[1] |
何亚飞, 矫维成, 杨帆, 等. 树脂基复合材料成型工艺的发展[J].
纤维复合材料, 2011 (2): 7–13.
HE Y F, JIAO W C, YANG F, et al. The development of polymer composites forming process[J].
Fiber Composites, 2011 (2): 7–13.
DOI: 10.3969/j.issn.1003-6423.2011.02.002
|
|
[2] |
诸爱士, 郑传祥, 成忠. 复合材料基体固化成型工艺综述[J].
浙江科技学院学报, 2008, 20 (4): 269–273.
ZHU A S, ZHENG C X, CHENG Z. Review of matrix solidif-ication and forming processes of composite materials[J].
Journal of Zhejiang University of Science and Technology, 2008, 20 (4): 269–273.
DOI: 10.3969/j.issn.1671-8798.2008.04.007
|
|
[3] |
张明煜, 郑世勋, 张丽琴, 等. 复合材料基体固化成型工艺研究[J].
西部皮革, 2016 (2): 9.
ZHANG M Y, ZHENG S X, ZHANG L Q, et al. Study on curing and forming technology of composite matrix[J].
West Leather, 2016 (2): 9.
DOI: 10.3969/j.issn.1671-1602.2016.02.008
|
|
[4] |
杨其, 李光宪. 聚合物及其复合材料的微成型加工研究进展[J].
高分子通报, 2013 (9): 107–115.
YANG Q, LI G X. Advances in microforming of polymers and their composites[J].
Polymer Bulletin, 2013 (9): 107–115.
|
|
[5] |
于天淼, 高华兵, 王宝铭, 等. 碳纤维增强热塑性复合材料成型工艺的研究进展[J].
工程塑料应用, 2018, 46 (4): 139–144.
YU T M, GAO H B, WANG B M, et al. Research progress of molding process of carbon fiber reinforced thermoplastic composites[J].
Engineering Plastics Application, 2018, 46 (4): 139–144.
DOI: 10.3969/j.issn.1001-3539.2018.04.027
|
|
[6] |
CHRIST J S, ALIHEIDARI N, AMELI A, et al. 3D printed highly elastic strain sensors of multiwalled carbon nanotube/thermopla-stic polyurethane nanocomposites[J].
Materials & Design, 2017, 131 : 394–401.
|
|
[7] |
CAMPBELL T A, IVANOVA O S. 3D printing of multifunctional nanocomposites[J].
Nano Today, 2013, 8 (2): 119–120.
DOI: 10.1016/j.nantod.2012.12.002
|
|
[8] |
杜宇雷, 孙菲菲, 原光孙, 等. 3D打印材料的发展现状[J].
徐州工程学院学报(自然科学版), 2014, 29 (1): 20–24.
DU Y L, SUN F F, YUAN G S, et al. Development status of 3D printing materials[J].
Journal of Xuzhou Institute of Technology(Natural Sciences Edition), 2014, 29 (1): 20–24.
DOI: 10.3969/j.issn.1674-358X.2014.01.004
|
|
[9] |
GNANASEKARAN K, HEIJMANS T, BENNEKOM S V, et al. 3D printing of CNT- and graphene-based conductive polymer nan-ocomposites by fused deposition modeling[J].
Applied Materials Today, 2017, 9 : 21–28.
DOI: 10.1016/j.apmt.2017.04.003
|
|
[10] |
TAYEBI L, UI Z, YE H, et al. 3D-printed thick structured gelatin membrane for engineering of heterogeneous tissues[J].
Materials Letters, 2018, 217 : 39–43.
DOI: 10.1016/j.matlet.2018.01.032
|
|
[11] |
KROLL E, ARTZI D. Enhancing aerospace engineering students' learning with 3D printing wind-tunnel models[J].
Rapid Prototyping Journal, 2011, 17 (5): 393–402.
DOI: 10.1108/13552541111156522
|
|
[12] |
FU K, YAO Y, DAI J, et al. Progress in 3D printing of carbon materials for energy-related applications[J].
Adv Mater, 2017, 29 (9): 1603486.
DOI: 10.1002/adma.201603486
|
|
[13] |
LOPES A J, ERIC M, RYAN B W. Integrating stereo lithogr-aphy and direct print technologies for 3D structural electronics fabrication[J].
Rapid Prototyping Journal, 2012, 18 (2): 129–143.
|
|
[14] |
WITTBRODT B, LAURETO J, TYMRAK B, et al.Distributed manufacturing with 3-D printing: a case study of recreational vehicle solar photovoltaic mounting systems[J/OL].Journal of Frugal Innovation, 2015, 1(1): doi10.1186/s40669-014-0001-z. |
|
[15] |
LLEWELLYN-JONES T, ALLEN R, TRASK R. Curved layer fused filament fabrication using automated toolpath generation[J].
3D Printing and Additive Manufacturing, 2016, 3 (4): 236–243.
DOI: 10.1089/3dp.2016.0033
|
|
[16] |
李梦倩, 王成成, 包玉衡, 等. 3D打印复合材料的研究进展[J].
高分子通报, 2016 (10): 41–46.
LI M Q, WANG C C, BAO Y H, et al. Research progress of 3D printing composites[J].
Polymer Bulletin, 2016 (10): 41–46.
|
|
[17] |
王强华, 孙阿良. 3D打印技术在复合材料制造中的应用和发展[J].
玻璃钢, 2015 (4): 9–14.
WANG Q H, SUN A L. Application and development of 3D printing technology in composite material manufacturing[J].
Fiber Reinforced Plastics, 2015 (4): 9–14.
|
|
[18] |
王成成, 李梦倩, 雷文, 等. 3D打印用聚乳酸及其复合材料的研究进展[J].
塑料科技, 2016 (6): 89–91.
WANG C C, LI M Q, LEI W, et al. Research progress on 3D printing polylactic acid and its composites[J].
Plastic Science and Technology, 2016 (6): 89–91.
|
|
[19] |
FARAHANI R D, DUBE M, THERRIAULT D. Three-dimen-sional printing of multifunctional nanocomposites:manufacturing techniques and applications[J].
Adv Mater, 2016, 28 (28): 5794–5821.
DOI: 10.1002/adma.201506215
|
|
[20] |
RANEY J R, COMPTON B G, MUELLER J. Rotational 3D pri-nting of damage-tolerant composites with programmable mechanics[J].
Proc Natl Acad Sci USA, 2018, 115 (6): 1198–1203.
DOI: 10.1073/pnas.1715157115
|
|
[21] |
SAMANI M K, KHOSRAVIAN N, SHAKERZADEH M, et al. Thermal conductivity of individual multiwalled carbon nanotubes[J].
International Journal of Thermal Sciences, 2012, 62 : 40–43.
DOI: 10.1016/j.ijthermalsci.2012.03.003
|
|
[22] |
SCHLAGENHAUF L, NUESCH F, WANG J. Release of carbon nanotubes from polymer nanocomposites[J].
Fibers, 2014, 2 : 108–127.
DOI: 10.3390/fib2020108
|
|
[23] |
HU Z, HUANG Y D, WANG F, et al. Synthesis of novel single-walled carbon nanotubes/poly (p-phenylene benzobisoxazole)nanocomposite[J].
Polymer Bulletin, 2011, 67 (9): 1731–1739.
DOI: 10.1007/s00289-011-0476-1
|
|
[24] |
WANG P H, GHOSHAL S, GULGUNJE P, et al. Polypropylene nanocomposites with polymer coated multiwall carbon nanotubes[J].
Polymer, 2016, 100 : 244–258.
DOI: 10.1016/j.polymer.2016.07.070
|
|
[25] |
ZHANG Y, SONG K, MENG J, et al. Tailoring polyacrylonitrile interfacial morphological structure by crystallization in the presence of single-wall carbon nanotubes[J].
ACS Appl Mater Interfaces, 2013, 5 (3): 807–814.
DOI: 10.1021/am302382m
|
|
[26] |
DOWNES R D, HAO A, PARK J G, et al. Geometrically constrained self-assembly and crystal packing of flattened and aligned carbon nanotubes[J].
Carbon, 2015, 93 : 953–966.
DOI: 10.1016/j.carbon.2015.06.012
|
|
[27] |
林天津, 朱燕娟, 张伟, 等. 多壁碳纳米管的CVD法制备[J].
广东工业大学学报, 2007, 24 (4): 1–5.
LIN T J, ZHU Y J, ZHANG W, et al. CVD preparation method of multiwalled carbon nanotubes[J].
Journal of Guangdong University of Technology, 2007, 24 (4): 1–5.
|
|
[28] |
ZHENG N, HUANG Y D, LIU H Y, et al. Improvement of interlaminar fracture toughness in carbon fiber/epoxy composites with carbon nanotubes/polysulfone interleaves[J].
Composites Science and Technology, 2017, 140 : 8–15.
DOI: 10.1016/j.compscitech.2016.12.017
|
|
[29] |
常保和, 解思深, 李文治, 等. 用电弧放电法大面积地制备离散的碳纳米管[J].
中国科学(A辑), 1998, 28 : 151–156.
CHANG B H, XIE S S, LI W Z, et al. Preparation of discrete carbon nanotubes in abundance by arc discharge[J].
Science in China (Series A), 1998, 28 : 151–156.
|
|
[30] |
赵建国, 史建华, 邢宝岩, 等. 以生物质为催化剂化学气相沉积制备碳纳米管[J].
新型炭材料, 2012, 27 (3): 175–180.
ZHAO J G, SHI J H, XING B Y, et al. Preparation of carbon nanotubes by chemical vapor deposition using biomass as catalyst[J].
New Carbon Materials, 2012, 27 (3): 175–180.
|
|
[31] |
王必本, 王万录, 刘高斌, 等. 定向生长碳纳米管的研究进展[J].
重庆大学学报(自然科学版), 2002, 25 (8): 134–136.
WANG B B, WANG W L, LIU G B, et al. Research progress of oriented growth of carbon nanotubes[J].
Journal of Chongqing University (Natural Science Edition), 2002, 25 (8): 134–136.
|
|
[32] |
周小康, 周明, 吴春霞, 等. 定向生长碳纳米管阵列的制备及其应用研究进展[J].
材料导报, 2007, 21 : 95–98.
ZHOU X K, ZHOU M, WU C X, et al. Progress in preparation and applications of aligned carbon nanotubes arrays[J].
Materials Review, 2007, 21 : 95–98.
|
|
[33] |
周鹏, 苏言杰, 赵江, 等. 低压空气中直流电弧法制备单壁碳纳米管[J].
功能材料与器件学报, 2012, 18 (3): 192–196.
ZHOU P, SU Y J, ZHAO J, et al. Synthesis of single-walled carbon nanotubes in reduced air atmosphere by DC arc discharge[J].
Journal of Functional Materials and Devices, 2012, 18 (3): 192–196.
DOI: 10.3969/j.issn.1007-4252.2012.03.003
|
|
[34] |
黄瑶, 李里, 修姝, 等. 二次电弧放电法调控单壁碳纳米管的直径分布[J].
黑龙江大学自然科学学报, 2015, 32 (5): 641–644.
HUANG Y, LI L, XIU S, et al. Adjusting the diameter distr-ibution of single-walled carbon nanotubes by secondary arc discharge[J].
Journal of Natural Science of Heilongjiang University, 2015, 32 (5): 641–644.
|
|
[35] |
YANG W, CHU W, JIANG C, et al. Cerium oxide promoted Ni/MgO catalyst for the synthesis of multi-walled carbon nanotubes[J].
Chinese Journal of Catalysis, 2011, 32 (6/8): 1323–1328.
|
|
[36] |
唐通鸣, 张政, 邓佳文, 等. 基于FDM的3D打印技术研究现状与发展趋势[J].
化工新型材料, 2015, 43 (6): 228–230.
TANG T M, ZHANG Z, DENG J W, et al. Research status and trend of 3D printing technology based on FDM[J].
New Chemical Materials, 2015, 43 (6): 228–230.
|
|
[37] |
龚运息. 基于SLA和FDM的3D打印发动机风扇工艺与性能分析[J].
工艺与检测, 2015 (11): 111–115.
GONG U X. Performance analysis and process of 3D printing engine fan based on the SLA and FDM[J].
Technology and Test, 2015 (11): 111–115.
|
|
[38] |
李新, 孙良双, 杨亮, 等. FDM 3D打印高分子材料改性及应用进展[J].
胶体与聚合物, 2017, 35 (3): 139–141.
LI X, SUN L S, YANG L, et al. Modification and application of FDM 3D printing polymer materials[J].
Chinese Journal of Colloid & Polymer, 2017, 35 (3): 139–141.
|
|
[39] |
DUL S, FAMBRI L, PEGORETTI A. Filaments production and fused deposition modelling of ABS/carbon nanotubes composites[J].
Nanomaterials (Basel), 2018, 8 (1): 49.
|
|
[40] |
DORIGATO A, MORETTI V, DUL S, et al. Electrically cond-uctive nanocomposites for fused deposition modelling[J].
Synthetic Metals, 2017, 226 : 7–14.
DOI: 10.1016/j.synthmet.2017.01.009
|
|
[41] |
TSIAKATOURAS G, TSELLOU E, STERGIOU C. Compara-tive study on nanotubes reinforced with carbon filaments for the 3D printing of mechanical parts[J].
World Transactions on Engineering and Technology Education, 2014, 12 : 392–296.
|
|
[42] |
THOMAS D J. Developing nanocomposite 3D printing filaments for enhanced integrated device fabrication[J].
The International Journal of Advanced Manufacturing Technology, 2018, 95 (9/12): 4191–4198.
|
|
[43] |
SCHMITZ D P, ECCO L G, DUL S, et al. Electromagnetic interf-erence shielding effectiveness of ABS carbon-based composites manufactured via fused deposition modelling[J].
Materials Today Communications, 2018, 15 : 70–80.
DOI: 10.1016/j.mtcomm.2018.02.034
|
|
[44] |
PRASHANTHA K, ROGER F. Multifunctional properties of 3D printed poly(lactic acid)/graphene nanocomposites by fused deposition modeling[J].
Journal of Macromolecular Science:Part A, 2017, 54 (1): 24–29.
DOI: 10.1080/10601325.2017.1250311
|
|
[45] |
ZHANG D, CHI B H, LI B W., et al. Fabrication of highly conductive graphene flexible circuits by 3D printing[J].
Syn-thetic Metals, 2016, 217 : 79–86.
DOI: 10.1016/j.synthmet.2016.03.014
|
|
[46] |
田小永, 刘腾飞, 杨春成, 等. 高性能纤维增强树脂基复合材料3D打印及其应用探索[J].
航空制造技术, 2016 (15): 26–31.
TIAN X Y, LIU T F, YANG C C, et al. 3D printing of high performance fiber reinforced resin matrix composites and its application exploration[J].
Aeronautical Manufacturing Techn-ology, 2016 (15): 26–31.
|
|
[47] |
RAHMAN M H, YUSOF M S, OSMAN S A, et al. Feasibility study:Investigation of polymer nano-composites (PNC) material for biomedical application via fused deposition modelling (FDM) routes[J].
Applied Mechanics and Materials, 2015, 773/774 : 267–271.
DOI: 10.4028/www.scientific.net/AMM.773-774.267
|
|
[48] |
CHUNG M, RADACSI N, ROBERT C, et al.On the optimiz-ation of low-cost FDM 3D printers for accurate replication of patient-specific abdominal aortic aneurysm geometry[J/OL].3D Print Med, 2018, 4(1): doi10.1186/s41205-017-0023-2. |
|
[49] |
MU Q, WANG L, DUNN C K, et al. Digital light processing 3D printing of conductive complex structures[J].
Additive Manufacturing, 2017, 18 : 74–83.
DOI: 10.1016/j.addma.2017.08.011
|
|
[50] |
王利, 李自良, 王靖, 等. 熔融沉积成型过程喷头的传热模拟及实验研究[J].
机械与电子, 2016, 34 (1): 27–30.
WANG L, LI Z L, WANG J, et al. Numerical simulation and experimental study on heat transfer of nozzle in Fused Deposition Molding process[J].
Machinery & Electronics, 2016, 34 (1): 27–30.
DOI: 10.3969/j.issn.1001-2257.2016.01.007
|
|
[51] |
蒲以松, 王宝奇, 张连贵. 金属3D打印技术的研究[J].
表面技术, 2018, 47 (3): 78–83.
PU Y S, WANG B Q, ZHANG L G. Research on metal 3D printing technology[J].
Surface Technology, 2018, 47 (3): 78–83.
|
|
[52] |
YUAN S, ZHENG Y, CHUA C K, et al. Electrical and thermal conductivities of MWCNT/polymer composites fabricated by selective laser sintering[J].
Composites:Part A, 2018, 105 : 203–213.
DOI: 10.1016/j.compositesa.2017.11.007
|
|
[53] |
张正义, 陈英红, 戚方伟, 等. 固相剪切碾磨制备尼龙12/多壁碳纳米管复合粉体及选择性激光烧结3D打印[J].
高分子材料科学与工程, 2017, 33 (3): 122–127.
ZHANG Z Y, CEHN Y H, QI F W, et al. Preparation of nylon 12/MWNT composite powder by solid-state shear milling and selective laser sintering 3D printing[J].
Polymer Materials Science and Engineering, 2017, 33 (3): 122–127.
|
|
[54] |
史玉升, 闫春泽, 魏青松, 等. 选择性激光烧结3D打印用高分子复合材料[J].
中国科学:信息科学, 2015, 45 (2): 204–211.
SHI Y S, YAN C Z, WEI Q S, et al. Polymer composites for selective laser sintering 3D printing[J].
Science China:Infor-mation Science, 2015, 45 (2): 204–211.
|
|
[55] |
吴琼, 陈惠, 巫静, 等. 选择性激光烧结用原材料的研究进展[J].
材料导报, 2015, 29 (26): 78–83.
WU Q, CEHN H, WU J, et al. Research development of the material used for selective laser sintering[J].
Materials Review, 2015, 29 (26): 78–83.
|
|
[56] |
李志超, 甘鑫鹏, 费国霞, 等. 选择性激光烧结3D打印聚合物及其复合材料的研究进展[J].
高分子材料科学与工程, 2017, 33 (10): 170–174.
LI Z C, GAN X P, FEI G X, et al. Advances in the study of selective laser sintering of 3D printed polymers and their comp-osites[J].
Polymer Materials Science and Engineering, 2017, 33 (10): 170–174.
|
|
[57] |
LI Z, WANG Z, GAN X, et al. Selective laser sintering 3D prin-ting:a way to construct 3D electrically conductive segregated network in polymer matrix[J].
Macromolecular Materials and Engineering, 2017, 302 (11): 1700211.
DOI: 10.1002/mame.201700211
|
|
[58] |
QI F, CHEN N, WANG Q. Dielectric and piezoelectric properties in selective laser sintered polyamide11/BaTiO3/CNT ternary nanocomposites[J].
Materials & Design, 2018, 143 : 72–80.
|
|
[59] |
ZHANG Y, FANG J, LI J, et al. The effect of carbon nanotubes on the mechanical properties of wood plastic composites by selective laser sintering[J].
Polymers, 2017, 9 (12): 728.
DOI: 10.3390/polym9120728
|
|
[60] |
SHA J W, LI Y L, SALVATIERRA R V, et al. Three-dime-nsional printed graphene foams[J].
ACS Nano, 2017, 11 (7): 6860–6867.
DOI: 10.1021/acsnano.7b01987
|
|
[61] |
SASKA S, PIRES L C, COMINOTTE M A, et al. Three-dim-ensional printing and in vitro evaluation of poly(3-hydroxy-butyrate) scaffolds functionalized with osteogenic growth peptide for tissue engineering[J].
Mater Sci Eng C Mater Biol Appl, 2018, 89 : 265–273.
DOI: 10.1016/j.msec.2018.04.016
|
|
[62] |
SHIRAZI S F, GHAREHKHANI S, MEHRALI M, et al. A rev-iew on powder-based additive manufacturing for tissue engin-eering:selective laser sintering and inkjet 3D printing[J].
Sci Technol Adv Mater, 2015, 16 (3): 033502.
DOI: 10.1088/1468-6996/16/3/033502
|
|
[63] |
张超, 马文茂. DLP光固化3D打印关键技术研究[J].
航空科学技术, 2018, 29 (4): 47–51.
ZHANG C, MA W M. Research on key technologies of DLP photocuring 3D printing[J].
Aeronautical Science & Technolo-gy, 2018, 29 (4): 47–51.
|
|
[64] |
闫梦霞, 陈晓婷, 康婷, 等. 适用于光固化3D打印的光敏树脂的研究进展[J].
浙江化工, 2018, 49 (2): 8–11.
YAN M X, CHEN X T, KANG T, et al. Research progress of photosensitive resin for photocurable 3D printing[J].
Zhejiang Chemical Industry, 2018, 49 (2): 8–11.
DOI: 10.3969/j.issn.1006-4184.2018.02.002
|
|
[65] |
ENG H, MALEKSAEEDI S, YU S, et al. Development of CNTs-filled photopolymer for projection stereolithography[J].
Rapid Prototyping Journal, 2017, 23 (1): 129–136.
|
|
[66] |
SANDOVAL J H, SOTO K F, MURR L E, et al. Nanotailoring photocrosslinkable epoxy resins with multi-walled carbon nano-tubes for stereolithography layered manufacturing[J].
Journal of Materials Science, 2006, 42 (1): 156–165.
|
|
[67] |
LIN D, JIN S, ZHANG F, et al. 3D stereolithography printing of graphene oxide reinforced complex architectures[J].
Nanotec-hnology, 2015, 26 (43): 434003.
DOI: 10.1088/0957-4484/26/43/434003
|
|
[68] |
LEE S J, ZHU W, NOWICKI M, et al. 3D printing nano conduc-tive multi-walled carbon nanotube scaffolds for nerve regen-eration[J].
J Neural Eng, 2018, 15 (1): 016018.
DOI: 10.1088/1741-2552/aa95a5
|
|
[69] |
王广春, 袁圆, 刘东旭. 光固化快速成型技术的应用及其进展[J].
航空制造技术, 2011 (6): 26–29.
WANG G C, YUAN Y, LIU D X. Application and progress of SLA rapid prototyping technology[J].
Aeronautical Manu-facturing technology, 2011 (6): 26–29.
DOI: 10.3969/j.issn.1671-833X.2011.06.001
|
|
[70] |
GUO S Z, HEUZEY M C, THERRIAULT D. Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructures[J].
Langmuir, 2014, 30 (4): 1142–1150.
DOI: 10.1021/la4036425
|
|
[71] |
GUO S Z, GOSSELIN F, GUERIN N, et al. Solvent-cast three-dimensional printing of multifunctional microsystems[J].
Small, 2013, 9 (24): 4118–4122.
DOI: 10.1002/smll.201300975
|
|
[72] |
POSTIGLIONE G, NATALE G, GRIFFINI G, et al. Conductive 3D microstructures by direct 3D printing of polymer/carbon nanotube nanocomposites via liquid deposition modeling[J].
Composites:Part A, 2015, 76 : 110–114.
DOI: 10.1016/j.compositesa.2015.05.014
|
|
[73] |
CHIZARI K, DAOUD M A, RAVINDRAN A R, et al. 3D printing of highly conductive nanocomposites for the functional optimization of liquid sensors[J].
Small, 2016, 12 (44): 6076–6082.
DOI: 10.1002/smll.201601695
|
|
[74] |
LEIGH S J, BRADLEY R J, PURSSELL C P, et al. A simple, low-cost conductive composite material for 3D printing of electronic sensors[J].
Plos One, 2012, 7 (11): 49365.
DOI: 10.1371/journal.pone.0049365
|
|
[75] |
CZYZEWSKI J, BURZYNSKI P, GAWET K, et al. Rapid prototyping of electrically conductive components using 3D printing technology[J].
Journal of Materials Processing Tech-nology, 2009, 209 (12/13): 5281–5285.
|
|
[76] |
CHIZARI K, ARJMAND M, LIU Z, et al. Three-dimensional printing of highly conductive polymer nanocomposites for EMI shielding applications[J].
Materials Today Communications, 2017, 11 : 112–118.
DOI: 10.1016/j.mtcomm.2017.02.006
|
|
[77] |
KIM H, OHNSON J, CHAVEZ L A, et al. Enhanced dielectric properties of three phase dielectric MWCNTs/BaTiO3/PVDF nanocomposites for energy storage using fused deposition mod-eling 3D printing[J].
Ceramics International, 2018 (44): 9037–9044.
|
|
[78] |
LAMBERTI P, SPINELLI G, KUZHIR P P, et al.Evaluation of thermal and electrical conductivity of carbon-based PLA nano-composites for 3D printing[C]//9th International Conference on "Times of Polymers and Composites". NY: AIP Publishing and AIP Member Societies, 2018: 020158. |
|
[79] |
GONZALEZ G, CHIAPPONE A, ROPPOLO I, et al. Devel-opment of 3D printable formulations containing CNT with enhanced electrical properties[J].
Polymer, 2017, 109 : 246–253.
DOI: 10.1016/j.polymer.2016.12.051
|
|
[80] |
MA J H, WANG P, DONG L, et al. Highly conductive, mech-anically strong graphene monolith assembled by three-dimen-sional printing of large graphene oxide[J].
Journal of Colloid and Interface Science, 2019, 534 : 12–19.
DOI: 10.1016/j.jcis.2018.08.096
|
|
[81] |
DUL S, FAMBRI L, PEGORETTI A. Fused deposition mode-lling with ABS-graphene nanocomposites[J].
Composites:Part A, 2016, 85 : 181–191.
DOI: 10.1016/j.compositesa.2016.03.013
|
|
[82] |
SHOFNER M L, LOZANO K, BARRERA E V, et al. Nanofiber-reinforced polymers prepared by fused deposition modeling[J].
Journal of Applied Polymer Science, 2003, 89 : 3081–3090.
DOI: 10.1002/app.12496
|
|
[83] |
WENG Z X, WANG J L, SENTHIL T, et al. Mechanical and thermal properties of ABS/montmorillonite nanocomposites for fused deposition modeling 3D printing[J].
Materials and Design, 2016, 102 : 276–283.
DOI: 10.1016/j.matdes.2016.04.045
|
|
[84] |
许婧, 邢悦, 郝思嘉, 等. 石墨烯/聚合物基复合材料3D打印成型研究进展[J].
材料工程, 2018, 46 (7): 1–11.
XU J, XING Y, HAO S J, et al. Research progress in graphene/polymer processing using 3D printing technology[J].
Journal of Materials Engineering, 2018, 46 (7): 1–11.
|
|
[85] |
DUAN B, WANG M, ZHOU W Y, et al. Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering[J].
Acta Biomaterialia, 2010, 6 : 4495–4505.
DOI: 10.1016/j.actbio.2010.06.024
|
|
[86] |
CHUNG H, DAS S. Functionally graded nylon-11/silica nano-composites produced by selective laser sintering[J].
Materials Scie-nce and Engineering A, 2008, 487 : 251–257.
DOI: 10.1016/j.msea.2007.10.082
|
|
[87] |
SALMORIA G V, PAGGI R A, LAGO A, et al. Microstr-uctural and mechanical characterization of PA12/MWCNTs nanocomposite manufactured by selective laser sintering[J].
Polymer Testing, 2011, 30 : 611–615.
DOI: 10.1016/j.polymertesting.2011.04.007
|
|
[88] |
MANAPAT J Z, MANGADLAO J D, TIU B D B., et al. High-strength stereolithographic 3D printed nanocomposites:grap-hene oxide metastability[J].
ACS Appl Mater Interfaces, 2017, 9 : 10085–10093.
DOI: 10.1021/acsami.6b16174
|
|
[89] |
ZHOU X, CASTRO N J, ZHU W, et al. Improved human bone marrow mesenchymal stem cell osteogenesis in 3D bioprinted tissue scaffolds with low intensity pulsed ultrasound stimulation[J].
Scientific Reports, 2016, 6 : 32876.
DOI: 10.1038/srep32876
|
|
[90] |
DÍEZ-PASCUAL A M, NAFFAKH M, MARCO C, et al. High-performance nanocomposites based on polyetherketones[J].
Progress in Materials Science, 2012, 57 : 1106–1190.
DOI: 10.1016/j.pmatsci.2012.03.003
|
|
[91] |
GUO S Z, YANG X L, HEUZEY M C, et al. 3D printing of a multifunctional nanocomposite helical liquid sensor[J].
Nano-scale, 2015, 7 : 6451–6456.
|
|
[92] |
GUO S Z, GOSSELIN F, GUERIN N, et al. Solvent-Cast Three-Dimensional Printing of Multifunctional Microsystems[J].
Small, 2013, 9 (24): 4118–4122.
DOI: 10.1002/smll.201300975
|
|
[93] |
GUO S Z, HEUZEY M C, THERRIAULT D. Properties of polylactide inks for solvent-cast printing of three-dimensional freeform microstructure[J].
Langmuir, 2014, 30 : 1142–1150.
DOI: 10.1021/la4036425
|
|
[94] |
王亚男, 王芳辉, 汪中明, 等. 4D打印的研究进展及应用展望[J].
航空材料学报, 2018, 38 (2): 70–76.
WANG Y N, WANG F H, WANG Z M, et al. Research progress and application prospect of 4D printing[J].
Journal of Aeronautical Materials, 2018, 38 (2): 70–76.
|
|