[1] |
赵振业. 材料科学与工程的新时代[J].
航空材料学报, 2016, 36 (3): 1–6.
ZHAO Z Y. A new age of materials science and engineering[J].
Journal of Aeronautical Materials, 2016, 36 (3): 1–6.
|
|
[2] |
杜善义, 冷劲松, 王殿富.
智能材料系统和结构[M]. 北京: 科学出版社, 2001: 1-3.
DU S Y, LENG J S, WANG D F.
Smart material systems and structures[M]. Beijing: Science Press, 2001: 1-3.
|
|
[3] |
于相龙, 周济. 智能超材料研究与进展[J].
材料工程, 2016, 44 (7): 119–128.
YU X L, ZHOU J. Research advance in smart metamaterials[J].
Journal of Materials Engineering, 2016, 44 (7): 119–128.
DOI: 10.11868/j.issn.1001-4381.2016.07.020
|
|
[4] |
李卓球, 宋显辉.
智能复合材料结构体系[M]. 武汉: 武汉理工大学出版社, 2005: 262.
LI Z Q, SONG X H.
Structural system of intelligent composite[M]. Wuhan: Wuhan University of Technology Press, 2005: 262.
|
|
[5] |
胡金莲. 形状记忆聚合物在生物医学领域的研究进展[J].
中国材料进展, 2015, 34 (3): 191–203.
HU J L. Progress of shape memory polymers in biomedical applications[J].
Materials China, 2015, 34 (3): 191–203.
|
|
[6] |
沈学霖, 朱光明, 杨鹏飞. 生物医用形状记忆高分子材料[J].
材料工程, 2017, 45 (7): 111–117.
SHEN X L, ZHU G M, YANG P F. Biomedical shape memory polymers[J].
Journal of Materials Engineering, 2017, 45 (7): 111–117.
DOI: 10.11868/j.issn.1001-4381.2015.001230
|
|
[7] |
YAKACKI C M, SHANDAS R, SAFRANSKI D, et al. Strong, tailored, biocompatible shape-memory polymer networks[J].
Advanced Functional Materials, 2008, 18 (16): 2428–2435.
DOI: 10.1002/adfm.v18:16
|
|
[8] |
LENDLEIN A, LANGER R. Biodegradable, elastic shape-memory polymers for potential biomedical applications[J].
Science, 2002, 296 (5573): 1673–1676.
DOI: 10.1126/science.1066102
|
|
[9] |
LAN X, LIU Y, LV H, et al. Fiber reinforced shape-memory polymer composite and its application in a deployable hinge[J].
Smart Materials and Structures, 2009, 18 (2): 1560–1574.
|
|
[10] |
LASCHI C, CIANCHETTI M, MAZZOLAI B, et al. Soft robot arm inspired by the octopus[J].
Advanced Robotics, 2012, 26 (7): 709–727.
DOI: 10.1163/156855312X626343
|
|
[11] |
NAJEM J, SARLES S A, AKLE B, et al. Biomimetic jellyfish-inspired underwater vehicle actuated by ionic polymer metal composite actuators[J].
Smart Materials and Structures, 2012, 21 (9): 094026.
DOI: 10.1088/0964-1726/21/9/094026
|
|
[12] |
CASTELLANO M G, INDIRLI M, MARTELLI A. Progress of application, research and development and design guidelines for shape memory alloy devices for cultural heritage structures in Italy[J].
Proceedings of SPIE——The International Society for Optical Engineering, 2001, 4330 (1): 250–261.
|
|
[13] |
李云飞, 陈成, 曾祥国. NiTi合金的相变-塑性统一本构模型与数值算法[J].
航空材料学报, 2018, 38 (1): 26–32.
LI Y F, CHEN C, ZENG X G. Unified constitutive model and numerical implementation of NiTi alloy involving phase transformation and plasticity[J].
Journal of Aeronautical Materials, 2018, 38 (1): 26–32.
DOI: 10.11868/j.issn.1005-5053.2017.000019
|
|
[14] |
ÖLANDER A. An electrochemical investigation of solid cadmium-gold alloys[J].
Journal of the American Chemical Society, 1932, 54 (10): 3819–3833.
DOI: 10.1021/ja01349a004
|
|
[15] |
KAEUFER H, RAUTENBERG L, PAHL J. Process for the manufacture of articles of high mechanical strength from thermoplastic synthetic resins[P]. US41129182A. |
|
[16] |
BUEHLER W J, GILFRICH J V, WILEY R C. Effect of low-temperature phase changes on the mechanical properties of Alloys near composition TiNi[J].
Journal of Applied Physics, 1963, 34 (5): 1475–1477.
DOI: 10.1063/1.1729603
|
|
[17] |
JANI J M, LEARY M, SUBIC A, et al. A review of shape memory alloy research, applications and opportunities[J].
Materials & Design, 2014, 56 (14): 1078–1113.
|
|
[18] |
KAUFFMAN G, MAYO I. The story of Nitinol:the serendipitous discovery of the memory metal and its applications[J].
The Chemical Educator, 1997, 2 (2): 1–21.
|
|
[19] |
王楠, 燕绍九, 彭思侃, 等. 3D打印石墨烯制备技术及其在储能领域的应用研究进展[J].
材料工程, 2017, 45 (12): 112–125.
WANG N, YAN S J, PENG S K, et al. Research progress on 3D printed graphene materials synthesis technology and its application in energy storage field[J].
Journal of Materials Engineering, 2017, 45 (12): 112–125.
DOI: 10.11868/j.issn.1001-4381.2016.001102
|
|
[20] |
卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J].
机械制造与自动化, 2013, 42 (4): 1–4.
LU B H, LI D C. Development of the additive manufacturing (3D printing) technology[J].
Journal of Machine Building & Automation, 2013, 42 (4): 1–4.
|
|
[21] |
李涤尘, 贺健康, 田小永, 等. 增材制造:实现宏微结构一体化制造[J].
机械工程学报, 2013, 49 (6): 129–135.
LI D C, HE J K, TIAN X Y, et al. Additive manufacturing:integrated fabrication of macro/microstructures[J].
Journal of Mechanical Engineering, 2013, 49 (6): 129–135.
|
|
[22] |
王延庆, 沈竞兴, 吴海全. 3D打印材料应用和研究现状[J].
航空材料学报, 2016, 36 (4): 89–98.
WANG Y Q, SHEN J X, WU H Q. Application and research status of alternative materials for 3D-printing technology[J].
Journal of Aeronautical Materials, 2016, 36 (4): 89–98.
|
|
[23] |
杨平华, 高祥熙, 梁菁, 等. 金属增材制造技术发展动向及无损检测研究进展[J].
材料工程, 2017, 45 (9): 13–21.
YANG P H, GAO X X, LIANG J, et al. Development tread and NDT progress of metal additive manufacture technique[J].
Journal of Materials Engineering, 2017, 45 (9): 13–21.
DOI: 10.11868/j.issn.1001-4381.2016.001226
|
|
[24] |
MA J, FRANCO B, TAPIA G, et al. Spatial control of functional response in 4D-printed active metallic structures[J].
Scientific Reports, 2017, 7 : 46707.
DOI: 10.1038/srep46707
|
|
[25] |
HABERLAND C, ELAHINIA M, WALKER J M, et al. On the development of high quality NiTi shape memory and pseudoelastic parts by additive manufacturing[J].
Smart Materials and Structures, 2014, 23 (10): e104002.
DOI: 10.1088/0964-1726/23/10/104002
|
|
[26] |
CARRENO-MORELLI E, MARTINERIE S, BIDAUX J E. Three-dimensional printing of shape memory alloys[J].
Materials Science Forum, 2007, 534/536 : 477–480.
DOI: 10.4028/www.scientific.net/MSF.534-536
|
|
[27] |
HEHR A, DAPINO M J. Dynamics of ultrasonic additive manufacturing[J].
Ultrasonics, 2017, 73 : 49–66.
DOI: 10.1016/j.ultras.2016.08.009
|
|
[28] |
刘洪涛, 孙光爱, 王沿东, 等. 冲击诱发NiTi形状记忆合金相变行为研究[J].
物理学报, 2013, 62 (1): 709–712.
LIU H T, SUN G A, WANG Y D, et al. Shock-induced transformation behavior in NiTi shape memory alloy[J].
Acta Physica Sinica, 2013, 62 (1): 709–712.
|
|
[29] |
龙大伟. 铝青铜表面激光熔覆层的腐蚀性与高温摩擦性能的研究[D]. 兰州: 兰州理工大学, 2010. LONG D W. Study of corrosion and high temperature friction performance of laser cladding on aluminum bronze[D]. Lanzhou: Lanzhou University of Technology, 2010. |
|
[30] |
徐鹏. 激光熔覆Fe17Mn5Si10Cr5Ni记忆合金涂层及其组织与性能研究[D]. 大连: 大连海事大学, 2015. XU P. Research on microstructure and properties of Fel7Mn5Sil0Cr5Ni shape memory alloy coating fabricated by laser cladding[D]. Dalian: Dalian Maritime University, 2015. |
|
[31] |
TOKER S M, GERSTEIN G, MAIER H J, et al. Effects of microstructural mechanisms on the localized oxidation behavior of NiTi shape memory alloys in simulated body fluid[J].
Journal of Materials Science, 2018, 53 (2): 948–958.
DOI: 10.1007/s10853-017-1586-4
|
|
[32] |
TOKER S M, CANADINC D, MAIER H J, et al. Evaluation of passive oxide layer formation-biocompatibility relationship in NiTi shape memory alloys:Geometry and body location dependency[J].
Materials Science and Engineering:C, 2014, 36 (1): 118–129.
|
|
[33] |
SUN X T, KANG Z X, ZHANG X L, et al. A comparative study on the corrosion behavior of porous and dense NiTi shape memory alloys in NaCl solution[J].
Electrochimica Acta, 2011, 56 (18): 6389–6396.
DOI: 10.1016/j.electacta.2011.05.019
|
|
[34] |
SHABALOVSKAYA S A, TIAN H, ANDEREGG J W, et al. The influence of surface oxides on the distribution and release of nickel from Nitinol wires[J].
Biomaterials, 2009, 30 (4): 468–477.
DOI: 10.1016/j.biomaterials.2008.10.014
|
|
[35] |
LI H F, QIU K J, ZHOU F Y, et al. Design and development of novel antibacterial Ti-Ni-Cu shape memory alloys for biomedical application[J].
Scientific Reports, 2016, 6 : 37475.
DOI: 10.1038/srep37475
|
|
[36] |
LUO P, WANG S N, ZHAO T T, et al. Surface characteristics, corrosion behavior, and antibacterial property of Ag-implanted NiTi alloy[J].
Rare Metals, 2013, 32 (2): 113–121.
DOI: 10.1007/s12598-013-0041-1
|
|
[37] |
TEH Y H, FEATHERSTONE R. An architecture for fast and accurate control of shape memory alloy actuators[J].
International Journal of Robotics Research, 2008, 27 (5): 595–611.
DOI: 10.1177/0278364908090951
|
|
[38] |
VELÁZQUEZ R, PISSALOUX E E. Modelling and temperature control of shape memory alloys with fast electrical heating[J].
International Journal of Mechanics & Control, 2012, 13 (2): 3–10.
|
|
[39] |
BARBARINO S, SAAVEDRA FLORES E L, AJAJ R M, et al. A review on shape memory alloys with applications to morphing aircraft[J].
Smart Materials and Structures, 2014, 23 (6): 063001.
DOI: 10.1088/0964-1726/23/6/063001
|
|
[40] |
SONG S H, LEE J Y, RODRIGUE H, et al. 35Hz shape memory alloy actuator with bending-twisting mode[J].
Scientific Reports, 2016, 6 : 21118.
DOI: 10.1038/srep21118
|
|
[41] |
SCIRÈ M G, DRAGONI E. Functional fatigue of shape memory wires under constant-stress and constant-strain loading conditions[J].
Procedia Engineering, 2011, 10 (7): 3692–3707.
|
|
[42] |
SCIRÈ MAMMANO G, DRAGONI E. Functional fatigue of NiTi shape memory wires for a range of end loadings and constraints[J].
Frattura ed Integrità Strutturale, 2012, 23 (23): 25–33.
|
|
[43] |
MATHEUS T C U, MENEZES W M M, RIGO O D, et al. The influence of carbon content on cyclic fatigue of NiTi SMA wires[J].
International Endodontic Journal, 2011, 44 (6): 567–573.
DOI: 10.1111/iej.2011.44.issue-6
|
|
[44] |
TAKEDA K, MATSUI R, TOBUSHI H, et al. Enhancement of bending fatigue life in TiNi shape-memory alloy tape by nitrogen ion implantation[J].
Archives of Mechanics, 2015, 67 (4): 293–310.
|
|
[45] |
TANAKA Y, HIMURO Y, KAINUMA R, et al. Ferrous polycrystalline shape-memory alloy showing huge superelasticity[J].
Science, 2010, 327 (5972): 1488–1490.
DOI: 10.1126/science.1183169
|
|
[46] |
WEN Y H, PENG H B, RAABE D, et al. Large recovery strain in Fe-Mn-Si-based shape memory steels obtained by engineering annealing twin boundaries[J].
Nature Communications, 2014, 5 : 4964.
DOI: 10.1038/ncomms5964
|
|
[47] |
KUMBHAR S B, CHAVAN S P, GAWADE S S. Adaptive tuned vibration absorber based on magnetorheological elastomer-shape memory alloy composite[J].
Mechanical Systems and Signal Processing, 2018, 100 : 208–223.
DOI: 10.1016/j.ymssp.2017.07.027
|
|
[48] |
GHAFOORI E, HOSSEINI E, LEINENBACH C, et al. Fatigue behavior of a Fe-Mn-Si shape memory alloy used for prestressed strengthening[J].
Materials & Design, 2017, 133 : 349–362.
|
|
[49] |
BONNOT E, ROMERO R, MAÑOSA L, et al. Elastocaloric effect associated with the martensitic transition in shape-memory alloys[J].
Physical Review Letters, 2008, 100 (12): 125901.
DOI: 10.1103/PhysRevLett.100.125901
|
|
[50] |
SCHMIDT M, SCHVTZE A, SEELECKE S. Scientific test setup for investigation of shape memory alloy based elastocaloric cooling processes[J].
International Journal of Refrigeration, 2015, 54 : 88–97.
DOI: 10.1016/j.ijrefrig.2015.03.001
|
|
[51] |
CUI J, WU Y, MUEHLBAUER J, et al. Demonstration of high efficiency elastocaloric cooling with large Delta T using NiTi wires[J].
Applied Physics Letters, 2012, 101 (7): 0739047.
|
|
[52] |
MOYA X, KAR-NARAYAN S, MATHUR N D. Caloric materials near ferroic phase transitions[J].
Nature Materials, 2014, 13 (5): 439–450.
DOI: 10.1038/nmat3951
|
|
[53] |
YUAN G, BAI Y, JIA Z, et al. Enhancement of interfacial bonding strength of SMA smart composites by using mechanical indented method[J].
Composites Part B:Engineering, 2016, 106 : 99–106.
DOI: 10.1016/j.compositesb.2016.08.033
|
|
[54] |
WANG W, RODRIGUE H, AHN S H. Deployable soft composite structures[J].
Scientific Reports, 2016, 6 : 20869.
DOI: 10.1038/srep20869
|
|
[55] |
BRAILOVSKI V, TERRIAULT P, GEORGES T, et al. SMA actuators for morphing wings[J].
Physics Procedia, 2010, 10 (12): 197–203.
|
|
[56] |
DONG Y, BOMING Z, JUN L. A changeable aerofoil actuated by shape memory alloy springs[J].
Materials Science and Engineering:A, 2008, 485 (1): 243–250.
|
|
[57] |
孟祥龙, 蔡伟. TiNi基形状记忆材料及应用研究进展[J].
中国材料进展, 2011, 30 (9): 13–20.
MENG X L, CAI W. Development of TiNi-based shape memory materials and their applications[J].
Journal of Rare Metals Letters, 2011, 30 (9): 13–20.
|
|
[58] |
KIM Y, CHENG S S, DIAKITE M, et al. Toward the development of a flexible mesoscale MRI-compatible neurosurgical continuum robot[J].
Journal of IEEE Transactions on Robotics, 2017, 33 (6): 1386–1397.
DOI: 10.1109/TRO.2017.2719035
|
|
[59] |
STRAUß S, DUDZIAK S, HAGEMANN R, et al. Induction of osteogenic differentiation of adipose derived stem cells by microstructured nitinol actuator-mediated mechanical stress[J].
PLoS ONE, 2012, 7 (12): e51264.
DOI: 10.1371/journal.pone.0051264
|
|
[60] |
JIN H, DONG E, XU M, et al. Soft and smart modular structures actuated by shape memory alloy (SMA) wires as tentacles of soft robots[J].
Smart Material Structures, 2016, 25 (8): 85026.
DOI: 10.1088/0964-1726/25/8/085026
|
|
[61] |
SEOK S, ONAL C D, CHO K J, et al. Meshworm:a peristaltic soft robot with antagonistic nickel titanium coil actuators[J].
IEEE/ASME Transactions on Mechatronics, 2013, 18 (5): 1485–1497.
DOI: 10.1109/TMECH.2012.2204070
|
|
[62] |
BARTLETT M D, KAZEM N, POWELL-PALM M J, et al. High thermal conductivity in soft elastomers with elongated liquid metal inclusions[J].
Proceedings of the National Academy of Sciences of the United States of America, 2017, 114 (9): 2143–2148.
DOI: 10.1073/pnas.1616377114
|
|
[63] |
LOH C S, YUKOI H, ARAI T. New shape memory alloy actor: design and application in the prosthetic hand[C]//Annual International Conference of the IEEE Engineering in Medicine and Biology. Japan: University of Tokyo, 2005. |
|
[64] |
GAISSERT N, MUGRAUER R, MUGRAUER G, et al. Inventing a micro aerial vehicle inspired by the mechanics of dragonfly flight: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)[C]//14th Annual Conference on Towards Autonomous Robotic Systems(TAROS). Berlin: Springer-Verlag, 2014. |
|
[65] |
KIM H, SONG S, AHN S. A turtle-like swimming robot using a smart soft composite (SSC) structure[J].
Smart Materials Structures, 2013, 22 (1): 014007.
DOI: 10.1088/0964-1726/22/1/014007
|
|
[66] |
LI Y, RIOS O, KEUM J K, et al. Photoresponsive liquid crystalline epoxy networks with shape memory behavior and dynamic ester bonds[J].
ACS Applied Materials and Interfaces, 2016, 8 (24): 15750–15757.
DOI: 10.1021/acsami.6b04374
|
|
[67] |
EBARA M. Shape-memory surfaces for cell mechanobiology[J].
Science and Technology of Advanced Materials, 2015, 16 (1): 14804.
DOI: 10.1088/1468-6996/16/1/014804
|
|
[68] |
查理斯贝.
原子辐射与聚合物[M]. 上海: 上海科学技术出版社, 1963.
Charlesby.
Atomic radiation and polymer[M]. Shanghai: Shanghai Science and Technology Press, 1963.
|
|
[69] |
OTA S. Current status of irradiated heat-shrinkable tubing in Japan[J].
Radiation Physics and Chemistry, 1981, 18 (1): 81–87.
|
|
[70] |
于明昕, 周啸. 溶液法合成聚氨酯的形状记忆材料及其性能[J].
清华大学学报(自然科学版), 2002, 42 (5): 607–610.
YU M X, ZHOU X. Performance of shape memory materials made of solution polymerized polyurethane[J].
Journal of Tsinghua University(Science and Technology), 2002, 42 (5): 607–610.
|
|
[71] |
CHOI J, KWON O C, JO W, et al. 4D printing technology:a review[J].
3D Printing and Additive Manufacturing, 2015, 2 (4): 159–167.
DOI: 10.1089/3dp.2015.0039
|
|
[72] |
DING Z, YUAN C, PENG X, et al. Direct 4D printing via active composite materials[J].
Science Advances, 2017, 3 (4): e1602890.
DOI: 10.1126/sciadv.1602890
|
|
[73] |
HUANG L, JIANG R, WU J, et al. Ultrafast digital printing toward 4D shape changing materials[J].
Advanced Materials, 2017, 29 (7): e1605390.
DOI: 10.1002/adma.201605390
|
|
[74] |
GE Q, QI H J, DUNN M L. Active materials by four-dimension printing[J].
Applied Physics Letters, 2013, 103 (13): e131901.
DOI: 10.1063/1.4819837
|
|
[75] |
FELTON S M, TOLLEY M T, SHIN B, et al. Self-folding with shape memory composites[J].
Soft Matter, 2013, 9 (32): 7688–7694.
DOI: 10.1039/c3sm51003d
|
|
[76] |
SHAFFER S, YANG K, VARGAS J, et al. On reducing anisotropy in 3D printed polymers via ionizing radiation[J].
Polymer (United Kingdom), 2014, 55 (23): 5969–5979.
|
|
[77] |
WANG J, SUN L, ZOU M, et al. Bioinspired shape-memory graphene film with tunable wettability[J].
Science Advances, 2017, 3 (6): e1700004.
DOI: 10.1126/sciadv.1700004
|
|
[78] |
CHEN H, LI Y, LIU Y, et al. Highly pH-sensitive polyurethane exhibiting shape memory and drug release[J].
Polymer Chemistry, 2014, 5 (17): 5168–5174.
DOI: 10.1039/C4PY00474D
|
|
[79] |
SHEN Q, TRABIA S, STALBAUM T, et al. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation[J].
Scientific Reports, 2016, 6 : e24462.
DOI: 10.1038/srep24462
|
|
[80] |
LI P, HAN Y, WANG W, et al. Novel programmable shape memory polystyrene film:a thermally induced beam-power splitter[J].
Scientific Reports, 2017, 7 : e44333.
DOI: 10.1038/srep44333
|
|
[81] |
XU H, YU C, WANG S, et al. Deformable, programmable, and shape-memorizing micro-optics[J].
Advanced Functional Materials, 2013, 23 (26): 3299–3306.
DOI: 10.1002/adfm.v23.26
|
|
[82] |
LU H, LIU Y, GOU J, et al. Synergistic effect of carbon nanofiber and carbon nanopaper on shape memory polymer composite[J].
Applied Physics Letters, 2010, 96 (8): e084102.
|
|
[83] |
RODRIGUEZ E D, LUO X, MATHER P T. Linear/network poly(ε-caprolactone) blends exhibiting shape memory assisted self-healing (SMASH)[J].
ACS Applied Materials & Interfaces, 2011, 3 (2): 152–161.
|
|
[84] |
WEI H, YAO Y, LIU Y, et al. A dual-functional polymeric system combining shape memory with self-healing properties[J].
Composites Part B:Engineering, 2015, 83 : 7–13.
DOI: 10.1016/j.compositesb.2015.08.019
|
|
[85] |
LU H, YU K, SUN S, et al. Mechanical and shape-memory behavior of shape-memory polymer composites with hybrid fillers[J].
Polymer International, 2010, 59 (6): 766–771.
|
|
[86] |
RODRIGUEZ J N, ZHU C, DUOSS E B, et al. Shape-morphing composites with designed micro-architectures[J].
Scientific Reports, 2016, 6 : 27933.
DOI: 10.1038/srep27933
|
|
[87] |
MOHR R, KRATZ K, WEIGEL T, et al. Initiation of shape-memory effect by inductive heating of magnetic nanoparticles in thermoplastic polymers[J].
Proceedings of the National Academy of Sciences of the United States of America, 2006, 103 (10): 3540–3545.
DOI: 10.1073/pnas.0600079103
|
|
[88] |
LIN L, ZHANG L, GUO Y. Mechanical properties and shape memory effect of thermal-responsive polymer based on PVA[J].
Materials Research Express, 2018, 5 (1): 015702.
DOI: 10.1088/2053-1591/aaa04a
|
|
[89] |
FAN J, LI G. High enthalpy storage thermoset network with giant stress and energy output in rubbery state[J].
Nature Communications, 2018, 9 (1): 642.
DOI: 10.1038/s41467-018-03094-2
|
|
[90] |
刘立武, 赵伟, 兰鑫, 等. 智能软聚合物及其航空航天领域应用[J].
哈尔滨工业大学学报, 2016 (5): 1–17.
LIU L W, ZHAO W, LAN X, et al. Soft intelligent material and its applications in aerospace[J].
Journal of Harbin Institute of Technology, 2016 (5): 1–17.
DOI: 10.11918/j.issn.0367-6234.2016.05.001
|
|
[91] |
孙健. 基于SMPC蒙皮和主动蜂窝结构的可变形机翼结构研究[D]. 哈尔滨: 哈尔滨工业大学, 2015. SUN J. Investigation on morphing wing structures based on shape memory polymer composite (SMPC) skins and active honeycomb structures[D]. Harbin: Harbin Institute of Technology, 2015. |
|
[92] |
陈钱, 白鹏, 尹维龙, 等. 飞机外翼段大尺度剪切式变后掠设计与分析[J].
空气动力学学报, 2013 (1): 40–46.
CHEN Q, BAI P, YIN W L, et al. Design and analysis of a variable-sweep morphing aircraft with outboard wing section large-scale shearing[J].
Journal of Acta Aerodynamica Sinica, 2013 (1): 40–46.
|
|
[93] |
LIN J, KNOLL C, WILLEY C.
Shape memory rigidizable inflatable (RI) structures for large space systems applications[M]. Newport: American Institute of Aeronautics and Astronautics, 2006.
|
|
[94] |
CADOGAN D, SCHEIR C. Expandable habitat technology demonstration for lunar and antarctic applications[J].
SAE Technical Papers, 2008 .
|
|
[95] |
RODRIGUEZ J N, CLUBB F J, WILSON T S, et al. In vivo response to an implanted shape memory polyurethane foam in a porcine aneurysm model[J].
Journal of Biomedical Materials Research-Part A, 2014, 102 (5): 1231–1242.
DOI: 10.1002/jbm.a.34782
|
|
[96] |
ZHAO W, LIU L, LAN X, et al. Adaptive repair device concept with shape memory polymer[J].
Smart Materials and Structures, 2017, 26 (2): 025027.
DOI: 10.1088/1361-665X/aa5595
|
|
[97] |
SMALL W, WILSON T, BENETT W, et al. Laser-activated shape memory polymer intravascular thrombectomy device[J].
Optics Express, 2005, 13 (20): 8204–8213.
DOI: 10.1364/OPEX.13.008204
|
|
[98] |
XU H, YU C, WANG S, et al. Deformable, programmable, and shape-memorizing micro-optics[J].
Advanced Functional Materials, 2013, 23 (26): 3299–3306.
DOI: 10.1002/adfm.v23.26
|
|
[99] |
JUNG Y C, CHO J W. Application of shape memory polyurethane in orthodontic[J].
Journal of Materials Science:Materials in Medicine, 2010, 21 (10): 2881–2886.
DOI: 10.1007/s10856-008-3538-7
|
|
[100] |
LENDLEIN A, LANGER R. BIODEGRADABLE, elastic shape-memory polymers for potential biomedical applications[J].
Science, 2002, 296 (5573): 1673–1676.
DOI: 10.1126/science.1066102
|
|
[101] |
SZEWCZYK J, MARCHANDISE E, FLAUD P, et al. Active catheters for neuroradiology[J].
Journal of Robotics and Mechatronics, 2011, 23 (1): 105–115.
DOI: 10.20965/jrm.2011.p0105
|
|
[102] |
ABADIE J, CHAILLET N, LEXCELLENT C. Modeling of a new SMA micro-actuator for active endoscopy applications[J].
Mechatronics, 2009, 19 (4): 437–442.
DOI: 10.1016/j.mechatronics.2008.11.010
|
|
[103] |
ZHANG J, YIN Y. SMA-based bionic integration design of self-sensor-actuator-structure for artificial skeletal muscle[J].
Sensors and Actuators A:Physical, 2012, 181 : 94–102.
DOI: 10.1016/j.sna.2012.05.017
|
|
[104] |
MU J, HOU C, WANG H, et al. Origami-inspired active graphene-based paper for programmable instant self-folding walking devices[J].
Science Advances, 2015, 1 (10): e1500533.
DOI: 10.1126/sciadv.1500533
|
|
[105] |
FELTON S, TOLLEY M, DEMAINE E, et al. A method for building self-folding machines[J].
Science, 2014, 345 (6197): 644–646.
DOI: 10.1126/science.1252610
|
|
[106] |
WESTON-DAWKES W P, ONG A C, MAJIT M R A, et al. Towards rapid mechanical customization of cm-scale self-folding agents[C]//IEEE International Conference on Intelligent Robots and Systems. Vancouver: JEEE, 2017: 4312-4318. |
|
[107] |
何先成, 高军鹏, 安学锋, 等. 环氧树脂基形状记忆复合材料的制备与性能[J].
航空材料学报, 2014, 34 (6): 62–66.
HE X C, GAO J P, AN X F, et al. Fabrication and performance of shape memory epoxy resin composite[J].
Journal of Aeronautical Materials, 2014, 34 (6): 62–66.
|
|