材料工程  2019, Vol. 47 Issue (6): 1-10   PDF    
http://dx.doi.org/10.11868/j.issn.1001-4381.2018.000224
0

文章信息

应承展, 吕秋娟, 刘朝辉, 毕松, 侯根良, 汤进
YING Cheng-zhan, LYU Qiu-juan, LIU Chao-hui, BI Song, HOU Gen-liang, TANG Jin
碳材料在钙钛矿太阳能电池中的应用
Application of carbon materials in perovskite solar cells
材料工程, 2019, 47(6): 1-10
Journal of Materials Engineering, 2019, 47(6): 1-10.
http://dx.doi.org/10.11868/j.issn.1001-4381.2018.000224

文章历史

收稿日期: 2018-02-15
修订日期: 2019-02-22
碳材料在钙钛矿太阳能电池中的应用
应承展 , 吕秋娟 , 刘朝辉 , 毕松 , 侯根良 , 汤进     
火箭军工程大学, 西安 710025
摘要: 钙钛矿太阳能电池具有材料成本低廉、生产工艺简单、光电转换效率高等优点,发展前景十分光明。碳材料因其价格低廉、高导电性、疏水性和化学稳定性等特点,被应用在钙钛矿太阳能电池的各个组成部分,用于提高电池性能和降低成本。本文根据应用在钙钛矿太阳能电池中的碳材料的维数进行分类,分别介绍了零维的C60、碳量子点和石墨烯量子点,一维的碳纳米管,二维的石墨烯及其衍生物、石墨炔和三维的石墨等在钙钛矿太阳能电池中的应用,对于将来实现钙钛矿太阳能电池的低成本商业化和大规模制造具有重要意义。
关键词: 碳材料    钙钛矿太阳能电池    电子传输层    空穴传输层    电极   
Application of carbon materials in perovskite solar cells
YING Cheng-zhan, LYU Qiu-juan, LIU Chao-hui , BI Song, HOU Gen-liang, TANG Jin    
Rocket Force University of Engineering, Xi'an 710025, China
Abstract: Perovskite solar cells have the advantages of low material cost, simple production process and high photoelectric conversion efficiency, and their development prospects are bright. Carbon materials are used in various components of perovskite solar cells due to their low cost, high electrical conductivity, hydrophobicity and chemical stability to improve battery performance and reduce costs. Based on the dimensionality of the carbon materials used in perovskite solar cells, the zero-dimensional C60, carbon quantum dots and graphene quantum dots, one-dimensional carbon nanotubes, two-dimensional graphene and the application of derivatives, graphyne, and three-dimensional graphite in perovskite solar cells were described in this paper, and it is of great importance for the realization of low-cost commercialization and large-scale manufacturing of perovskite solar cells in the future.
Key words: carbon materials    perovskite solar cell    electron transport layer    hole transport layer    counter electrode   

太阳能电池将太阳能直接转化为电能,可以为人类社会发展提供取之不尽用之不竭的清洁能源,研发高效低成本的新型太阳能电池,是人类社会应对能源危机,解决环境问题,寻求可持续发展的重要对策。1954年,美国贝尔实验室Pearson等[1]研制出第一块晶体硅太阳能电池,获得4.5%的光电转换效率。自此之后,晶体硅太阳能电池迅速得到商业化发展。然而在硅电池制造过程中,存在单晶硅提炼过程复杂、耗能高、环境污染严重等问题[2],成本回收周期较长,目前尚未得到大面积推广使用。近年来,一种基于钙钛矿材料的太阳能电池吸引了广大学者的眼球[3-5]。相比硅电池,该类电池具有制备过程简单、成本较低、光电转换效率高等优点。

2009年,Miyasaka等[6]首次将CH3NH3PbI3作为吸光材料引入染料敏化太阳能电池,成功制造第一块液态钙钛矿太阳能电池并获得3.8%的光电转化效率。2012年,瑞士联邦工学院的Gratzel教授课题组[7]使用Spiro-MeOTAD作为空穴传输层,将此类电池的效率提升至9.7%。自此引发了研究钙钛矿太阳能电池的热潮。短短6年时间,该类电池的转换效率迅速提升[8-11]。截止到目前,美国可再生能源国家实验室认证公布,钙钛矿太阳能电池最高转换效率达到了22.1%[12]。如此迅速的发展速度是太阳能电池发展历史上前所未有的,展现了钙钛矿太阳能电池光明的发展前景。

钙钛矿材料具有高消光系数[13]、直接带隙[14]和较长的载流子扩散距离[4]等优异的性质。在一般结构的钙钛矿太阳能电池中,由钙钛矿材料吸收太阳光产生激子,通过电子传输层和空穴传输层将电子和空穴分离,分别到达透明电极和金属对电极,最后通过外电路形成电流。其中,空穴传输层起到传输空穴和阻挡电子的功能。目前所使用最广泛的空穴传输层材料是三苯胺衍生物Spiro-MeOTAD[15],但是该材料价格昂贵,且制备过程十分复杂。同时,为提高其空穴迁移率,一般都需要在材料中添加4-叔丁基吡啶(TBP)和双三氟甲烷磺酰亚胺锂(Li-TFSI)。由于锂盐易吸潮,这将导致电池的稳定性降低[16-19]。还有其他导电聚合物如聚三已基噻酚(P3HT)[20]、聚(3,4-亚乙二氧基噻吩) -聚(苯乙烯磺酸) (PEDOT:PSS)[21]和聚[双(4-苯基) (2, 4, 6-三甲基苯基)胺] (PTAA)[22],N,N-二对甲氧基苯基胺取代的芘衍生物(Py-B,Py-C)[23]等,价格均比较昂贵,不利于电池大规模产业化制造。另一方面,大多数钙钛矿太阳能电池使用贵金属Au[17-18, 24], Ag[25-26]等作为对电极,不仅材料成本昂贵,且需要真空蒸镀[27]或磁控溅射[28-29]等高耗能的方法制备,成本较高。此外,金属迁移可能还会导致钙钛矿材料降解[30],不利于电池的稳定性。

碳材料具有价格低廉、高导电性、疏水性和化学稳定性等优点[31-32],在钙钛矿太阳能电池中引入碳材料,可以有效地降低电池的成本,提高电池的效率和稳定性。不同维数的碳材料具有多种不同的特征和用途,如零维的富勒烯及其衍生物具有半导体性、强磁性和超导性[33]。一维的碳纳米管、碳纤维等具有高强度和良好的导电性[34]。二维的石墨烯、石墨炔等具有极高的比表面积[35]。三维的石墨具有高导电性和疏水性[36]。另外还有炭黑作为超润滑材料、保护涂层等应用在各个领域[37]。本文总结了碳材料在钙钛矿太阳能电池中的应用,并根据碳材料的维数进行分类叙述。

1 零维碳材料在钙钛矿太阳能电池中的应用

零维的碳材料主要有碳量子点、富勒烯及其衍生物等。它们通常是无毒、可溶的,便于通过溶液法应用于太阳能电池,而且它们具有较强的电子传输能力[38],目前主要被应用在钙钛矿太阳能电池的电子传输层和光吸收层。

碳量子点是一种尺寸小于10nm的新型碳材料,具有高效的电子传输能力和电子储集能力,用在钙钛矿太阳能电池的电子传输层和光吸收层中时,均能够取得良好的效果[39-41]。Li等[39]将碳量子点和TiO2混合作为钙钛矿太阳能电池的电子传输层。图 1为该电池的能带示意图。碳量子点能够加强电子传输、实现更好的能级匹配以及增大复合电阻,从而提高电池的性能。结果显示,添加碳量子点之后,电池的开路电压Voc和短路电流密度Jsc显著提高,电池效率达到19%。钙钛矿太阳能电池的优劣很大程度上受钙钛矿层结晶度和形貌的影响[40],Zou等[41]使用NaOH和丙酮混合老化,高速离心收集制备碳量子点,并将其引入钙钛矿溶液中,然后通过一步滴涂法在具有TiO2/ZrO2/C三层结构的无空穴传输层电池中制备光吸收层。结果显示,0.1%的碳量子点引入光吸收层中,能够在钙钛矿结晶过程中起到异质核的作用,增加钙钛矿核的数量,使生成的钙钛矿薄膜能够更好地覆盖衬底。此外,钙钛矿薄膜中的碳量子点还可以有效地传输光生电子,减少载流子复合,最终器件的Jsc得到显著提高,光电转换效率从4.4%提升到7.62%。

图 1 导电玻璃、电子传输层、CH3NH3PbI3能带示意图[39] Fig. 1 Schematic illustration of energy levels of ITO, ETLs, CH3NH3PbI3 perovskite[39]

石墨烯量子点是单层或几层的石墨烯,因其特殊的量子限制效应和边缘效应而具有一些独特的光电特性,比如超长的热电子寿命(长达数百皮秒)和超快的电子提取速率(时间常数少于15fs)。香港科技大学的杨世和课题组[42]在电子传输层和钙钛矿薄膜之间插入一层超薄的石墨烯量子点,作为电子从钙钛矿薄膜传输到电子传输层的一座超快的桥梁,使器件的短路电流密度显著提高,光电转换效率从8.81%提高到10.15%。从瞬态吸收光谱测量的结果来看,电子提取时间从原来的280ps减少到90ps。另外,类似于碳量子点在钙钛矿薄膜中起到的作用,Fang等[43]将7%石墨烯量子点引入钙钛矿溶液中,并通过一步旋涂法制备钙钛矿薄膜,器件的光电转换效率达到17.62%。阻抗谱分析结果表明,在钙钛矿薄膜中引入石墨烯量子点能够减少器件的串联电阻,表明石墨烯量子点能够促进电子从钙钛矿层转移到电子传输层。同时,对比纯钙钛矿薄膜,引入石墨烯量子点后载流子复合率更低,这是由于石墨烯量子点能够有效地钝化钙钛矿晶体的缺陷态。

富勒烯是由60个碳原子构成像足球一样的32面体,实验证实在钙钛矿太阳能电池中作为修饰层能够提升电池各项性能。英国牛津大学Snaith课题组[44]在TiO2膜层表面引入苯甲酸取代的富勒烯C60自组装单分子膜(C60 self-assembled monolayer, C60-SAM)作为修饰层。C60-SAM覆盖层起到阻挡作用,可减少激子复合,同时降低钙钛矿材料在介孔TiO2表面的降解,从而提高器件稳定性。在60℃下充分光照500h仍保持较好的性能,电池效率从8.2%提高至10.4%。Li等[45]使用三嵌段富勒烯衍生物([6, 6]-苯基-C61-丁酸-二辛基-3,3′-(5-羟基-1,3-亚苯基)-双(2-氰基丙烯酸酯)酯(PCBB-2CN-2C8))作为阴极改性层,能够有效减少致密层表面缺陷引起的载流子复合问题,同时减少器件的迟滞效应,光电转换效率因此从12.58%提高到16.81%。

2 一维碳材料在钙钛矿太阳能电池中的应用

一维碳材料在钙钛矿太阳能电池中的应用以碳纳米管为主。不同于零维碳材料,碳纳米管因其良好的空穴传输性,通常被用作空穴传输层的添加剂和对电极材料。Snaith课题组[46]采用P3HT包裹单壁碳纳米管构成超分子纳米复合物P3HT/SWCNT,最后填充绝缘的PMMA作为空穴传输层。电池结构如图 2所示,其中绝缘的PMMA能够减少钙钛矿材料被水分降解,而P3HT/SWCNT则负责收集和传输空穴。这种复合空穴传输层能够提高器件的热稳定性和耐湿性,实现最高15.3%的光电转换效率。Li等[47]采用气相沉积技术(CVD)直接在钙钛矿薄膜上沉积一层碳纳米管,既充当电池的空穴传输层又作为对电极。碳纳米管能够提高电极的导电率和功函数,并且由于电极是半透明的,电池具有双面的光伏输出,光电转换效率达到6.87%。在此基础上,该课题组在电极中加入空穴传输材料Spiro-OMeTAD,器件的光电转换效率提升至9.90%。Li等[48]在石墨/炭黑混合的碳电极中掺杂单壁碳纳米管,有利于空穴传输和延长载流子寿命,从而提高TiO2/Al2O3/C结构电池的光伏性能,获得高达1V的开路电压和14.7%的光电转换效率。

图 2 碳纳米管/聚三已基噻酚复合材料作为空穴传输层的太阳能电池结构示意图[46] Fig. 2 Schematic illustration of solar cell with a carbon nanotube/polymer composite as hole-transporting structure[46]

碳纳米管在光吸收层中也能发挥很好的效用。Cheng等[49]在PbI2前驱体溶液中添加多壁碳纳米管。他们提出,多壁碳纳米管为载流子在单个钙钛矿纳米晶粒之间的运输起到桥梁作用,有利于提高钙钛矿膜层和碳电极界面上的空穴提取速率,提高载流子的寿命。所制备的电池相比未掺杂多壁碳纳米管的器件效率提高约15%,平均光电转换效率达到11.6%。碳对电极无空穴传输材料的钙钛矿太阳能电池具有价格低廉、制备方便和稳定性高等优点,但由于普通碳材料不具有空穴选择性,且碳电极与钙钛矿薄膜的接触界面质量差,影响该类电池光电转换效率的提高。Ryu等[50]将多壁碳纳米管分散到氯苯溶液中,采用滴涂法将多壁碳纳米管渗透到碳电极和钙钛矿薄膜之间,作为碳电极向钙钛矿薄膜提取空穴的路径,提高两层之间的空穴传输速率。与此同时,碳纳米管可以改善碳膜和钙钛矿薄膜之间的界面接触,电池的光电转换效率因此达到了13.57%,并且几乎没有滞后。杨世和课题组[51]采用掺硼的多壁碳纳米管作为对电极,多壁碳纳米管提高了空穴提取和传输的速率,而经过硼掺杂,电极的功函数与钙钛矿材料更加匹配,并且电极上的载流子浓度有所增加,光电转换效率也因此从原先的10.70%增加到了14.60%。在这一基础上,该课题组在介孔层薄膜和碳电极之间引入了一层超薄的Al2O3绝缘层,防止电极和电子传输层直接接触而导致载流子复合,电池效率进一步提升到15.23%。

3 二维碳材料在钙钛矿太阳能电池中的应用

二维结构的碳材料具有许多其他维数碳材料所没有的性质,如大的比表面积、较好的载流子流动性、高导热系数和高透光率等[52-55]。其中,石墨烯及其衍生物具有优异的电子和空穴传输能力,因此主要被用在钙钛矿太阳能电池的电子传输层和空穴传输层。Snaith课题组[56]提出一种通过低温制备石墨烯/TiO2复合材料作为电子传输层的方法,将超声分散的石墨烯和TiO2复合材料通过旋涂制备致密层,所需要的退火温度小于150℃,降低了电池的制造成本,形成的致密层以石墨烯作为连续的二维导电框架,纳米TiO2粒子锚定在石墨烯纳米片上。石墨烯的功函数介于FTO和TiO2之间,他们认为引入石墨烯可以减少材料界面处的能垒,因此相比TiO2致密层可以更好地收集电子。另一方面,石墨烯优越的电荷迁移率可以提高电子传输层的导电性。这种低温加工电子传输层的太阳能电池达到了15.6%的光电转换效率,该项工作表明低温制备的电池也能获得较高的效率。Li等[57]利用氧化石墨烯的两亲性,将其引入钙钛矿薄膜和空穴传输层之间作为缓冲层。经过氧化石墨烯处理的界面可以延缓载流子复合,空穴传输层材料在钙钛矿薄膜上的接触角从13.4°下降到0°,所得到的器件光电转换效率相应提高45.5%,达到15.1%。除了用作界面修饰层之外,二维结构的碳材料也被直接应用于空穴传输层。Palma等[58]采用还原氧化石墨烯取代Spiro-OMeTAD作为空穴传输层材料,所制备的电池效率为6.6%(高于使用Spiro-OMeTAD的6.5%)。值得注意的是,基于还原氧化石墨烯作为空穴传输层的电池在经过光照实验后,效率降低明显少于基于Spiro-OMeTAD的电池。此外,他们通过开路电压衰减测量证明,还原氧化石墨烯层除了起到传输空穴的作用以外,还能有效减少载流子复合,从而延长其寿命。Kakavelakis等[59]证明锂中和的氧化石墨烯(GO-Li)功函数从4.9eV降到了4.3eV,并应用在机聚合物薄膜太阳能电池中。Agresti等[60]在此基础上,将GO-Li旋涂到介孔TiO2上作为电子传输层,由于GO-Li的功函数与TiO2的LUMO能级匹配良好,所制备的电池的Jsc增加10.5%,FF(填充因子)增加7.5%,滞后降低50%。Nouri等[61]使用GO作为空穴传输层和GO-Li作为电子传输层构建倒置p-i-n结构的低成本钙钛矿太阳能电池,其中GO-Li中添加钛基溶胶进一步改善稳定性。通过对比钛基溶胶、纯GO-Li和两者混合作为电子传输层的电池性能发现,混合材料电子传输层的电池的Jsc, Voc, FF均高于任一种材料单独作用的电池,光电转换效率最高为10.2%。石墨烯的疏水性还可以用来阻挡水分与钙钛矿薄膜接触,从而延长器件的寿命。Jiao等[62]将石墨烯与CH3NH3PbI3组成复合材料,发现石墨烯/MAPbI3复合材料展现出更好的光吸收效果。此外,通过分子动力学模拟证实石墨烯/MAPbI3复合材料能够阻挡水分子与MAPbI3反应,起到水障的作用,证明石墨烯能够有效提高电池的稳定性。

石墨炔是继富勒烯、碳纳米管、石墨烯之后一种新的全碳纳米结构材料,具有丰富的碳化学键、大的共轭体系、宽面间距、优良的化学稳定性,在储存锂、氧化还原电子器件和催化剂等方面得到应用[63-67]。Kuang等[68]首次将石墨炔掺杂到聚3-己基噻吩(P3HT)空穴传输材料中,结构示意图如图 3所示。经拉曼光谱和紫外光电子能谱测量表明,石墨炔颗粒和P3HT之间发生较强的π-π相互作用,有利于空穴传输,改善电池性能。同时,一些石墨炔聚集体呈现散射性质,有助于增强电池在长波范围内的吸收,而且该复合材料空穴传输层相比于原始的P3HT空穴提取速率更快,这种基于复合空穴传输层的钙钛矿太阳能器件获得了14.58%的光电转换效率。不仅限于空穴传输层,石墨炔应用在电子传输层中也表现出优异的性能。中科院化学研究所李玉良课题组[69]将石墨炔掺杂到PCBM中,获得的复合电子传输层的电导率和电子迁移率有了明显的提高。复合电子传输层在粗糙的钙钛矿薄膜表面上覆盖的更好,因此得到更好的界面接触,减少了载流子复合。所制备的器件光电转换效率达到了14.8%,并且具有稳定的输出功率和微小的滞后。

图 3 石墨炔改性P3HT作为空穴传输材料的钙钛矿太阳能电池示意图[68] Fig. 3 Schematic diagram of perovskite solar cells with P3HT hole-transporting material modified with graphdiyne[68]
4 三维碳材料在钙钛矿太阳能电池中的应用

目前报道的大多数高效的钙钛矿太阳能电池都是基于金、银、铂等贵金属电极[70]。一方面,贵金属储量少,不利于电池的大规模制造;另一方面,目前金属电极使用真空蒸镀或者磁控溅射等方法,需要高温、高真空等高耗能条件,成本较高。

为解决这个问题,研究者们积极寻找廉价的对电极替代材料。钙钛矿材料的价带能级为-5.3eV,原则上背电极材料的HOMO能级应高于-5.3eV,但并不是越高越好,HOMO能级过高会引起Voc降低而导致效率的衰减[71]。碳的功函数(-5.0eV)与金(-5.1eV))相似[72],因此理论上能够很好地代替金成为电池的对电极。目前,国内华中科技大学[73-101]、香港科技大学[102-104]、中科院物理研究所[105]、大连理工大学[106-107]、武汉大学[108-110]等单位都相继报道了以碳材料作为对电极的钙钛矿太阳能电池,并取得了很好的效果,其中以三维的石墨最具代表性。石墨是具有高热稳定性和导电性的碳材料,且价格低廉,来源广泛。为提高电极导电性,石墨通常与无定型的炭黑混合形成更好的接触。2013年,华中科技大学韩宏伟教授课题组[88]首次报道了一种全印刷制备的新型廉价钙钛矿太阳能电池,这种电池以疏水的球形石墨/炭黑混合多孔碳膜作为对电极,该电极能够减少水分进入对电极而使钙钛矿材料水解。值得一提的是,该电池结构使用丝网印刷的方法快速制备,钙钛矿薄膜采用滴涂前驱液的方法,渗透多孔碳膜一步形成,极大地简化了电池的制备步骤和流程。在不使用空穴传输材料的情况下,该电池取得6.64%的光电转换效率,并在光照840h后,效率仍保持6.5%以上,展现了良好的稳定性。该课题组[81]在这一电池结构基础上,在CH3NH3PbI3中加入5-氨基戊酸形成混合阳离子钙钛矿(5-AVA)X(CH3NH3)1-XPbI3,加入5-氨基戊酸能够控制钙钛矿材料在介孔TiO2薄膜中的生长,改善晶化网络和电荷传输性能。所形成的钙钛矿薄膜具有更少的缺陷、更好的孔隙填充效果和与TiO2介孔层更完整的接触。该电池光电转换效率达到12.8%,在空气环境和全光照下经过1000h效率仍保持稳定。随后,该课题组进一步使用氯化铵作为添加剂辅助钙钛矿结晶[90],形成具有优先生长取向的高质量钙钛矿薄膜,最终使碳电极的钙钛矿太阳能电池光电转换效率提升至15.6%。该电池同样同时具有良好的稳定性,在湿度超过30%的环境条件下,电池寿命超过130天。孟庆波课题组[105]提出一种制备低温碳电极的方法。首先采用丝网印刷的方法在钙钛矿薄膜上印刷一层石墨/炭黑混合的浆料,随后一张石墨纸被按压在碳浆料表面并在室温下干燥,该电池的光电转换效率为10.2%。该低温碳电极的成功开发表明了实现柔性基底的钙钛矿太阳能电池的可能,并为进一步降低电池成本提供了新的方向。

碳材料的可印刷性也为制造大面积太阳能电池提供了可能。韩宏伟教授课题组[91]采用丝网印刷法制备有效面积超过10cm×10cm的介观钙钛矿太阳能电池,最佳的转换效率为14.02%,平均效率为10.4%。该大面积电池在户外环境放置一个月和黑暗环境超过一年仍保持较高的效率,展现了良好的稳定性,证明了碳对电极电池在大面积制造上的优势。基于碳电极的钙钛矿太阳能虽然能在材料上缩减成本,但在电池制备条件上仍需要高温烧结以保证纤维素充分碳化,形成疏松的介孔结构,这样会带来耗能和耗时问题。Baker等[111]近期报道了一种使用近红外处理代替高温烧结快速制造电池的方法。该课题组提出的电池生产线在不到1h的时间里完成了从导电玻璃到效率大于11%的碳基无空穴层电池的制造。该项技术的开发大幅压缩了生产的时间,为钙钛矿太阳能电池进一步商业化发展打下良好的基础。

除此之外,还有一些其他类型的碳材料应用在钙钛矿太阳能电池中。如图 4所示,Gholipour等[112]使用手术刀刮涂比碳纳米管便宜数十倍的碳纤维作为电极,并压上一层廉价的碳布。经过测试, 该电池在85℃的氮气气氛下经过100h,仍保持了50%以上的效率,而以蒸镀金膜为电极的电池效率则迅速地退化到不足20%。这项研究表明使用碳纤维/碳布作为电极,不仅能降低成本,简化制造工艺,还能提高电池的稳定性。杨世和课题组[99]采用炭黑和CH3NH3PbI3以及有机溶剂混合作为墨水,通过喷墨打印的方式在PbI2薄膜上直接喷涂碳电极层,所制备的平面异质结太阳能电池光电转换效率达到了11.6%。如图 5所示,该电池无介孔层和空穴层或绝缘层,进一步简化了结构,具有材料价格低廉,器件结构简单,制造方便快捷等优点。韩宏伟课题组[88]在以石墨/炭黑混合作为电极的电池基础上,进一步采用超薄石墨代替块状石墨,光电转换效率相应从12.63%提升到14.07%。超薄石墨相比块状石墨具有更大的比表面积、更快的空穴提取速率和更低的方阻,有望代替块状石墨成为碳基钙钛矿太阳能电池的新宠。

图 4 基于碳布/Spiro-OMeTAD的钙钛矿太阳能电池制备流程图[112] Fig. 4 Schematic image of carbon cloth/Spiro-OMeTAD perovskite solar cell fabrication[112]
图 5 喷墨打印碳/CH3NH3PbI3作为对电极的钙钛矿太阳能电池制备流程图[99] Fig. 5 Fabrication process flow for instant inkjet printing of the C/CH3NH3PbI3 planar perovskite solar cells[99]
5 总结与展望

碳元素是与人类最密切、最重要的元素之一,它具有sp,sp2,sp3杂化的多样电子轨道特性,再加之sp2的异向性,导致晶体的各向导性和其他排列的各向导性。因此碳材料具有各式各样的性质,被应用于钙钛矿太阳能电池的各个部分。零维的碳量子点作为异质核帮助钙钛矿材料结晶,有助于形成形貌更好的薄膜;石墨烯量子点能加快电子提取的速率和减少器件的串联电阻;一维的碳纳米管在提高空穴传输速率方面表现更加优异;二维的石墨烯引入电子传输层能够减少迟滞和降低电阻,并且由于功函数与钙钛矿薄膜匹配更好,石墨烯也能增强空穴的传输和延长载流子寿命;石墨炔对电子和空穴的传输效果都很好,因此在电子传输层和空穴传输层中的应用都取得了很好的效果;三维的石墨被广泛用作电极材料,由于材料储量丰富、制备工艺简单,大大降低了电池制造成本,并且石墨具有疏水性,保护钙钛矿材料被水降解,提高了电池的稳定性。

虽然碳材料引入钙钛矿太阳能电池能够提升部分性能,但效率仍达不到以贵金属、Spiro-OMeTAD等材料制造的电池。针对碳材料的应用特点和不足,作者认为可以从以下四方面进行改进:(1)使用掺杂改性降低碳电极的方阻,提高电导率,从而提高电池效率;(2)引入新技术解决碳材料在溶液中的分散性问题,为碳材料在钙钛矿太阳能电池中更好的应用做准备;(3)深入研究电荷在碳材料上的微观导电机理,根据机理研究碳材料更好的应用方法;(4)优化碳电极与钙钛矿光吸收层的界面。

总而言之,碳材料在钙钛矿太阳能电池各个部分都具有广泛的应用,特别是作为对电极,极大地降低了电池制造成本和简化了制备工艺,同时提高了器件稳定性。在未来相当长的一段时间里,碳材料在钙钛矿太阳能电池中的应用将是实现钙钛矿太阳能电池低成本商业化和大规模制造的重要组成部分。

参考文献(References)
[1] CHAPIN D M, FULLER C S, PEARSON G L. A new silicon p-n junction photocell for converting solar radiation into electrical power[J]. Journal of Applied Physics, 1954, 25 (5): 676–677. DOI: 10.1063/1.1721711
[2] RATH J K. Low temperature polycrystalline silicon: a review on deposition, physical properties and solar cell applications[J]. Solar Energy Materials & Solar Cells, 2003, 76 (4): 431–487.
[3] XING G, MATHEWS N, SUN S, et al. Long-range balanced electron- and hole-transport lengths in organic-inorganic CH3NH3PbI3[J]. Science, 2013, 342 (6156): 344–347. DOI: 10.1126/science.1243167
[4] STRANKS S, EPERON G, GRANCINI G, et al. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013, 342 (6156): 341–343. DOI: 10.1126/science.1243982
[5] WEHRENFENNIG C, EPERON G E, JOHNSTON M B, et al. High charge carrier mobilities and lifetimes in organolead trihalide perovskites[J]. Advanced Materials, 2014, 26 (10): 1584–1589. DOI: 10.1002/adma.201305172
[6] KOJIMA A, TESHIMA K, SHIRAI Y, et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. Journal of the American Chemical Society, 2009, 131 (17): 6050–6051. DOI: 10.1021/ja809598r
[7] KIM H, LEE C, IM J, et al. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci Rep, 2012, 2 : 591. DOI: 10.1038/srep00591
[8] YANG W S, NOH J H, JEON N J, et al. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange[J]. Science, 2015, 348 (6240): 1234–1237. DOI: 10.1126/science.aaa9272
[9] BI D, TRESS W, DAR M I, et al. Efficient luminescent solar cells based on tailored mixed-cation perovskites[J]. Science Advances, 2016, 2 (1): e1501170. DOI: 10.1126/sciadv.1501170
[10] CHEN W, WU Y, YUE Y, et al. Efficient and stable large-area perovskite solar cells with inorganic charge extraction layers[J]. Science, 2015, 350 (6263): 944–948. DOI: 10.1126/science.aad1015
[11] ZHU Z L, MA J N, WANG Z L, et al. Efficiency enhancement of perovskite solar cells through fast electron extraction:the role of graphene quantum dots[J]. J Am Chem Soc, 2014, 136 (10): 3760–3763. DOI: 10.1021/ja4132246
[12] YANG W S, PARK B W, JUNG E H, et al. Iodide manag-ement in formamidinium-lead-halide-based perovskite layers for efficient solar cells[J]. Science, 2017, 356 (6345): 1376–1379. DOI: 10.1126/science.aan2301
[13] DE W S, HOLOVSKY J, MOON S J, et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance[J]. Journal of Physical Chemistry Letters, 2014, 5 (6): 1035–1039. DOI: 10.1021/jz500279b
[14] ETGAR L, GAO P, XUE Z, et al. Mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells[J]. Journal of the American Chemical Society, 2012, 134 (42): 17396–17399. DOI: 10.1021/ja307789s
[15] LIU D, KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nature Photonics, 2014, 8 (2): 133–138. DOI: 10.1038/nphoton.2013.342
[16] JEON N J, LEE J, NOH J H, et al. Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials[J]. Journal of the American Chemical Society, 2013, 135 (51): 19087–19090. DOI: 10.1021/ja410659k
[17] ABATE A, LEIJTENS T, PATHAK S, et al. Lithium salts as "redox active" p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells[J]. Physical Chemistry Chemical Physics, 2013, 15 (7): 2572–2579. DOI: 10.1039/c2cp44397j
[18] FURUBE A, KATOH R, HARA K, et al. Lithium ion effect on electron injection from a photoexcited coumarin derivative into a TiO2 nanocrystalline film investigated by visible-to-IR ultrafast spectroscopy[J]. Journal of Physical Chemistry B, 2005, 109 (34): 16406–16414. DOI: 10.1021/jp0513263
[19] CAPPEL U B, DAENEKE T, BACH U. Oxygen-induced doping of spiro-MeOTAD in solid-state dye-sensitized solar cells and its impact on device performance[J]. Nano Letters, 2012, 12 (9): 4925–4931. DOI: 10.1021/nl302509q
[20] AHN N, SON D Y, JANG I H, et al. Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via lewis base adduct of lead(Ⅱ) iodide[J]. Journal of the American Chemical Society, 2015, 137 (27): 8696–8699. DOI: 10.1021/jacs.5b04930
[21] HUANG X, WANG K, YI C, et al. Efficient perovskite hybrid solar cells by highly electrical conductive PEDOT:PSS hole transport layer[J]. Advanced Energy Materials, 2016, 6 (3): 1501773. DOI: 10.1002/aenm.201501773
[22] JEON N J, NOH J H, KIM Y C, et al. Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells[J]. Nature Materials, 2014, 13 (9): 897–903. DOI: 10.1038/nmat4014
[23] SNAITH H J, GRÄTZEL M. Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: implication to dye-sensitized solar cells[J]. Applied Physics Letters, 2006, 89 (26): 262114. DOI: 10.1063/1.2424552
[24] ABBAS H A, KOTTOKKARAN R, GANAPATHY B, et al. High efficiency sequentially vapor grown n-i-p CH3NH3PbI3 perovskite solar cells with undoped P3HT as p-type heterojunction layer[J]. APL Materials, 2015, 3 (1): 016105. DOI: 10.1063/1.4905932
[25] WANG M, LI S, ZHANG P, et al. A modified sequential method used to prepare high quality perovskite on ZnO nanorods[J]. Chemical Physics Letters, 2015, 639 : 283–288. DOI: 10.1016/j.cplett.2015.09.044
[26] YAN W, LI Y, YE S, et al. Increasing open circuit voltage by adjusting work function of hole-transporting materials in perovskite solar cells[J]. Nano Research, 2016, 9 (6): 1600–1608. DOI: 10.1007/s12274-016-1054-5
[27] HAUCH A, GEORG A. Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells[J]. Electrochimica Acta, 2001, 46 (22): 3457–3466. DOI: 10.1016/S0013-4686(01)00540-0
[28] CHOI J Y, HONG J T, SEO H, et al. Optimal series-parallel connection method of dye-sensitized solar cell for Pt thin film deposition using a radio frequency sputter system[J]. Thin Solid Films, 2008, 517 (2): 963–966. DOI: 10.1016/j.tsf.2008.08.159
[29] IKEGAMI M, MIYOSHI K, MIYASAKA T, et al. Platinum/titanium bilayer deposited on polymer film as efficient counter electrodes for plastic dye-sensitized solar cells[J]. Applied Physics Letters, 2007, 90 (15): 153122. DOI: 10.1063/1.2722565
[30] DOMANSKI K, CORREA-BAENA J P, MINE N, et al. Not all that glitters is gold: metal-migration-induced degradation in perovskite solar cells[J]. ACS Nano, 2016, 10 (6): 6306–6314. DOI: 10.1021/acsnano.6b02613
[31] MURAKAMI T N, KAY A, ITO S, et al. Highly efficient dye-sensitized solar cells based on carbon black counter electrodes[J]. Journal of the Electrochemical Society, 2006, 153 (12): A2255–A2261. DOI: 10.1149/1.2358087
[32] HUANG Z, LIU X, LI K, et al. Application of carbon materials as counter electrodes of dye-sensitized solar cells[J]. Electrochemistry Communications, 2007, 9 (4): 596–598. DOI: 10.1016/j.elecom.2006.10.028
[33] 韩汝珊. 一个新的足球烯家族[M]. 长沙: 湖南教育出版社, 1994.
HAN R S. A new family of fullerenes[M]. Changsha: Hunan Education Press, 1994.
[34] 刘忠范. 碳纳米管—科学与应用[M]. 北京: 科学出版社, 2007.
LIU Z F. Carbon nano-tubes: science and application[M]. Beijing: Science Press, 2007.
[35] 陈永胜, 黄毅. 石墨烯:新型二维碳纳米材料[M]. 北京: 科学出版社, 2013.
CHEN Y S, HUANG Y. Graphene: a new type of two-dimensional carbon nano-materials[M]. Beijing: Science Press, 2013.
[36] 宋正芳. 碳石墨制品的性能及其应用[M]. 北京: 机械工业出版社, 1987: 11-43.
SONG Z F. Properties and applications of carbon graphite products[M]. Beijing: Machinery Industry Press, 1987: 11-43.
[37] BOEHM H P. Some aspects of the surface chemistry of carbon blacks and other carbons[J]. Carbon, 1994, 32 (5): 759–769. DOI: 10.1016/0008-6223(94)90031-0
[38] HU R, CHU L, ZHANG J, et al. Carbon materials for enhan-cing charge transport in the advancements of perovskite solar cells[J]. Journal of Power Sources, 2017, 361 : 259–275. DOI: 10.1016/j.jpowsour.2017.06.051
[39] LI H, SHI W, HUANG W, et al. Carbon quantum dots/TiOx electron transport layer boosts efficiency of planar heterojunction perovskite solar cells to 19%[J]. Nano Letters, 2017, 17 (4): 2328–2335. DOI: 10.1021/acs.nanolett.6b05177
[40] WOJCIECHOWSKI K. Sub 150℃ processed meso-superstruc-tured perovskite solar cells with enhanced efficiency (presentation video)[J]. Energy & Environmental Science, 2014, 7 (3): 1142–1147.
[41] ZOU H, GUO D, HE B, et al. Enhanced photocurrent density of HTM-free perovskite solar cells by carbon quantum dots[J]. Applied Surface Science, 2017, 430 : 625–631.
[42] ZHU Z, MA J, WANG Z, et al. Efficiency enhancement of perovskite solar cells through fast electron extraction: the role of graphene quantum dots[J]. Journal of the American Chemical Society, 2014, 136 (10): 3760–3763. DOI: 10.1021/ja4132246
[43] FANG X, DING J, YUAN N, et al. Graphene quantum dot incorporated perovskite films: passivating grain boundaries and facilitating electron extraction[J]. Physical Chemistry Chemical Physics, 2017, 19 (8): 6057–6063. DOI: 10.1039/C6CP06953C
[44] WOJCIECHOWSKI K, LEIJTENS T, SIPROVA S, et al. C60 as an efficient n-type compact layer in perovskite solar cells[J]. Journal of Physical Chemistry Letters, 2015, 6 (12): 2399–2405. DOI: 10.1021/acs.jpclett.5b00902
[45] LI Y, ZHAO Y, CHEN Q, et al. A multifunctional fullerene derivative for interface engineering in perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137 (49): 15540. DOI: 10.1021/jacs.5b10614
[46] HABISREUTINGER S N, LEIJTENS T, EPERON G E, et al. Carbon nanotube/polymer composites as a highly stable hole collection layer in perovskite solar cells[J]. Nano Letters, 2014, 14 (10): 5561–5568. DOI: 10.1021/nl501982b
[47] LI Z, KULKARNI SA, BOIX PP, et al. Laminated carbon nanotube networks for metal electrode-free efficient perovskite solar cells[J]. ACS Nano, 2014, 8 (7): 6797–6804. DOI: 10.1021/nn501096h
[48] LI H, CAO K, CUI J, et al. 14.7% efficient mesoscopic perovskite solar cells using single walled carbon nanotubes/carbon composite counter electrodes[J]. Nanoscale, 2016, 8 (12): 6379–6385. DOI: 10.1039/C5NR07347B
[49] CHENG N, LIU P, QI F, et al. Multi-walled carbon nanotubes act as charge transport channel to boost the efficiency of hole transport material free perovskite solar cells[J]. Journal of Power Sources, 2016, 332 : 24–29. DOI: 10.1016/j.jpowsour.2016.09.104
[50] RYU J, LEE K, YUN J, et al. Paintable carbon-based perovskite solar cells with engineered perovskite/carbon interface using carbon nanotubes dripping method[J]. Small, 2017, 13 (38): 1701225. DOI: 10.1002/smll.201701225
[51] ZHENG X, CHEN H, LI Q, et al. Boron doping of multiwalled carbon nanotubes significantly enhances hole extraction in carbon-based perovskite solar cells[J]. Nano Letters, 2017, 17 (4): 2496–2505. DOI: 10.1021/acs.nanolett.7b00200
[52] LIU L, RYU S, TOMASIK M R, et al. Graphene oxidation: thickness-dependent etching and strong chemical doping[J]. Nano Letters, 2008, 8 (7): 1965–1970. DOI: 10.1021/nl0808684
[53] PRASAI D, TUBERQUIA J C, HARL R R, et al. Graphene: corrosion-inhibiting coating[J]. ACS Nano, 2012, 6 (2): 1102–1108. DOI: 10.1021/nn203507y
[54] CHEN S, BROWN L, LEVENDORF M, et al. Oxidation resistance of graphene-coated Cu and Cu/Ni alloy[J]. ACS Nano, 2010, 5 (2): 1321–1327.
[55] DU A, SANVITO S, LI Z, et al. Hybrid graphene and graphitic carbon nitride nanocomposite: gap opening, electron-hole puddle, interfacial charge transfer, and enhanced visible light response[J]. Journal of the American Chemical Society, 2012, 134 (9): 4393–4397. DOI: 10.1021/ja211637p
[56] WANG T W, BALL J M, BAREA E M, et al. Low-temperature processed electron collection layers of graphene/TiO2 nanocomposites in thin film perovskite solar cells[J]. Nano Letters, 2014, 14 (2): 724–730. DOI: 10.1021/nl403997a
[57] LI W, DONG H, GUO X, et al. Graphene oxide as dual functional interface modifier for improving wettability and retarding recombination in hybrid perovskite solar cells[J]. Journal of Materials Chemistry A, 2014, 2 (47): 20105–20111. DOI: 10.1039/C4TA05196C
[58] PALMA A L, CINÀ L, PESCETELLI S, et al. Reduced graphene oxide as efficient and stable hole transporting material in mesoscopic perovskite solar cells[J]. Nano Energy, 2016, 22 : 349–360. DOI: 10.1016/j.nanoen.2016.02.027
[59] KAKAVELAKIS G, KONIOS D, STRATAKIS E, et al. Enhancement of the efficiency and stability of organic photovoltaic devices via the addition of a lithium-neutralized graphene oxide electron-transporting layer[J]. Chemistry of Materials, 2014, 26 (20): 5988–5993. DOI: 10.1021/cm502826f
[60] AGRESTI A, PESCETELLI S, CINÀ L, et al. Efficiency and stability enhancement in perovskite solar cells by inserting lithium-neutralized graphene oxide as electron transporting layer[J]. Advanced Functional Materials, 2016, 26 (16): 2686–2694. DOI: 10.1002/adfm.v26.16
[61] NOURI E, MOHAMMADI M R, LIANOS P. Inverted perovskite solar cells based on lithium-functionalized graphene oxide as an electron-transporting layer[J]. Chemical Communic-ations, 2017, 53 (10): 1630–1633. DOI: 10.1039/C6CC09876B
[62] JIAO Y, MA F, GAO G, et al. Graphene-covered Perovskites: An effective strategy to enhance light absorption and resist moisture degradation[J]. RSC Advances, 2015, 5 (100): 82346–82350. DOI: 10.1039/C5RA14381K
[63] LI G, LI Y, QIAN X, et al. Construction of tubular molecule aggregations of graphdiyne for highly efficient field emission[J]. Journal of Physical Chemistry C, 2011, 115 (6): 2611–2615. DOI: 10.1021/jp107996f
[64] LI G, LI Y, LIU H, et al. Architecture of graphdiyne nanoscale films[J]. Chemical Communications, 2010, 46 (19): 3256–3258. DOI: 10.1039/b922733d
[65] LIU R, LIU H, LI Y, et al. Nitrogen-doped graphdiyne as a metal-free catalyst for high-performance oxygen reduction reactions[J]. Nanoscale, 2014, 6 (19): 11336–11343. DOI: 10.1039/C4NR03185G
[66] HUANG C, ZHANG S, LIU H, et al. Graphdiyne for high capacity and long-life lithium storage[J]. Nano Energy, 2015, 11 (1): 481–489.
[67] LI Y, XU L, LIU H, et al. Graphdiyne and graphyne: from theoretical predictions to practical construction[J]. Chemical Society Reviews, 2014, 43 (8): 2572–2586. DOI: 10.1039/c3cs60388a
[68] XIAO J, SHI J, LIU H, et al. Efficient CH3NH3PbI3 perovskite solar cells based on graphdiyne (GD)-modified P3HT hole-transporting material[J]. Advanced Energy Materials, 2015, 5 (8): 1401943. DOI: 10.1002/aenm.201401943
[69] KUANG C, TANG G, JIU T, et al. Highly efficient electron transport obtained by doping PCBM with graphdiyne in planar-heterojunction perovskite solar cells[J]. Nano Letters, 2015, 15 (4): 2756–2762. DOI: 10.1021/acs.nanolett.5b00787
[70] CHEN H, YANG S. Carbon-based perovskite solar cells without hole transport materials: the front runner to the market[J]. Adv Mater, 2017, 29 : 1603994–1604010. DOI: 10.1002/adma.201603994
[71] POLANDER L E, PAHNER P, SCHWARZE M, et al. Hole-transport material variation in fully vacuum deposited perovskite solar cells[J]. APL Materials, 2014, 2 (8): 081503. DOI: 10.1063/1.4889843
[72] ZHANG F, YANG X, WANG H, et al. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode[J]. ACS Applied Materials & Interfaces, 2014, 6 (18): 16140–16145.
[73] HAN H, ZHANG L, LIU T, et al. The effect of carbon counter electrode on fully printable mesoscopic perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3 (17): 9165–9170. DOI: 10.1039/C4TA04647A
[74] XU M, RONG Y, KU Z, et al. Highly ordered mesoporous carbon for mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cell[J]. Journal of Materials Chemistry A, 2014, 2 (23): 8607–8611. DOI: 10.1039/c4ta00379a
[75] RONG Y, KU Z, MEI A, et al. Hole-conductor-free mesos-copic TiO2/CH3NH3PbI3 heterojunction solar cells based on anatase nanosheets and carbon counter electrodes[J]. Journal of Physical Chemistry Letters, 2014, 5 (12): 2160–2164. DOI: 10.1021/jz500833z
[76] HU M, LIU L, MEI A, et al. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with a broad light harvester NH2CH=NH2PbI3[J]. Journal of Materials Chemistry A, 2014, 2 (40): 17115–17121. DOI: 10.1039/C4TA03741C
[77] CHEN J, RONG Y, MEI A, et al. Hole-conductor-free fully printable mesoscopic solar cell with mixed-anion perovskite CH3NH3PbI(3-x)(BF4)x[J]. Advanced Energy Materials, 2016, 6 (5): 1502009. DOI: 10.1002/aenm.201502009
[78] LI X, DAR M I, YI C, et al. Improved performance and stability of perovskite solar cells by crystal crosslinking with alkylphosphonic acid ω-ammonium chlorides[J]. Nature Chemistry, 2015, 7 (9): 703–711. DOI: 10.1038/nchem.2324
[79] LIU T, LIU L, HU M, et al. Critical parameters in TiO2/ZrO2/carbon-based mesoscopic perovskite solar cell[J]. Journal of Power Sources, 2015, 293 : 533–538. DOI: 10.1016/j.jpowsour.2015.05.106
[80] LIU T, RONG Y, XIONG Y, et al. Spacer improvement for efficient and fully printable mesoscopic perovskite solar cells[J]. RSC Advances, 2016, 7 (17): 10118–10123.
[81] MEI A, LI X, LIU L, et al. A hole-conductor-free, fully printable mesoscopic perovskite solar cell with high stability[J]. Science, 2014, 345 (6194): 295–298. DOI: 10.1126/science.1254763
[82] JIANG X, XIONG Y, MEI A, et al. Efficient compact-layer-free, hole-conductor-free, fully printable mesoscopic perovskite solar cell[J]. Journal of Physical Chemistry Letters, 2016, 7 (20): 4142–4146. DOI: 10.1021/acs.jpclett.6b01815
[83] SHENG Y, HU Y, MEI A, et al. Enhanced electronic proper-ties in CH3NH3PbI3: via LiCl mixing for hole-conductor-free printable perovskite solar cells[J]. Journal of Materials Chemistry A, 2016, 4 (42): 16731–16736. DOI: 10.1039/C6TA08021A
[84] RONG Y, HU Y, RAVISHANKAR S, et al. Tunable hyster-esis effect for perovskite solar cells[J]. Energy & Environmental Science, 2017, 10 : 2383–2391.
[85] HAN H, YANG Y, RI K, et al. Size effect of TiO2 nanopar-ticles on the printable mesoscopic perovskite solar cell[J]. Journal of Materials Chemistry A, 2015, 3 (17): 9103–9107. DOI: 10.1039/C4TA07030E
[86] XU L, WAN F, RONG Y, et al. Stable monolithic hole-conductor-free perovskite solar cells using TiO2, nanoparticle binding carbon films[J]. Organic Electronics, 2017, 45 : 131–138. DOI: 10.1016/j.orgel.2017.03.005
[87] DUAN M, TIAN C, HU Y, et al. Boron-doped graphite for high work function carbon electrode in printable hole-conductor-free mesoscopic perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2017, 9 (37): 31721–31727.
[88] KU Z, RONG Y, XU M, et al. Full printable processed mesoscopic CH3NH3PbI3/TiO2 heterojunction solar cells with carbon counter electrode[J]. Scientific Reports, 2013, 3 (11): 3132.
[89] LIU L, MEI A, LIU T, et al. Fully printable mesoscopic perovskite solar cells with organic silane self-assembled monolayer[J]. Journal of the American Chemical Society, 2015, 137 (5): 1790–1793. DOI: 10.1021/ja5125594
[90] RONG Y, HOU X, HU Y, et al. Synergy of ammonium chloride and moisture on perovskite crystallization for efficient printable mesoscopic solar cells[J]. Nature Communications, 2017, 8 : 14555. DOI: 10.1038/ncomms14555
[91] HU Y, SI S, MEI A, et al. Stable large-area (10×10cm2) printable mesoscopic perovskite module exceeding 10% efficiency[J]. Solar Rrl, 2017, 1 (2): 1600019. DOI: 10.1002/solr.201600019
[92] DUAN M, RONG Y, MEI A, et al. Efficient hole-conductor-free, fully printable mesoscopic perovskite solar cells with carbon electrode based on ultrathin graphite[J]. Carbon, 2017, 120 : 70–76.
[93] LIU Z, HE H, ZHANG M, et al. P-type mesoscopic NiO as an active interfacial layer for carbon counter electrodes based perovskite solar cells[J]. Dalton Transactions, 2015, 44 (9): 3967–3973. DOI: 10.1039/C4DT02904F
[94] XU X, LIU Z, ZUO Z, et al. Hole selective NiO contact for efficient perovskite solar cells with carbon electrode[J]. Nano Letters, 2015, 15 (4): 2402–2408. DOI: 10.1021/nl504701y
[95] CAO K, ZUO Z, CUI J, et al. Efficient screen printed perovskite solar cells based on mesoscopic TiO2/Al2O3/NiO/carbon architecture[J]. Nano Energy, 2015, 17 : 171–179. DOI: 10.1016/j.nanoen.2015.08.009
[96] LI J, NIU G, LI W, et al. Insight into the CH3NH3PbI3/C interface in hole-conductor-free mesoscopic perovskite solar cells[J]. Nanoscale, 2016, 8 (29): 14163–14170. DOI: 10.1039/C6NR03359H
[97] CAO K, CUI J, ZHANG H, et al. Efficient mesoscopic perovskite solar cells based on CH3NH3PbI2Br light absorber[J]. Journal of Materials Chemistry A, 2015, 3 (17): 9116–9122. DOI: 10.1039/C5TA01129A
[98] CAO K, LI H, LIU S, et al. MAPbI3-xBrx mixed halide perovskites for fully printable mesoscopic solar cells with enhanced efficiency and less hysteresis[J]. Nanoscale, 2016, 8 (16): 8839–8846. DOI: 10.1039/C6NR01043A
[99] LIU Z, YAN Z, BO S, et al. Novel integration of perovskite solar cell and supercapacitor based on carbon electrode for hybridizing energy conversion and storage[J]. ACS Applied Materials & Interfaces, 2017, 9 (27): 22361–22368.
[100] LIU Z, SHI T, TANG Z, et al. Using a low-temperature carbon electrode for preparing hole-conductor-free perovskite heterojunction solar cells under high relative humidity[J]. Nanoscale, 2015, 8 (13): 7017–7023.
[101] LIU Z, SHI T, TANG Z, et al. A large-area hole-conductor-free perovskite solar cell based on a low-temperature carbon counter electrode[J]. Materials Research Bulletin, 2017, 96 : 196–200. DOI: 10.1016/j.materresbull.2017.03.069
[102] WEI Z, CHEN H, YAN K, et al. Inkjet printing and instant chemical transformation of a CH3NH3PbI3/nanocarbon electrode and interface for planar perovskite solar cells[J]. Angewandte Chemie, 2014, 53 (48): 13239–13243. DOI: 10.1002/anie.201408638
[103] CHEN H, WEI Z, HE H, et al. Solvent engineering boosts the efficiency of paintable carbon-based perovskite solar cells to beyond 14%[J]. Advanced Energy Materials, 2016, 6 (8): 1502087. DOI: 10.1002/aenm.201502087
[104] CHANG X, LI W, CHEN H, et al. Colloidal precursor-induced growth of ultra-even CH3NH3PbI3 for high-performance paintable carbon-based perovskite solar cells[J]. ACS Applied Materials & Interfaces, 2016, 8 (44): 30184–30192.
[105] YANG Y, XIAO J, WEI H, et al. An all-carbon counter electrode for highly efficient hole-conductor-free organo-metal perovskite solar cells[J]. RSC Advances, 2014, 4 (95): 52825–52830. DOI: 10.1039/C4RA09519G
[106] JIANG X, YU Z, LI H B, et al. A solution-processable copper(Ⅱ) phthalocyanine derivative as a dopant-free holetranspor-ting material for efficient and stable carbon counter electrode-based perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5 (34): 17862–17866. DOI: 10.1039/C7TA04569G
[107] ZHANG F, YANG X, WANG H, et al. Structure engineering of hole-conductor free perovskite-based solar cells with low-temperature-processed commercial carbon paste as cathode[J]. ACS Applied Materials & Interfaces, 2014, 6 (18): 16140–16146.
[108] YU Z, CHEN B, LIU P, et al. Stable organic-inorganic perovskite solar cells without hole-conductor layer achieved via cell structure design and contact engineering[J]. Advanced Functional Materials, 2016, 26 (27): 4866–4873. DOI: 10.1002/adfm.201504564
[109] XIAO Y, CHENG N, KONDAMAREDDY K K, et al. W-doped TiO2, mesoporous electron transport layer for efficient hole transport material free perovskite solar cells employing carbon counter electrodes[J]. Journal of Power Sources, 2017, 342 : 489–494. DOI: 10.1016/j.jpowsour.2016.12.079
[110] CHENG N, LIU P, BAI S, et al. Enhanced performance in hole transport material free perovskite solar cells via morphology control of PbI2, film by solvent treatment[J]. Journal of Power Sources, 2016, 319 : 111–115. DOI: 10.1016/j.jpowsour.2016.04.062
[111] BAKER J, HOOPER K, MERONI S, et al. High throughput fabrication of mesoporous carbon perovskite solar cells[J]. Journal of Materials Chemistry A, 2017, 5 (35): 18643–18650. DOI: 10.1039/C7TA05674E
[112] GHOLIPOUR S, CORREA-BAENA J, DOMANSKI K, et al. Highly efficient and stable perovskite solar cells based on a low-cost carbon cloth[J]. Advanced Energy Materials, 2016, 6 (20): 1601116. DOI: 10.1002/aenm.201601116