[1] |
FAHRENHOLTZ W G, WUCHINA E J, LEE W E, et al. Ultra-high temperature ceramics: materials for extreme environment applications[M]. Hoboken, New Jersey, USA: John Wiley & Sons, Inc, 2014.
|
|
[2] |
GREEN D J. An introduction to the mechanical properties of ceramics[M]. Cambridge: Cambridge University Press, 1998.
|
|
[3] | |
|
[4] |
BAI Y L, SRIKANTH N, CHUA C K, et al. Density functional theory study of M n+1AX n phases: a review[J]. Crit Rev Solid State Mat Sci, 2019, 44: 56-107. DOI:10.1080/10408436.2017.1370577 |
|
[5] |
BARSOUM M W. The M N+1AX N phases: a new class of solids; thermodynamically stable nanolaminates[J]. Prog Solid State Chem, 2000, 28: 201-281. DOI:10.1016/S0079-6786(00)00006-6 |
|
[6] |
ADE M, HILLEBRECHT H. Ternary borides Cr 2AlB 2, Cr 3AlB 4, and Cr 4AlB 6: the first members of the series (CrB 2) nCrAl with n=1, 2, 3 and a unifying concept for ternary borides as MAB-phases[J]. Inorganic Chemistry, 2015, 54: 6122-6135. DOI:10.1021/acs.inorgchem.5b00049 |
|
[7] |
KOTA S, SOKOL M, BARSOUM M W. A progress report on the MAB phases: atomically laminated, ternary transition metal borides[J]. International Materials Reviews, 2020, 65: 226-255. DOI:10.1080/09506608.2019.1637090 |
|
[8] | |
|
[9] |
NOWOTNY H, ROGL P. Ternary metal borides[M]. Berlin, Heidelberg: Springer Berlin Heidelberg, 1977.
|
|
[10] |
TAN X Y, CHAI P, THOMPSON C M, et al. Magnetocaloric effect in AlFe 2B 2: toward magnetic refrigerants from earth-abundant elements[J]. J Am Chem Soc, 2013, 135: 9553-9557. DOI:10.1021/ja404107p |
|
[11] |
KOTA S, ZAPATA-SOLVAS E, LY A, et al. Synthesis and characterization of an alumina forming nanolaminated boride: MoAlB[J]. Sci Rep, 2016, 6: 9. DOI:10.1038/s41598-016-0002-7 |
|
[12] |
LI N, BAI Y L, WANG S, et al. Rapid synthesis, electrical, and mechanical properties of polycrystalline Fe 2AlB 2 bulk from elemental powders[J]. J Am Ceram Soc, 2017, 100: 4407-4411. DOI:10.1111/jace.15058 |
|
[13] | |
|
[14] |
ZHANG H B, HU C F, SATO K, et al. Tailoring Ti 3AlC 2 ceramic with high anisotropic physical and mechanical properties[J]. J Eur Ceram Soc, 2015, 35: 393-397. DOI:10.1016/j.jeurceramsoc.2014.08.026 |
|
[15] |
XIE X, YANG R, CUI Y, et al. Fabrication of textured Ti 2AlC lamellar composites with improved mechanical properties[J]. J Mater Sci Technol, 2020, 38: 86-92. DOI:10.1016/j.jmst.2019.05.070 |
|
[16] | |
|
[17] |
BAI Y L, DUFF A, JAYASEELAN D D, et al. DFT predictions of crystal structure, electronic structure, compressibility, and elastic properties of Hf-Al-C carbides[J]. J Am Ceram Soc, 2016, 99: 3449-3457. DOI:10.1111/jace.14361 |
|
[18] |
WANG C Y, HAN H, ZHAO Y Y, et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles[J]. J Am Ceram Soc, 2018, 101: 756-772. DOI:10.1111/jace.15252 |
|
[19] |
BAI Y L, QI X X, DUFF A, et al. Density functional theory insights into ternary layered boride MoAlB[J]. Acta Mater, 2017, 132: 69-81. DOI:10.1016/j.actamat.2017.04.031 |
|
[20] |
BAI Y L, HE X D, WANG R G, et al. An ab initio study on compressibility of Al-containing MAX-phase carbides[J]. J Appl Phys, 2013, 114: 173709. DOI:10.1063/1.4829282 |
|
[21] |
JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-phasen Ti 2InC, Zr 2InC, Hf 2InC und Ti 2GeC[J]. Monatshefte Fur Chemie, 1963, 94: 1201-1205. DOI:10.1007/BF00905711 |
|
[22] |
JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Kohlenstoffhaltige ternare verbindungen (V-Ge-C, Nb-Ga-C, TA-Ga-C, Ta-Ge C, Cr-Ga-C UND Cr-Ge-C)[J]. Monatshefte Fur Chemie, 1963, 94: 844-850. DOI:10.1007/BF00902358 |
|
[23] |
JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-Phasen: Ti 2CdC, Ti 2GaC, Ti 2GaN, Ti 2InN, Zr 2InN und Nb 2GaC[J]. Monatshefte für Chemie/Chemical Monthly, 1964, 95: 178-179. DOI:10.1007/BF00909264 |
|
[24] |
JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Die H-Phasen Ti 2TlC, Ti 2PbC, Nb 2InC, Nb 2SnC und Ta 2GaC[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1964, 95: 431-435. DOI:10.1007/BF00901306 |
|
[25] |
JEITSCHK W, NOWOTNY H. Crystal structure of Ti 3SiC 2 a new type of complex carbide[J]. Monatshefte Fur Chemie, 1967, 98: 329-337. DOI:10.1007/BF00899949 |
|
[26] |
JEITSCHKO W, NOWOTNY H. Die Kristallstruktur von Ti 3SiC 2-ein neuer Komplexcarbid-Typ[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1967, 98: 329-337. DOI:10.1007/BF00899949 |
|
[27] |
WOLFSGRUBER H, NOWOTNY H, BENESOVSKY F. Die Kristallstruktur von Ti 3GeC 2[J]. Monatshefte für Chemie und verwandte Teile anderer Wissenschaften, 1967, 98: 2403-2405. DOI:10.1007/BF00902438 |
|
[28] |
JEITSCHKO W, NOWOTNY H, BENESOVSKY F. Ti 2AlN, eine stickstoffhaltige H-phase[J]. Monatshefte Fur Chemie, 1963, 94: 1198-337. DOI:10.1007/BF00905710 |
|
[29] |
NOWOTNY V H. Strukturchemie einiger Verbindungen der übergangsmetalle mit den elementen C, Si, Ge, Sn[J]. Prog Solid State Chem, 1971, 5: 27-70. DOI:10.1016/0079-6786(71)90016-1 |
|
[30] |
PIETZKA M, SCHUSTER J. Summary of constitutional data on the aluminum-carbon-titanium system[J]. Journal of Phase Equilibria, 1994, 15: 392-400. DOI:10.1007/BF02647559 |
|
[31] |
NICKL J J, SCHWEITZER K K, LUXENBERG P. Gasphasenabscheidung im system Ti-Si-C[J]. Journal of the Less Common Metals, 1972, 26: 335-353. DOI:10.1016/0022-5088(72)90083-5 |
|
[32] | |
|
[33] | |
|
[34] | |
|
[35] | |
|
[36] |
ISEKI T, YANO T, CHUNG Y S. Wetting and properties of reaction products in active metal brazing of SiC[J]. J Ceram Soc Jpn, 1989, 97: 710-714. DOI:10.2109/jcersj.97.710 |
|
[37] |
BARSOUM M W, ZHEN T, KALIDINDI S R, et al. Fully reversible, dislocation-based compressive deformation of Ti 3SiC 2 to 1 GPa[J]. Nat Mater, 2003, 2: 107-111. DOI:10.1038/nmat814 |
|
[38] |
ZHOU A G, BASU S, BARSOUM MW. Kinking nonlinear elasticity, damping and microyielding of hexagonal close-packed metals[J]. Acta Mater, 2008, 56: 60-67. DOI:10.1016/j.actamat.2007.08.050 |
|
[39] |
BARSOUM M W, YOO H I, POLUSHINA I K, et al. Electrical conductivity, thermopower, and hall effect of Ti 3AlC 2, Ti 4AlN 3, and Ti 3SiC 2[J]. Phys Rev B, 2000, 62: 10194-10198. DOI:10.1103/PhysRevB.62.10194 |
|
[40] |
BARSOUM M W, ELRAGHY T, OGBUJI L. Oxidation of Ti 3SiC 2 in air[J]. J Electrochem Soc, 1997, 144: 2508-2516. DOI:10.1149/1.1837846 |
|
[41] |
BARSOUM M W, BRODKIN D, EL-RAGHY T. Layered machinable ceramics for high temperature applications[J]. Scr Mater, 1997, 36: 535-541. DOI:10.1016/S1359-6462(96)00418-6 |
|
[42] |
BARSOUM M W, YAROSCHUK G, TYAGI S. Fabrication and characterization of M2SnC ( M=Ti, Zr, Hf and Nb)[J]. Scr Mater, 1997, 37: 1583-1591. DOI:10.1016/S1359-6462(97)00288-1 |
|
[43] |
BARSOUM M W, ALI M, EL-RAGHY T. Processing and characterization of Ti 2AlC, Ti 2AlN, and Ti 2AlC 0.5N 0.5[J]. Metall Mater Trans A, 2000, 31: 1857-1865. DOI:10.1007/s11661-006-0243-3 |
|
[44] |
EL-RAGHY T, CHAKRABORTY S, BARSOUM M W. Synthesis and characterization of Hf 2PbC, Zr 2PbC and M2SnC ( M=Ti, Hf, Nb or Zr)[J]. J Eur Ceram Soc, 2000, 20: 2619-2625. DOI:10.1016/S0955-2219(00)00127-8 |
|
[45] |
WANG X H, ZHOU Y C. Layered machinable and electrically conductive Ti 2AlC and Ti 3AlC 2 ceramics: a review[J]. J Mater Sci Technol, 2010, 26: 385-416. DOI:10.1016/S1005-0302(10)60064-3 |
|
[46] |
XU L D, ZHU D G, GRASSO S, et al. Effect of texture microstructure on tribological properties of tailored Ti 3AlC 2 ceramic[J]. Journal of Advanced Ceramics, 2017, 6: 120-128. DOI:10.1007/s40145-017-0224-6 |
|
[47] |
CAI L P, HUANG Z Y, HU W Q, et al. Fabrication, mechanical properties, and tribological behaviors of Ti 2AlC and Ti 2AlSn 0.2C solid solutions[J]. Journal of Advanced Ceramics, 2017, 6: 90-99. DOI:10.1007/s40145-017-0221-9 |
|
[48] | |
|
[49] |
BARSOUM M W, FARBER L, LEVIN I, et al. High-resolution transmission electron microscopy of Ti 4AlN 3, or Ti 3Al 2 N 2 revisited[J]. J Am Ceram Soc, 1999, 82: 2545-2547. DOI:10.1111/j.1151-2916.1999.tb02117.x |
|
[50] |
HOLM B, AHUJA R, LI S, et al. Theory of the ternary layered system Ti-Al-N[J]. J Appl Phys, 2002, 91: 9874-9877. DOI:10.1063/1.1476076 |
|
[51] |
PALMQUIST J P, LI S, PERSSON P O A, et al. M n+1AX n phases in the Ti-Si-C system studied by thin-film synthesis and ab initio calculations[J]. Phys Rev B, 2004, 70: 165401. DOI:10.1103/PhysRevB.70.165401 |
|
[52] |
HOGBERG H, EKLUND P, EMMERLICH J, et al. Epitaxial Ti 2GeC, Ti 3GeC 2, and Ti 4GeC 3 MAX-phase thin films grown by magnetron sputtering[J]. J Mater Res, 2005, 20: 779-782. DOI:10.1557/JMR.2005.0105 |
|
[53] |
LIN Z J, ZHUO M J, ZHOU Y C, et al. Structural characterization of a new layered-ternary Ta 4AlC 3 ceramic[J]. J Mater Res, 2006, 21: 2587-2592. DOI:10.1557/jmr.2006.0310 |
|
[54] |
MANOUN B, SAXENA S K, EL-RAGHY T, et al. High-pressure X-ray diffraction study of Ta 4AlC 3[J]. Appl Phys Lett, 2006, 88: 201902. DOI:10.1063/1.2202387 |
|
[55] |
EKLUND P, PALMQUIST J P, HOWING J, et al. Ta 4AlC 3: phase determination, polymorphism and deformation[J]. Acta Mater, 2007, 55: 4723-4729. DOI:10.1016/j.actamat.2007.04.040 |
|
[56] |
ETZKORN J, ADE M, HILLEBRECHT H. Ta 3AlC 2 and Ta 4AlC 3-single-crystal investigations of two new ternary carbides of tantalum synthesized by the molten metal technique[J]. Inorg Chem, 2007, 46: 1410-1418. DOI:10.1021/ic062231y |
|
[57] |
ETZKORN J, ADE M, HILLEBRECHT H. V 2AlC, V 4AlC 3-x ( x approximate to 0.31), and V 12Al 3C 8: synthesis, crystal growth, structure, and superstructure[J]. Inorg Chem, 2007, 46: 7646-7653. DOI:10.1021/ic700382y |
|
[58] | |
|
[59] | |
|
[60] |
ETZKORN J, ADE M, KOTZOTT D, et al. Ti 2GaC, Ti 4GaC 3 and Cr 2GaC-synthesis, crystal growth and structure analysis of Ga-containing MAX-phases M n+1GaC n with M=Ti, Cr and n=1, 3[J]. J Solid State Chem, 2009, 182: 995-1002. DOI:10.1016/j.jssc.2009.01.003 |
|
[61] |
SEGALL M D, LINDAN P J D, PROBERT M J, et al. First-principles simulation: ideas, illustrations and the CASTEP code[J]. J Phys-Condes Matter, 2002, 14: 2717-2744. DOI:10.1088/0953-8984/14/11/301 |
|
[62] |
MEDVEDEVA N I, NOVIKOV D L, IVANOVSKY A L, et al. Electronic properties of Ti 3SiC 2-based solid solutions[J]. Phys Rev B, 1998, 58: 16042-16050. DOI:10.1103/PhysRevB.58.16042 |
|
[63] |
WANG J Y, ZHOU Y C. Ab initio investigation of the electronic structure and bonding properties of the layered ternary compound Ti 3SiC 2 at high pressure[J]. J Phys-Condes Matter, 2003, 15: 1983-1991. DOI:10.1088/0953-8984/15/12/315 |
|
[64] |
WANG J Y, ZHOU Y C. Dependence of elastic stiffness on electronic band structure of nanolaminate M2AlC ( M=Ti, V, Nb, and Cr) ceramics[J]. Phys Rev B, 2004, 69: 214111. DOI:10.1103/PhysRevB.69.214111 |
|
[65] |
SUN Z M, LI S, AHUJA R, et al. Calculated elastic properties of M 2AlC (M=Ti, V, Cr, Nb and Ta)[J]. Solid State Commun, 2004, 129: 589-592. DOI:10.1016/j.ssc.2003.12.008 |
|
[66] | |
|
[67] |
LIAO T, WANG J Y, ZHOU Y C. Deformation modes and ideal strengths of ternary layered Ti 2AlC and Ti 2AlN from first-principles calculations[J]. Phys Rev B, 2006, 73: 214109. DOI:10.1103/PhysRevB.73.214109 |
|
[68] |
MUSIC D, SUN Z M, VOEVODIN A A, et al. Electronic structure and shearing in nanolaminated ternary carbides[J]. Solid State Commun, 2006, 139: 139-143. DOI:10.1016/j.ssc.2006.06.007 |
|
[69] |
LIAO T, WANG J Y, ZHOU Y C. Superior mechanical properties of Nb 2AsC to those of other layered ternary carbides: a first-principles study[J]. J Phys-Condes Matter, 2006, 18: L527-L533. DOI:10.1088/0953-8984/18/41/L04 |
|
[70] |
FARBER L, LEVIN I, BARSOUM M W, et al. High-resolution transmission electron microscopy of some Ti n+1AX n compounds ( n=1, 2; A=Al or Si; X=C or N)[J]. J Appl Phys, 1999, 86: 2540-2543. DOI:10.1063/1.371089 |
|
[71] | |
|
[72] |
HE X D, BAI Y L, ZHU C C, et al. Polymorphism of newly discovered Ti 4GaC 3: a first-principles study[J]. Acta Mater, 2011, 59: 5523-5533. DOI:10.1016/j.actamat.2011.05.025 |
|
[73] |
BAI Y L, HE X D, WANG R G, et al. Effect of transition metal (M) and M-C slabs on equilibrium properties of Al-containing MAX carbides: An ab initio study[J]. Comput Mater Sci, 2014, 91: 28-37. DOI:10.1016/j.commatsci.2014.04.033 |
|
[74] |
EKLUND P, BECKERS M, JANSSON U, et al. The M n+1AX n phases: materials science and thin-film processing[J]. Thin Solid Films, 2010, 518: 1851-1878. DOI:10.1016/j.tsf.2009.07.184 |
|
[75] | |
|
[76] |
YU R, ZHANG X F, HE L L, et al. Topology of charge density and elastic anisotropy of Ti 3SiC 2 polymorphs[J]. J Mater Res, 2005, 20: 1180-1185. DOI:10.1557/JMR.2005.0145 |
|
[77] |
WANG Z W, ZHA C S, BARSOUM M W. Compressibility and pressure-induced phase transformation of Ti 3GeC 2[J]. Appl Phys Lett, 2004, 85: 3453-3455. DOI:10.1063/1.1808491 |
|
[78] | |
|
[79] |
ONODERA A, HIRANO H, YUASA T, et al. Static compression of Ti 3SiC 2 to 61 GPa[J]. Appl Phys Lett, 1999, 74: 3782-3784. DOI:10.1063/1.124178 |
|
[80] |
JORDAN J L, SEKINE T, KOBAYASHI T, et al. High pressure behavior of titanium-silicon carbide (Ti 3SiC 2)[J]. J Appl Phys, 2003, 93: 9639-9643. DOI:10.1063/1.1573345 |
|
[81] |
BAI Y L, HE X D, WANG R G, et al. High temperature physical and mechanical properties of large-scale Ti 2AlC bulk synthesized by self-propagating high temperature combustion synthesis with pseudo hot isostatic pressing[J]. J Eur Ceram Soc, 2013, 33: 2435-2445. DOI:10.1016/j.jeurceramsoc.2013.04.014 |
|
[82] | |
|
[83] |
BARSOUM M W. Mechanical properties: ambient temperature[C]//MAX Phases (Properties of Machianable Ternary Carbides and Nitrides). Weinheim, Germany: John Wiley & Sons, 2013: 307-361.
|
|
[84] |
周玉. 陶瓷材料学[M]. 北京: 科学出版社, 2004. ZHOU Y. Ceramic materials science[M]. Beijing: Science Press, 2004.
|
|
[85] |
GILBERT C J, BLOYER D R, BARSOUM M W, et al. Fatigue-crack growth and fracture properties of coarse and fine-grained Ti 3SiC 2[J]. Scr Mater, 2000, 42: 761-767. DOI:10.1016/S1359-6462(99)00427-3 |
|
[86] |
LI S B, YU W B, ZHAI H X, et al. Mechanical properties of low temperature synthesized dense and fine-grained Cr 2AlC ceramics[J]. J Eur Ceram Soc, 2011, 31: 217-224. DOI:10.1016/j.jeurceramsoc.2010.08.014 |
|
[87] |
CHEN D, SHIRATO K, BARSOUM M W, et al. Cyclic fatigue-crack growth and fracture properties in Ti 3SiC 2 ceramics at elevated temperatures[J]. J Am Ceram Soc, 2001, 84: 2914-2920. DOI:10.1111/j.1151-2916.2001.tb01115.x |
|
[88] |
GANGULY A, ZHEN T, BARSOUM M W. Synthesis and mechanical properties of Ti 3GeC 2 and Ti 3(Si xGe 1-x) C 2( x=0.5, 0.75) solid solutions[J]. J Alloy Compd, 2004, 376: 287-295. DOI:10.1016/j.jallcom.2004.01.011 |
|
[89] | |
|
[90] | |
|
[91] | |
|
[92] | |
|
[93] |
HU C F, HE L F, ZHANG J, et al. Microstructure and properties of bulk Ta 2AlC ceramic synthesized by an in situ reaction/hot pressing method[J]. J Eur Ceram Soc, 2008, 28: 1679-1685. DOI:10.1016/j.jeurceramsoc.2007.10.006 |
|
[94] |
YING G B, HE X D, LI M W, et al. Synthesis and mechanical properties of high-purity Cr 2AlC ceramic[J]. Mater Sci Eng A, 2011, 528: 2635-2640. DOI:10.1016/j.msea.2010.12.039 |
|
[95] | |
|
[96] |
WANG X H, ZHOU Y C. Microstructure and properties of Ti 3AlC 2 prepared by the solid-liquid reaction synthesis and simultaneous in-situ hot pressing process[J]. Acta Mater, 2002, 50: 3141-3149. |
|
[97] |
HOSSEIN-ZADEH M, MIRZAEE O, MOHAMMADIAN-SEMNANI H. An investigation into the microstructure and mechanical properties of V 4AlC 3MAX phase prepared by spark plasma sintering[J]. Ceramics International, 2019, 45: 7446-7457. DOI:10.1016/j.ceramint.2019.01.036 |
|
[98] |
HU C F, LI F Z, HE L F, et al. In situ reaction synthesis, electrical and thermal, and mechanical properties of Nb 4AlC 3[J]. J Am Ceram Soc, 2008, 91: 2258-2263. DOI:10.1111/j.1551-2916.2008.02424.x |
|
[99] |
HU C F, LIN Z J, HE L F, et al. Physical and mechanical properties of bulk Ta 4AlC 3 ceramic prepared by an in situ reaction synthesis/hot-pressing method[J]. J Am Ceram Soc, 2007, 90: 2542-2548. DOI:10.1111/j.1551-2916.2007.01804.x |
|
[100] |
WANG C, HAN H, ZHAO Y, et al. Elastic, mechanical, electronic, and defective properties of Zr-Al-C nanolaminates from first principles[J]. Journal of the American Ceramic Society, 2018, 101: 756-772. DOI:10.1111/jace.15252 |
|
[101] | |
|
[102] |
HE L F, ZHOU Y C, BAO Y W, et al. Synthesis, physical, and mechanical properties of bulk Zr 3Al 3C 5ceramic[J]. J Am Ceram Soc, 2007, 90: 1164-1170. DOI:10.1111/j.1551-2916.2007.01518.x |
|
[103] | |
|
[104] |
XU L, SHI O, LIU C, et al. Synthesis, microstructure and properties of MoAlB ceramics[J]. Ceramics International, 2018, 44: 13396-13401. DOI:10.1016/j.ceramint.2018.04.177 |
|
[105] |
BAI Y L, QI X X, HE X D, et al. Phase stability and weak metallic bonding within ternary-layered borides CrAlB, Cr 2AlB 2, Cr 3AlB 4, and Cr 4AlB 6[J]. J Am Ceram Soc, 2019, 102: 3715-3727. DOI:10.1111/jace.16206 |
|
[106] |
齐欣欣, 宋广平, 尹维龙, 等. 新型三元层状硼化物Cr 4AlB 4的物相稳定性和力学行为分析[J]. 无机材料学报, 2020, 35(1): 53-60. QI X X, SONG G P, YIN W L, et al. Analysis on stability and mechanical property of newly-discovered ternary layered boride Cr 4AlB 4[J]. Journal of Inorganic Materials, 2020, 35(1): 53-60. |
|
[107] |
BAI Y L, HE X D, LI Y B, et al. Rapid synthesis of bulk Ti 2AlC by self-propagating high temperature combustion synthesis with a pseudo-hot isostatic pressing process[J]. J Mater Res, 2009, 24: 2528-2535. DOI:10.1557/jmr.2009.0327 |
|
[108] |
成来飞, 张立同, 梅辉. 陶瓷基复合材料强韧化与应用基础[M]. 北京: 化学工业出版社, 2019. CHENG L F, ZHANG L T, MEI H. Strengthening and toughening of ceramic matrix composites and application basis[M]. Beijing: Chemical Industry Press, 2019.
|
|
[109] |
ZHOU Y C, HE L F, LIN Z J, et al. Synthesis and structure-property relationships of a new family of layered carbides in Zr-Al(Si)-C and Hf-Al(Si)-C systems[J]. J Eur Ceram Soc, 2013, 33: 2831-2865. DOI:10.1016/j.jeurceramsoc.2013.05.020 |
|
[110] | |
|
[111] | |
|
[112] |
吕春燕, 顾华志, 汪厚植, 等. ZrB 2系陶瓷材料的研究进展[J]. 材料导报, 2003, 17: 246-249. LU C Y, GU H Z, WANG H Z, et al. Progress in research on ZrB 2-containing ceramics[J]. Materials Reports, 2003, 17: 246-249. DOI:10.3321/j.issn:1005-023X.2003.z1.075 |
|
[113] | |
|
[114] | |
|
[115] |
LAMICHHANE T N, XIANG L, LIN Q, et al. Magnetic properties of single crystalline itinerant ferromagnet Fe 2AlB 2[J]. Physical Review Materials, 2018, 2: 084408. DOI:10.1103/PhysRevMaterials.2.084408 |
|
[116] |
KIM K, CHEN C, NISHIO-HAMANE D, et al. Topochemical synthesis of phase-pure Mo 2AlB 2 through staging mechanism[J]. Chemical Communications, 2019, 55: 9295-9298. DOI:10.1039/C9CC03855H |
|
[117] | |
|
[118] |
LU J, KOTA S, BARSOUM M W, et al. Atomic structure and lattice defects in nanolaminated ternary transition metal borides[J]. Materials Research Letters, 2017, 5(4): 235-241. DOI:10.1080/21663831.2016.1245682 |
|
[119] |
JEITSCHKO W. Die Kristallstruktur von MoAlB[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1966, 97: 1472-1476. DOI:10.1007/BF00902599 |
|
[120] | |
|
[121] | |
|
[122] |
JUNG W, PETRY K. Ternäre boride des ruthemums mit aluminium und Zink[J]. Zeitschrift Fur kristallographie, 1988, 182(1/4): 153-154. |
|
[123] | |
|
[124] |
HALLA F, THURY W. über boride von molybdän und wolfram[J]. Zeitschrift für anorganische und allgemeine Chemie, 1942, 249: 229-237. DOI:10.1002/zaac.19422490301 |
|
[125] | |
|
[126] |
DU Q, CHEN G, YANG W, et al. Magnetic properties of AlFe 2B 2 and CeMn 2Si 2 synthesized by melt spinning of stoichiometric compositions[J]. Japanese Journal of Applied Physics, 2015, 54: 053003. DOI:10.7567/JJAP.54.053003 |
|
[127] | |
|
[128] | |
|
[129] |
WANG S, XU Y J, YU Z G, et al. Synthesis, microstructure and mechanical properties of a MoAlB ceramic prepared by spark plasma sintering from elemental powders[J]. Ceram Int, 2019, 45: 23515-23521. DOI:10.1016/j.ceramint.2019.08.060 |
|
[130] |
BEI G P, van der ZWAAG S, KOTA S, et al. Ultra-high temperature ablation behavior of MoAlB ceramics under an oxyacetylene flame[J]. J Eur Ceram Soc, 2019, 39: 2010-2017. DOI:10.1016/j.jeurceramsoc.2019.01.016 |
|
[131] |
LIU J, LI S B, YAO B X, et al. Rapid synthesis and characterization of a nanolaminated Fe 2AlB 2 compound[J]. J Alloy Compd, 2018, 766: 488-497. DOI:10.1016/j.jallcom.2018.06.352 |
|
[132] | |
|
[133] |
SAMMIS C G, ASHBY M F. The failure of brittle porous solids under compressive stress states[J]. Acta Metallurgica, 1986, 34: 511-526. DOI:10.1016/0001-6160(86)90087-8 |
|
[134] | |
|
[135] |
BAI Y L, SUN D D, LI N, et al. High-temperature mechanical properties and thermal shock behavior of ternary-layered MAB phases Fe 2AlB 2[J]. Int J Refract Met Hard Mat, 2019, 80: 151-160. DOI:10.1016/j.ijrmhm.2019.01.010 |
|
[136] | |
|
[137] |
曹学强. 热障涂层新材料和新结构[M]. 北京: 科学出版社, 2016. CAO X Q. Nevo materials and new structures of thermal barrier coatings[M]. Beijng: Science Press, 2016.
|
|
[138] | |
|
[139] | |
|
[140] |
BAI Y L, QI X X, HE X D, et al. Experimental and DFT insights into elastic, magnetic, electrical, and thermodynamic properties of MAB-phase Fe 2AlB 2[J]. J Am Ceram Soc, 2020, 103: 5837-5851. DOI:10.1111/jace.17205 |
|
[141] |
GUTFLEISCH O, WILLARD M A, BRUCK E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Adv Mater, 2011, 23: 821-842. DOI:10.1002/adma.201002180 |
|
[142] | |
|
[143] | |
|
[144] | |
|
[145] |
BARUA R, LEJEUNE B T, JENSEN B A, et al. Enhanced room-temperature magnetocaloric effect and tunable magnetic response in Ga-and Ge-substituted AlFe 2B 2[J]. J Alloy Compd, 2019, 777: 1030-1038. DOI:10.1016/j.jallcom.2018.10.206 |
|
[146] |
HIRT S, YUAN F, MOZHARIVSKYJ Y, et al. AlFe 2-xCo xB 2 ( x=0-0.30): T C tuning through cosubstitution for a promising magnetocaloric material realized by spark plasma sintering[J]. Inorg Chem, 2016, 55: 9677-9684. DOI:10.1021/acs.inorgchem.6b01467 |
|
[147] |
LEVIN E M, JENSEN B A, BARUA R, et al. Effects of Al content and annealing on the phases formation, lattice parameters, and magnetization of Al xFe 2B 2 ( x=1.0, 1.1, 1.2) alloys[J]. Physical Review Materials, 2018, 2(3): 034403. DOI:10.1103/PhysRevMaterials.2.034403 |
|
[148] |
ZHANG X, LEJEUNE B T, BARUA R, et al. Estimating the in-operando stabilities of AlFe 2B 2-based compounds for magnetic refrigeration[J]. Journal of Alloys and Compounds, 2020, 823: 153693. DOI:10.1016/j.jallcom.2020.153693 |
|
[149] | |
|
[150] |
TEGUS O, BRUCK E, BUSCHOW K H J, et al. Transition-metal-based magnetic refrigerants for room-temperature applications[J]. Nature, 2002, 415: 150-152. DOI:10.1038/415150a |
|
[151] |
WANG J L, CAMPBELL S J, ZENG R, et al. Re-entrant ferromagnet PrMn 2Ge 0.8Si 1.2: magnetocaloric effect[J]. J Appl Phys, 2009, 105: 3. |
|
[152] | |
|
[153] |
BENAMOR A, KOTA S, CHIKER N, et al. Friction and wear properties of MoAlB against Al 2O 3 and 100Cr6 steel counterparts[J]. J Eur Ceram Soc, 2019, 39: 868-877. DOI:10.1016/j.jeurceramsoc.2018.10.026 |
|