冰期(LIA);4)20世纪后,进入近代暖期(CWP),气候暖干。库赛湖同位素反映的气候冷暖的变化不仅与孢粉、TOC等其他记录具有较好的可比性,而且与Yang等[58]重建的我国温度变化也相当一致。因此,稳定同位素记录的1600年以来的气候变化具有普遍性,对未来研究青藏高原北部十年-百年尺度的气候变化具有重要意义。
致谢: 王建军副研究员协助完成野外采样工作;张恩楼研究员、李凯博士在样品前处理方面给予指导;审稿专家和编辑部老师提出了建设性的修改意见,在此深表感谢。
1 |
Mann M E, Bradley R S, Hughes M K. Global-scale temperature patterns and climate forcing over the past six centuries.
Nature,1998, 392 (6678) : 779~787.
(![]() |
2 |
Crowley T J. Causes of climate change over the past1000 years.
Science,2000, 289 (5477) : 270~277.
(![]() |
3 |
Henderson A C G, Holmes J A, Zhang Jiawu, et al. A carbon-and oxygen-isotope record of recent environmental change from Qinghai Lake, NE Tibetan Plateau.
Chinese Science Bulletin,2003, 48 (14) : 1463~1468.
(![]() |
4 |
满志敏, 杨煜达. 中世纪温暖期升温影响中国东部地区自然环境的文献证据.
第四纪研究,2014, 34 (6) : 1197~1203.
Man Zhimin, Yang Yuda. The Medieval warming impacts on the natural environment in Eastern China as inferred from historical documents. Quaternary Sciences,2014, 34 (6) : 1197~1203. ( ![]() |
5 |
强明瑞, 陈发虎, 张家武, 等. 2ka来苏干湖沉积碳酸盐稳定同位素记录的气候变化.
科学通报,2005, 50 (13) : 1385~1393.
Qiang Mingrui, Chen Fahu, Zhang Jiawu, et al. Climatic changes documented by stable isotopes of sedimentary carbonate in Lake Sugan, northeastern Tibetan Plateau of China, since2ka BP. Chinese Science Bulletin,2005, 50 (13) : 1385~1393. ( ![]() |
6 |
史锋, 杨保, 冯娟, 等. 利用树轮资料集成重建的过去2000年北半球年平均温度变化.
第四纪研究,2015, 35 (5) : 1051~1063.
Shi Feng, Yang Bao, Feng Juan, et al. Reconstruction of the Northern Hemisphere annual temperature change over the Common Era derived from tree rings. Quaternary Sciences,2015, 35 (5) : 1051~1063. ( ![]() |
7 |
王志远, 刘健. 过去2000年全球典型暖期特征与机制的模拟研究.
第四纪研究,2014, 34 (6) : 1136~1145.
Wang Zhiyuan, Liu Jian. Modeling study on the characteristics and mechanisms of global typical warm periods over the past2000 years. Quaternary Sciences,2014, 34 (6) : 1136~1145. ( ![]() |
8 |
王江林, 杨保. 北半球及其各大洲过去1200年温度变化的若干特征.
第四纪研究,2014, 34 (6) : 1146~1155.
Wang Jianglin, Yang Bao. General characteristics of temperature changes during the past1200 years over the North Hemisphere, the Continents and China. Quaternary Sciences,2014, 34 (6) : 1146~1155. ( ![]() |
9 |
严蜜, 王志远, 刘健. 中国过去1500年典型暖期气候的模拟研究.
第四纪研究,2014, 34 (6) : 1166~1175.
Yan Mi, Wang Zhiyuan, Liu Jian. Simulation of the characteristics and mechanisms of Chinese typical warm periods over the past1500 years. Quaternary Sciences,2014, 34 (6) : 1166~1175. ( ![]() |
10 |
谢曼曼, 孙青, 王宁, 等. 1200年来的湖光岩玛珥湖高分辨率元素地球化学记录.
第四纪研究,2015, 35 (1) : 152~159.
Xie Manman, Sun Qing, Wang Ning, et al. High resolution elements geochemical record during the past1200 years in Huguangyan Maar Lake. Quaternary Sciences,2015, 35 (1) : 152~159. ( ![]() |
11 |
周世文, 刘志飞, 赵玉龙, 等. 北部湾东北部2000年以来高分辨率粘土矿物记录及古环境意义.
第四纪研究,2014, 34 (3) : 600~610.
Zhou Shiwen, Liu Zhifei, Zhao Yulong, et al. A high-resolution clay mineralogical record and its paleoenvironmental significance in the northeastern Gulf of Tonkin over the past2000 years. Quaternary Sciences,2014, 34 (3) : 600~610. ( ![]() |
12 |
Esper J, Schweingruber F H, Winiger M. 1300 years of climatic history for western Central Asia inferred from tree-rings.
The Holocene,2002, 12 (3) : 267~277.
(![]() |
13 |
Mann M E, Jones P D. Global surface temperatures over the past two millennia.
Geophysical Research Letters,2003, 30 (15) .
doi: 10.1029/2003GL017814 (![]() |
14 |
Ge Q S, Zheng J Y, Hao Z X, et al. Temperature variation through2000 years in China:An uncertainty analysis of reconstruction and regional difference.
Geophysical Research Letters,2010, 37 (3) : 93~101.
(![]() |
15 |
Holmes J A, Cook E R, Yang B. Climate change over the past2000 years in Western China.
Quaternary International,2009, 194 (1) : 91~107.
(![]() |
16 |
Yang X P, Scuderi L, Paillou P, et al. Quaternary environmental changes in the drylands of China-A critical review.
Quaternary Science Reviews,2011, 30 (23-24) : 3219~3233.
(![]() |
17 |
Ding Q H, Wang B. Circumglobal teleconnection in the Northern Hemisphere summer.
Journal of Climate,2005, 18 (17) : 3483~3505.
(![]() |
18 |
Yang B, Braeuning A, Shi Y. Late Holocene temperature fluctuations on the Tibetan Plateau.
Quaternary Science Reviews,2003, 22 (21-22) : 2335~2344.
(![]() |
19 |
Thompson L G, Yao T, Davis M E, et al. Tropical climate instability:The Last Glacial cycle from a Qinghai-Tibetan ice core.
Science,1997, 276 (5320) : 1821~1825.
(![]() |
20 |
Herzschuh U, Kramer A, Mischke S, et al. Quantitative climate and vegetation trends since the Late Glacial on the northeastern Tibetan Plateau deduced from Koucha Lake pollen spectra.
Quaternary Research,2009, 71 (2) : 162~171.
(![]() |
21 |
Kramer A, Herzschuh U, Mischke S, et al. Late Glacial vegetation and climate oscillations on the southeastern Tibetan Plateau inferred from the Lake Naleng pollen profile.
Quaternary Research,2010, 73 (2) : 324~335.
(![]() |
22 |
Liu Yu, An Zhisheng, Ma Haizhou, et al. Precipitation variation in the northeastern Tibetan Plateau recorded by the tree rings since850 AD and its relevance to the Northern Hemisphere temperature.
Science in China (Series D),2006, 49 (4) : 408~420.
(![]() |
23 |
Yang B, Braeuning A, Liu J J, et al. Temperature changes on the Tibetan Plateau during the past600 years inferred from ice cores and tree rings.
Global and Planetary Change,2009, 69 (1-2) : 71~78.
(![]() |
24 |
刘晶晶, DatsenkoNina. 树轮记录的青藏高原西南部过去644年的降水变化.
第四纪研究,2015, 35 (5) : 1082~1092.
Liu Jingjing, Datsenko Nina. Tree-ring recorded644-year precipitation variations on the southwestern Tibetan Plateau. Quaternary Sciences,2015, 35 (5) : 1082~1092. ( ![]() |
25 |
陈峰, 袁玉江, 喻树龙. 树轮晚材最大密度记录的青藏高原东北部公元1725年以来5-8月温度变化.
第四纪研究,2015, 35 (5) : 1112~1120.
Chen Feng, Yuan Yujiang, Yu Shulong. May-August temperature variability since1725A.D.for the northeastern Tibetan Plateau inferred from tree-ring maximum latewood density. Quaternary Sciences,2015, 35 (5) : 1112~1120. ( ![]() |
26 |
程雪寒, 吕利新. 藏东南树木年轮记载的公元1560年以来的极端干旱事件.
第四纪研究,2015, 35 (5) : 1093~1101.
Cheng Xuehan, Lü Lixin. Extreme drought events since1560A.D.recorded by tree rings on the southeast Qinghai-Tibetan Plateau. Quaternary Sciences,2015, 35 (5) : 1093~1101. ( ![]() |
27 |
Liu X Q, Dong H L, Yang X D, et al. Late Holocene forcing of the Asian winter and summer monsoon as evidenced by proxy records from the northern Qinghai-Tibetan Plateau.
Earth and Planetary Science Letters,2009, 280 (1-4) : 276~284.
(![]() |
28 |
刘兴起, 姚波, 杨波. 青藏高原北部可可西里库赛湖沉积物及风成物的粒度特征.
第四纪研究,2010, 30 (6) : 1193~1198.
Liu Xingqi, Yao Bo, Yang Bo, et al. Grain size distribution of aeolian and lacustrine sediments of Kusai Lake in the Hoh Xil region of the northern Qinghai-Tibetan Plateau. Quaternary Sciences,2010, 30 (6) : 1193~1198. ( ![]() |
29 |
Liu X Q, Yu Z T, Dong H L, et al. A less or more dusty future in the northern Qinghai-Tibetan Plateau?.
Scientific Reports,2014, 4 (6672) .
doi: 10.1038/srep06672 (![]() |
30 |
王永波, 刘兴起, 羊向东, 等. 可可西里库赛湖揭示的青藏高原北部近4000年来的干湿变化.
湖泊科学,2008, 20 (5) : 605~612.
Wang Yongbo, Liu Xingqi, Yang Xiangdong, et al. A4000-year moisture evolution recorded by sediments of Lake Kusai in the Hoh Xil area northern Tibetan Plateau. Journal of Lake Sciences,2008, 20 (5) : 605~612. ( ![]() |
31 |
姚波, 刘兴起, 王永波, 等. 可可西里库赛湖KS-2006孔矿物组成揭示的青藏高原北部晚全新世气候变迁.
湖泊科学,2011, 23 (6) : 903~909.
Yao Bo, Liu Xingqi, Wang Yongbo, et al. Late Holocene climatic changes revealed by mineralogical records from lacustrine core KS-2006 from Lake Kusai in the Hoh Xil area, northern Tibetan Plateau. Journal of Lake Sciences,2011, 23 (6) : 903~909. ( ![]() |
32 |
赵丽媛, 鹿化煜, 张恩楼, 等. 敦煌伊塘湖沉积物有机碳同位素揭示的末次盛冰期以来湖面变化.
第四纪研究,2015, 35 (1) : 172~179.
Zhao Liyuan, Lu Huayu, Zhang Enlou, et al. Lake-level and paleoenvironment variations in Yitang Lake(Northwestern China)during the past23ka revealed by stable carbon isotopic composition of organic matter of lacustrine sediments. Quaternary Sciences,2015, 35 (1) : 172~179. ( ![]() |
33 |
孙伟伟, 沈吉, 张恩楼, 等. 日本大沼湖沉积物碳氮比值、有机碳同位素特征及其近400年的古气候环境意义.
第四纪研究,2014, 34 (6) : 1306~1313.
Sun Weiwei, Shen Ji, Zhang Enlou, et al. Characteristics of organic stable carbon isotope and C/N ration of sediments in Lake Onuma, Japna and their environmental implicationd for the last400 years. Quaternary Sciences,2014, 34 (6) : 1306~1313. ( ![]() |
34 |
范佳伟, 肖举乐, 温锐林, 等. 内蒙古达里湖全新世有机碳氮同位素记录与环境演变.
第四纪研究,2015, 35 (4) : 856~870.
Fan Jiawei, Xiao Jule, Wen Ruilin, et al. Holocene environment variations recorded by stable carbon and nitrogen isotopes of sedimentary organic matter from Dali Lake in Inner Mongolia. Quaternary Sciences,2015, 35 (4) : 856~870. ( ![]() |
35 |
孙博亚, 岳乐平, 赖忠平, 等. 14ka B.P.以来巴里坤湖区有机碳同位素记录及古气候变化研究.
第四纪研究,2014, 34 (2) : 418~424.
Sun Boya, Yue Leping, Lai Zhongping, et al. Paleoclimate changes recorded by sediment organic carbon isotopes of Lake Barkol since14ka B.P. Quaternary Sciences,2014, 34 (2) : 418~424. ( ![]() |
36 |
刘嘉丽, 刘强, 储国强, 等. 大兴安岭四方山天池15.4ka B.P.以来湖泊沉积记录.
第四纪研究,2015, 35 (4) : 901~912.
Liu Jiali, Liu Qiang, Chu Guoqiang, et al. Sediment record at Lake Sifangshan in the central northern part of the Great Xing'an Range, Northeast China since15.4ka B.P. Quaternary Sciences,2015, 35 (4) : 901~912. ( ![]() |
37 |
Stuiver M. Climate versus changes in 13 C content of the organic component of lake sediments during the Late Quaternary.
Quaternary Research,1975, 5 (2) : 251~262.
(![]() |
38 |
Krishnamurthy R V, Bhattacharya, Amp S K, et al. Palaeoclimatic changes deduced from 13 C/12 C and C/N ratios of Karewa Lake sediments, India.
Nature,1986, 323 (6084) : 150~152.
(![]() |
39 |
Hollander D J, Mckenzie J A. CO2 control on carbon isotope fractionation during aqueous photosynthesis:A paleo-pCO2 barometer.
Geology,1991, 19 (9) : 929~932.
(![]() |
40 |
Hodell D A, Schelske C L. Production, sedimentation, and isotopic composition of organic matter in Lake Ontario.
Limnology & Oceanography,1998, 43 (2) : 200~214.
(![]() |
41 |
雷国良, 张虎才, 朱芸, 等. 湖泊沉积碳酸盐氧同位素影响因素的定量评估.
第四纪研究,2015, 35 (1) : 143~151.
Lei Guoliang, Zhang Hucai, Zhu Yun, et al. Quantiyative evalution for driving factors of carbonate oxygen isotope composition in lake sediments. Quaternary Sciences,2015, 35 (1) : 143~151. ( ![]() |
42 |
滕晓华, 韩文霞, 叶程程, 等. 柴达木盆地SG-1孔1.0Ma以来碳酸盐同位素记录的亚洲内陆干旱化及成因.
第四纪研究,2013, 33 (5) : 866~875.
Teng Xiaohua, Han Wenxia, Ye Chengcheng, et al. Aridification of the Asian inland since1.0Ma:Evidences from carbonate isotope records of deep core from the Qaidam Basin. Quaternary Sciences,2013, 33 (5) : 866~875. ( ![]() |
43 |
沈吉, 薛滨, 吴敬禄, 等.
湖泊沉积与环境演化 . 北京: 科学出版社, 2010 : 221 ~223.
Shen Ji, Xue Bin, Wu Jinglu, et al. Lake Sediments and Environmental Evolution. Beijing: Science Press, 2010 : 221 ~223. ( ![]() |
44 |
Henderson A C G, Holmes J A, Leng M J. Late Holocene isotope hydrology of Lake Qinghai, NE Tibetan Plateau:Effective moisture variability and atmospheric circulation changes.
Quaternary Science Reviews,2010, 29 (17-18) : 2215~2223.
(![]() |
45 |
Hays P D, Grossman E L. Oxygen isotopes in meteoric calcite cements as indicators of continental paleoclimate.
Geology,1991, 19 (5) : 441~444.
(![]() |
46 |
卫克勤, 林瑞芬. 内陆封闭湖泊自生碳酸盐氧同位素剖面的古气候意义.
地球化学,1995, 24 (3) : 215~224.
Wei Keqin, Lin Ruifen. Palaeoclimatic implications of oxygen isotope profiles of authigenic carbonates from inland closed lakes. Geochimica,1995, 24 (3) : 215~224. ( ![]() |
47 |
Yao T D, Thompson L G, Jiao K Q, et al. Recent warming as recorded in the Qinghai-Tibetan cryosphere.
Annals of Glaciology,1995, 21 : 196~200.
(![]() |
48 |
Hren M T, Bookhagen B, Blisniuk P M, et al. δ18 O and δD of streamwaters across the Himalaya and Tibetan Plateau:Implications for moisture sources and paleoelevation reconstructions.
Earth and Planetary Science Letters,2009, 288 (1-2) : 20~32.
(![]() |
49 |
Leng M J, Marshall J D. Palaeoclimate interpretation of stable isotope data from lake sediment archives.
Quaternary Science Reviews,2004, 23 (7-8) : 811~831.
(![]() |
50 |
张家武, 王君兰, 郭小燕, 等. 博斯腾湖全新世岩芯沉积物碳酸盐氧同位素气候意义.
第四纪研究,2010, 30 (6) : 1078~1087.
Zhang Jiawu, Wang Junlan, Guo Xiaoyan, et al. Paleoclimatic signifiance of oxygen isotope composition of carbonates from a sediment core at Bosten Lake, Xinjiang China. Quaternary Sciences,2010, 30 (6) : 1078~1087. ( ![]() |
51 |
Lamb H F, Leng M J, Telford R J, et al. Oxygen and carbon isotope composition of auntie carbonate from an Ethiopian lake:A climate record of the last2000 years.
The Holocene,2007, 17 (4) : 517~526.
(![]() |
52 |
曹洁, 张家武, 张成君, 等. 青藏高原北缘哈拉湖近800年来湖泊沉积及其环境意义.
第四纪研究,2007, 27 (1) : 100~107.
Cao Jie, Zhang Jiawu, Zhang Chengjun, et al. Environmental changes during the past800 years recorded in lake sediments from Hala Lake on the northern Tibetan Plateau. Quaternary Sciences,2007, 27 (1) : 100~107. ( ![]() |
53 |
杨伦庆, 张虎才, 类延斌, 等. 内蒙古西部额济纳古湖小狐山剖面有机质与碳酸盐组成及其古环境意义.
第四纪研究,2009, 29 (2) : 256~267.
Yang Lunqing, Zhang Hucai, Lei Yanbin, et al. Compositions of the organic matter and carbonate in Xiaohushan section from Ejina Basin, western Inner Mongolia, China and their paleoenvironmental significance. Quaternary Sciences,2009, 29 (2) : 256~267. ( ![]() |
54 |
Coletta P, Pentecost A, Spiro B. Stable isotopes in charophyte incrustations:Relationships with climate and water chemistry.
Palaeogeography, Palaeoclimatology, Palaeoecology,2001, 173 (1-2) : 9~19.
(![]() |
55 |
Wang Y B, Liu X Q, Herzschuh U, et al. Temporally changing drivers for Late-Holocene vegetation changes on the northern Tibetan Plateau.
Palaeogeography, Palaeoclimatology, Palaeoecology,2012, 353-355 (5) : 10~20.
(![]() |
56 |
Chen F H, Chen J H, Holmes J, et al. Moisture changes over the last millennium in arid Central Asia:A review, synthesis and comparison with monsoon region.
Quaternary Science Reviews,2010, 29 (7-8) : 1055~1068.
(![]() |
57 |
Jin L Y, Chen F H, Morrill C, et al. Causes of Early Holocene desertification in arid Central Asia.
Climate Dynamics,2011, 38 (7-8) : 1577~1591.
(![]() |
58 |
Yang B, Braeuning A, Johnson K R, et al. General characteristics of temperature variation in China during the last two millennia.
Geophysical Research Letters,2002, 29 (9) : 1324.
(![]() |
59 |
吴敬禄, 刘建军, 王苏民. 近1500年来新疆艾比湖同位素记录的气候环境演化特征.
第四纪研究,2004, 24 (5) : 585~590.
Wu Jinglu, Liu Jianjun, Wang Sumin. Climatic change record from stable isotopes in Lake Aibi, Xinjiang during the past1500 years. Quaternary Sciences,2004, 24 (5) : 585~590. ( ![]() |
60 |
蒋庆丰, 沈吉, 刘兴起, 等. 乌伦古湖介形组合及其壳体同位素记录的全新世气候环境变化.
第四纪研究,2007, 27 (3) : 382~391.
Jiang Qingfeng, Shen Ji, Liu Xingqi, et al. Holocene climate reconstruction of Wulungu Lake(Xinjiang, China)inferred from ostracod species assemblages and stable isotopes. Quaternary Sciences,2007, 27 (3) : 382~391. ( ![]() |
Abstract
The northern Tibetan Plateau(TP)is sensitive to climate change as a result of the joint influences of the Asian monsoon and the mid-latitude westerlies. Unfortunately, palaeoclimate data from this region are very rare, especially considering high resolution records of the Late Holocene. In addition, the temperature-moisture association in this region is still under debate. A 350cm sediment core KSS-V covering the past 1600 years was obtained from Kusai Lake(35°37'~35°50'N, 93°15'~93°38'E) in the Hoh Xil region of the northern TP. The high sedimentation rate allows us to investigate the climate variations at inter-annual to inter-decadal time scales. Mainly authigenic, fine-grained carbonates were used for stable carbon and oxygen isotope analyses. The palaeoclimatic significance of the isotope records was evaluated and the climate variations over the past 1600 years were reconstructed. Within the alpine lakes, the aquatic organisms increase when temperature rises, and prefer to utilize the 12C in total dissolved inorganic carbon (TDIC) of lake water, leading to the relative enrichment of 13C in the lake water, which was subsequently preserved in authigenic carbonates precipitated from the water column. Hence, the variation of δ13C value is mainly constrained by the aquatic productivity in response to the regional temperature change. On the other hand, the main factor influencing oxygen isotope composition in closed lakes is the regional effective moisture, i.e. the precipitation/evaporation ratio(P/E). Positive δ18O values generally indicate reduced effective moisture, and vice versa. Stable carbon and oxygen isotopes of fine-grained, authigenic carbonates were investigated as proxies of aquatic productivity mostly driven by temperature, and the precipitation/evaporation ratio, respectively. The resulting inferences suggest that the climate was relatively cold and wet between 400A.D.and 600A.D.corresponding to the Dark Age Cold Period(DACP). A warm and dry period occurred thereafter and terminated at 1400A.D.which is consistent with the Medieval Warm Period(MWP). Meanwhile, δ13C和δ18O reached maximum values of 5.09‰and 4.01‰respectively, which reflects the climate instability. In the 20th century, warm and dry conditions were established reflecting the consequences of global warming. The reconstructed cold-wet and warm-dry climate patterns of climate conditions are different from previously proposed combinations of cold-dry and warm-wet conditions. Temperature-driven evaporation changes probably dominated the variations in regional effective moisture during warmer periods whilst frequent mid-latitude cyclone activities probably caused increased precipitation during colder intervals.