测绘地理信息   2021, Vol. 46 Issue (5): 17-20
0
一种有效的多模GNSS高维模糊度固定算法[PDF全文]
肖玉钢1, 王峥1, 喻守刚1, 刘艳1, 陈建刚1    
1. 长江空间信息技术工程有限公司(武汉), 湖北 武汉, 430010
摘要: 高维模糊度固定是目前多模全球导航卫星系统(global navigation satellite system, GNSS)数据处理领域的研究热点与难点。提出了改进的LAMBDA算法, 并将其与现有方法组合, 总结出一套完整的, 适合于多模GNSS数据处理的高维模糊度固定策略。实测数据分析结果表明, 采用改进LAMBDA算法可将多模GNSS模糊度固定Ratio均值由2.81提高至5.75;基线重复性在模糊度固定后大幅提升, 验证了算法的有效性。该算法可广泛应用于各类多模GNSS数据处理实践中。
关键词: 多模全球导航卫星系统(global navigation satellite system, GNSS)    高维模糊度    LAMBDA    决策函数法    
An Effective Multi-GNSS High-Dimensional Ambiguity Resolution Algorithm
XIAO Yugang1, WANG Zheng1, YU Shougang1, LIU Yan1, CHEN Jiangang1    
1. Changjiang Spatial Information Technology Engineering Co., Ltd., Wuhan 430010, China
Abstract: High-dimensional ambiguity resolution(AR)is the focus and the difficulty in the current field of multi-global navigation satellite system(GNSS)data processing. We propose a modified LAMBDA algorithm, and we combine it with the existing AR methods to summarize a whole set of multiGNSS high-dimensional AR strategy. The analysis results of the measured data show that the mean Ratio value of multiGNSS AR increases from 2. 81 to 5. 75 with the modified LAMBDA algorithm, and the repeatability of baselines is improved significantly after AR procedure. The proposed algorithm can be widely used in a variety of multi-GNSS data processing practice.
Key words: multi-global navigation satellite system(GNSS)    high-dimensional ambiguity    LAMBDA    decision function algorithm    

GPS在军事和民用领域有巨大优势,世界多个国家和组织纷纷开始建设自主的全球导航卫星系统(global navigation satellite system, GNSS)。目前已经建成或正在建设的有美国的GPS、俄罗斯的GLONASS、欧盟的Galileo和中国的北斗卫星导航系统(BeiDou navigation satellite system, BDS)。多GNSS并存的局面为进一步优化系统的服务性能、拓展其应用空间提供了可能。相较于单一的GPS,多系统不仅能扩展GNSS应用的地域范围,增加可见卫星数量和观测值类型,还能优化卫星几何构型,缓解高山、城市峡谷等对定位、导航、授时(posi‐tioning, navigation and timing, PNT)用户的影响,进一步提升服务的可用性、精度和可靠性[1-9]。总之,多GNSS服务可以实现不同系统间的优势互补,有望大幅提升GNSS多项性能指标[10-12]

多模GNSS数据处理中,待估模糊度参数的维数将随系统的增加而快速增加。目前,在GNSS高精度静态后处理算法中较多采用的是LAMBDA算法和序贯决策函数法,但它们在高维模糊度固定中均存在不足。LAMBDA算法被认为是目前最优秀的模糊度固定算法,已得到广泛应用[13, 14]。在实际数据处理中,一般认为LAMBDA阈值取3即可保证模糊度固定结果的可靠性[15]。但Ratio值与数学模型、自由度等相关,是变化的。当模糊度维数较高时,即使所选模糊度向量正确,Ratio值也并不显著,难以判断是否应将其取为模糊度固定解。理论而言,LAMBDA算法适用于任何场合,但由于上述限制,其较多应用于动态GNSS数据处理等模糊度维数较低的情况。对于观测时段较长的静态GNSS或多模GNSS数据后处理,LAMBDA算法应用受限。若采用序贯决策函数法进行模糊度固定,需要外部定义浮点模糊度小数部分(位于[-0.5, 0.5])及其估值中误差的阈值,两者应满足一定条件[16]。若某模糊度浮点解的小数部分或其标准差大于0.15周,则该模糊度根据决策函数法不能被固定,而此情况在卫星几何分布较差或观测历元数较少时经常发生。因此,序贯决策函数法仅适用于浮点模糊度估值精度较高的模糊度固定问题。

为提高多模GNSS数据处理中高维模糊度固定的效率和可靠性,本文提出了改进的LAMBDA算法,并与序贯决策函数法结合,总结出一套适合多模GNSS数据处理的高维模糊度固定策略,以提高多模GNSS数据处理中模糊度固定的效率。

1 多模GNSS高维模糊度固定新方法

设有两个GNSS系统的观测值参与解算,其观测方程可表示为:

$ \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{v}}_1}}\\ {{\mathit{\boldsymbol{v}}_2}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} \begin{array}{l} {\mathit{\boldsymbol{A}}_{11}}\\ {\mathit{\boldsymbol{A}}_{21}} \end{array}&\begin{array}{l} {\mathit{\boldsymbol{A}}_{12}}\\ 0 \end{array}&\begin{array}{l} 0\\ {\mathit{\boldsymbol{A}}_{23}} \end{array} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} \mathit{\boldsymbol{x}}\\ {{\mathit{\boldsymbol{b}}_1}}\\ {{\mathit{\boldsymbol{b}}_2}} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{l}}_1}}\\ {{\mathit{\boldsymbol{l}}_2}} \end{array}} \right] $ (1)

式中,$\left[ {\begin{array}{*{20}{c}} \begin{array}{l} {\mathit{\boldsymbol{A}}_{11}}\\ {\mathit{\boldsymbol{A}}_{21}} \end{array}&\begin{array}{l} {\mathit{\boldsymbol{A}}_{12}}\\ 0 \end{array}&\begin{array}{l} 0\\ {\mathit{\boldsymbol{A}}_{23}} \end{array} \end{array}} \right]$为设计矩阵;x表示非模糊度参数;b1b2分别为第1、2个系统的模糊度参数。由式(1)可得,待估参数的估值为:

$ \mathit{\boldsymbol{x}} = \left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{\hat x}}}\\ {{{\mathit{\boldsymbol{\hat b}}}_1}}\\ {{{\mathit{\boldsymbol{\hat b}}}_2}} \end{array}} \right] $ (2)

待估参数方差-协方差矩阵为:

$ \mathit{\boldsymbol{Q}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Q}}_{\hat x}}}&{{\mathit{\boldsymbol{Q}}_{\hat x{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{Q}}_{\hat x{{\mathit{\boldsymbol{\hat b}}}_2}}}}\\ {{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}\hat x}}}&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}{{\mathit{\boldsymbol{\hat b}}}_2}}}}\\ {{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}\hat x}}}&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}}} \end{array}} \right] $ (3)

设式(1)所对应的观测值权阵为:

$ \mathit{\boldsymbol{P}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{P}}_1}}&0\\ 0&{{\mathit{\boldsymbol{P}}_2}} \end{array}} \right] $ (4)

式中,P1P2分别为第1、2个系统的观测值权阵。

则根据式(1)、式(4)可得待估参数的方差-协方差矩阵为:

$ {\left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{A}}_{11}^{\rm{T}}{\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{A}}_{11}} + \mathit{\boldsymbol{A}}_{21}^{\rm{T}}{\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{A}}_{21}}}&{\mathit{\boldsymbol{A}}_{11}^{\rm{T}}{\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{A}}_{12}}}&{\mathit{\boldsymbol{A}}_{21}^{\rm{T}}{\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{A}}_{23}}}\\ {\mathit{\boldsymbol{A}}_{12}^{\rm{T}}{\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{A}}_{11}}}&{\mathit{\boldsymbol{A}}_{12}^{\rm{T}}{\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{A}}_{12}}}&0\\ {\mathit{\boldsymbol{A}}_{23}^{\rm{T}}{\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{A}}_{21}}}&0&{\mathit{\boldsymbol{A}}_{23}^{\rm{T}}{\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{A}}_{23}}} \end{array}} \right]^{ - 1}} $ (5)

利用式(3)、式(5),根据分块矩阵求逆公式,可得:

$ \begin{array}{c} {\left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}{{\mathit{\boldsymbol{\hat b}}}_2}}}}\\ {{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}}} \end{array}} \right]^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{P}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{P}}_{{{\mathit{\boldsymbol{\hat b}}}_1}{{\mathit{\boldsymbol{\hat b}}}_2}}}}\\ {{\mathit{\boldsymbol{P}}_{{{\mathit{\boldsymbol{\hat b}}}_2}{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{P}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}}} \end{array}} \right]{\rm{ = }}\\ \left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{A}}_{12}^{\rm{T}}{\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{A}}_{12}}}&0\\ 0&{\mathit{\boldsymbol{A}}_{23}^{\rm{T}}{\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{A}}_{23}}} \end{array}} \right] - \left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{A}}_{12}^{\rm{T}}{\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{A}}_{11}}}\\ {\mathit{\boldsymbol{A}}_{23}^{\rm{T}}{\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{A}}_{21}}} \end{array}} \right]{\left( {\mathit{\boldsymbol{A}}_{11}^{\rm{T}}{\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{A}}_{11}} + \mathit{\boldsymbol{A}}_{21}^{\rm{T}}{\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{A}}_{21}}} \right)^{ - 1}}\left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{A}}_{11}^{\rm{T}}{\mathit{\boldsymbol{P}}_1}{\mathit{\boldsymbol{A}}_{12}}}&{\mathit{\boldsymbol{A}}_{21}^{\rm{T}}{\mathit{\boldsymbol{P}}_2}{\mathit{\boldsymbol{A}}_{23}}} \end{array}} \right] \end{array} $ (6)

此处认为多模GNSS数据处理中不同系统模糊度参数之间的相关性较小,因此,式(6)可近似表示为:

$ {\left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}{{\mathit{\boldsymbol{\hat b}}}_2}}}}\\ {{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}{{\mathit{\boldsymbol{\hat b}}}_1}}}}&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}}} \end{array}} \right]^{ - 1}} \approx {\left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}}}&0\\ 0&{{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}}} \end{array}} \right]^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}^{ - 1}}&0\\ 0&{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}^{ - 1}} \end{array}} \right] $ (7)

因此,模糊度固定的整数最小二乘问题可表示为:

$ \begin{array}{c} {\chi ^2} = {\left( {\mathit{\boldsymbol{\hat b}} - \mathit{\boldsymbol{b}}} \right)^{\rm{T}}}Q_{\mathit{\boldsymbol{\hat b}}}^{ - 1}\left( {\mathit{\boldsymbol{\hat b}} - \mathit{\boldsymbol{b}}} \right) = \\ {\left[ {\begin{array}{*{20}{c}} {\left( {{{\mathit{\boldsymbol{\hat b}}}_1} - {\mathit{\boldsymbol{b}}_1}} \right)}\\ {\left( {{{\mathit{\boldsymbol{\hat b}}}_2} - {\mathit{\boldsymbol{b}}_2}} \right)} \end{array}} \right]^{\rm{T}}}\left[ {\begin{array}{*{20}{c}} {\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}^{ - 1}}&0\\ 0&{\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}^{ - 1}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {\left( {{{\mathit{\boldsymbol{\hat b}}}_1} - {\mathit{\boldsymbol{b}}_1}} \right)}\\ {\left( {{{\mathit{\boldsymbol{\hat b}}}_2} - {\mathit{\boldsymbol{b}}_2}} \right)} \end{array}} \right] = {\left( {{{\mathit{\boldsymbol{\hat b}}}_1} - {\mathit{\boldsymbol{b}}_1}} \right)^{\rm{T}}} \times \\ \mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}^{ - 1}\left( {{{\mathit{\boldsymbol{\hat b}}}_1} - {\mathit{\boldsymbol{b}}_1}} \right) + {\left( {{{\mathit{\boldsymbol{\hat b}}}_2} - {\mathit{\boldsymbol{b}}_2}} \right)^{\rm{T}}}\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}^{ - 1}\left( {{{\mathit{\boldsymbol{\hat b}}}_2} - {\mathit{\boldsymbol{b}}_2}} \right) \end{array} $ (8)

式中,b1, b2Z。因${\mathit{\boldsymbol{\hat b}}_1}、{\mathit{\boldsymbol{\hat b}}_2}$不相关,当${\left( {{{\mathit{\boldsymbol{\hat b}}}_1} - {\mathit{\boldsymbol{b}}_1}} \right)^{\rm{T}}}\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}^{ - 1}\left( {{{\mathit{\boldsymbol{\hat b}}}_1} - {\mathit{\boldsymbol{b}}_1}} \right)、{\left( {{{\mathit{\boldsymbol{\hat b}}}_2} - {\mathit{\boldsymbol{b}}_2}} \right)^{\rm{T}}}\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}^{ - 1}\left( {{{\mathit{\boldsymbol{\hat b}}}_2} - {\mathit{\boldsymbol{b}}_2}} \right)$均取最小值时,χ2最小。故式(8)可被分解为两个整数最小二乘问题:

$ \left\{ {\begin{array}{*{20}{l}} {\chi _1^2 = {{\left( {{{\mathit{\boldsymbol{\hat b}}}_1} - {\mathit{\boldsymbol{b}}_1}} \right)}^{\rm{T}}}\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_1}}^{ - 1}\left( {{{\mathit{\boldsymbol{\hat b}}}_1} - {\mathit{\boldsymbol{b}}_1}} \right), {\mathit{\boldsymbol{b}}_1} \in \mathit{\boldsymbol{Z}}}\\ {\chi _2^2 = {{\left( {{{\mathit{\boldsymbol{\hat b}}}_2} - {\mathit{\boldsymbol{b}}_2}} \right)}^{\rm{T}}}\mathit{\boldsymbol{Q}}_{{{\mathit{\boldsymbol{\hat b}}}_2}}^{ - 1}\left( {{{\mathit{\boldsymbol{\hat b}}}_2} - {\mathit{\boldsymbol{b}}_2}} \right), {\mathit{\boldsymbol{b}}_2} \in \mathit{\boldsymbol{Z}}} \end{array}} \right. $ (9)

式(9)可根据LAMBDA算法对两个系统模糊度分别进行固定。当3个及以上的GNSS系统观测值参与解算时,推导过程类似。

在采用LAMBDA算法对单系统模糊度进行固定时,经常存在部分模糊度由于观测值较少或观测值高度角较低,浮点解估值的精度较差。为排除其影响,本文在对每个系统采用LAMBDA算法进行模糊度固定时,如果这个系统的固定结果未通过Ratio值检验,那么删去该系统中对应观测值数量最少的模糊度参数,并重新执行LAMBDA算法,直至此系统的模糊度固定结果通过Ratio值检验,或者剩余模糊度参数的个数小于某个阈值。删去的模糊度参数将保持浮点数状态。针对不同系统,本文利用LAMBDA算法对其进行模糊度固定,并根据固定过程的结果舍弃特点模糊度参数(保持为浮点数),这种循环执行LAMBDA算法的过程称为多模GNSS数据处理中改进的LAMBDA模糊度固定算法。

根据以上分析内容,本文的多模GNSS模糊度固定的基本流程如图 1所示。

图 1 多模GNSS模糊度固定流程 Fig.1 Flow Chart of Multi-GNSS Ambiguity Resolution

2 数据分析 2.1 实验设计

实验数据为国际GNSS服务(international GNSS service, IGS)组织实施的MGEX(multiGNSS Experiment)项目中KIR8、KIRU两测站2015-10-01—2015-10-30(年积日274~303)共30 d的4系统(GPS、GLONASS、Galileo、BDS)的伪距、载波相位观测值。多模数据处理采用单差算法[17, 18]。实验中决策函数法模糊度估值小数部分及其标准差的阈值均取0.15周。决策函数值阈值取1 000,改进的LAMBDA算法中Ratio值阈值统一取3.0,剩余模糊度数量阈值取6。

2.2 结果及分析

图 2为不同LAMBDA算法进行多模GNSS模糊度固定时对应的Ratio值比较。观测数据为2015-10-01—2015-10-30间0~1 h各系统的伪距、载波相位观测值。若采用原始LAMBDA算法,则70%的Ratio值小于3, 30个Ratio值的均值为2.81。当采用本文提出的改进LAMBDA算法时,即使不剔除精度较差的模糊度参数,80%的Ratio值也在3以上,Ratio值的均值提高至5.28。若在单系统模糊度固定时迭代剔除精度较差的模糊度参数,则所有Ratio值大于3,均值达到5.75。

图 2 不同LAMBDA算法所对应的Ratio值比较 Fig.2 Comparison of Ratio Values of Different LAMBDA Algorithms

表 1为观测时段长为1 h时模糊度固定前后不同数据处理策略所对应的基线重复性比较。采用的观测数据与图 2的相同。模糊度固定利用改进的LAMBDA算法。由表 1可知,基线各分量重复性在模糊度固定后均有明显提升,说明本实验所采用的模糊度固定算法是有效的。此外可发现,基线分量重复性的提高以E分量最明显,N分量次之,U分量最少,与卫星几何分布对不同方向基线分量精度的影响类似,本文猜测其与卫星的几何构型相关。

表 1 1 h观测时段不同数据处理策略所对应的模糊度固定对基线重复性的影响 Tab.1 Influence of Ambiguity Resolution of Different Data Processing Strategies on Baseline Repeatability During1 h Observing Period

3 结束语

本文研究了目前主要的模糊度固定方法,针对多模GNSS高维模糊度固定问题提出了改进的LAMBDA算法;对决策函数法与改进的LAMBDA算法进行组合,总结出一套完整的、适用于多模GNSS数据处理的高维模糊度固定策略;并基于实测数据对该算法进行分析。结果表明,改进的LAMBDA算法所得到的模糊度固定结果与原始LAMBDA算法相同;改进的LAMBDA算法对应的Ratio均值是原始方法的2倍以上;基线重复性在模糊度固定后大幅提升。这验证了该方法的有效性。该方法可被广泛应用于各类多模GNSS数据处理实践中。

参考文献
[1]
Dai L W. Dual-Frequency GPS/GLONASS RealTime Ambiguity Resolution for Medium-Range Kinematic Positioning[C]. Proceedings of the ION GNSS2000, Salt Lake City, UT, America, 2000.
[2]
Yamada H, Takasu T, Kubo N, et al. Evaluation and Calibration of Receiver Inter-Channel Biases for RTKGPS/GLONASS[C]. Proceedings of the ION GNSS2010, Portland, OR, America, 2010.
[3]
Ge M R, Zhang H P, Jia X L, et al. What is Achievable with the Current COMPASS Constellation?[C]. Proceedings of the ION GNSS 2012, Nashville, TN, America, 2012.
[4]
Montenbruck O, Hauschild A, Steigenberger P, et al. Initial Assessment of the COMPASS/BeiDou-2 Regional Navigation Satellite System[J]. GPS Solutions, 2013, 17(2): 211-222. DOI:10.1007/s10291-012-0272-x
[5]
GNSS单系统及多系统组合完好性分析[J]. 武汉大学学报·信息科学版, 2020, 45(1): 72-80.
[6]
He H B, Li J L, Yang Y X, et al. Performance Assessment of Single-and Dual-Frequency BeiDou/GPS Single-Epoch Kinematic Positioning[J]. GPS Solutions, 2014, 18(3): 393-403. DOI:10.1007/s10291-013-0339-3
[7]
Chen H, Jiang W P, Ge M R, et al. An Enhanced Strategy for GNSS Data Processing of Massive Networks[J]. Journal of Geodesy, 2014, 88(9): 857-867. DOI:10.1007/s00190-014-0727-7
[8]
Chen H, Jiang W P, Ge M R, et al. Efficient High-Rate Satellite Clock Estimation for PPP Ambiguity Resolution Using Carrier-Ranges[J]. Sensors, 2014, 14(12): 22 300-22 312. DOI:10.3390/s141222300
[9]
Li X X, Ge M R, Dai X L, et al. Accuracy and Reliability of Multi-GNSS Real-Time Precise Positioning: GPS, GLONASS, BeiDou and Galileo[J]. Journal of Geodesy, 2015, 89(6): 607-635. DOI:10.1007/s00190-015-0802-8
[10]
Yang Y X, Li J L, Xu J Y, et al. Contribution of the Compass Satellite Navigation System to Global PNT Users[J]. Chinese Science Bulletin, 2011, 56(26): 2 813-2 819. DOI:10.1007/s11434-011-4627-4
[11]
GPS/GLONASS/BeiDou/Galileo PPP快速模糊度固定[J]. 测绘地理信息, 2018, 43(3): 1-8.
[12]
BDS/GPS组合导航仿真实验研究[J]. 测绘地理信息, 2019, 44(2): 89-92.
[13]
Teunissen P J G. Least-Squares Estimation of the Integer GPS Ambiguities[C]. IAG General Meeting, Beijing, China, 1993.
[14]
Teunissen P J G. The Least-Squares Ambiguity Decorrelation Adjustment: A Method for Fast GPS Integer Ambiguity Estimation[J]. Journal of Geodesy, 1995, 70(1/2): 65-82.
[15]
Leick A. GPS Satellite Surveying[M]. 3rd ed. New York: Wiley, 2003.
[16]
Dong D N, Bock Y. Global Positioning System Network Analysis with Phase Ambiguity Resolution Applied to Crustal Deformation Studies in California[J]. Journal of Geophysical Research: Solid Earth, 1989, 94(B4): 3 949-3 966. DOI:10.1029/JB094iB04p03949
[17]
肖玉钢. 高精度多模GNSS相对定位理论与方法研究[D]. 武汉: 武汉大学, 2016.
[18]
Chen H, Xiao Y G, Jiang W P, et al. An Improved Method for Multi-GNSS Baseline Processing Using Single Difference[J]. Advances in Space Research, 2019, 63(9): 2 711-2 723. DOI:10.1016/j.asr.2017.09.009