﻿ 质子交换炉温度场均匀性分析与优化<sup>*</sup>
 文章快速检索 高级检索

Analysis and optimization of temperature field uniformity of proton exchange furnace
FU Na, ZHANG Xi
School of Instrumentation and Optoelectronic Engineering, Beihang University, Beijing 100083, China
Received: 2018-06-11; Accepted: 2018-11-30; Published online: 2018-12-05 13:33
Corresponding author. ZHANG Xi, E-mail: zhangxi@buaa.edu.cn
Abstract: Aimed at the problem of temperature field uniformity of proton exchange furnace, combined with the structural characteristic of the furnace, temperature control algorithm was developed based on FLUENT user-defined function (UDF). Based on this, various heating and temperature control schemes were proposed. The FLUENT software was used to simulate temperature field of the furnace under different schemes. The relationship between the temperature field uniformity and the placement of the sensor and the height of the heating wire under different temperature control methods was analyzed to find the best scheme. The results show that the temperature field uniformity is best when three temperature controllers are used, the positions of three sensors are respectively arranged in the middle of three heating wires, and the height of heating wire is arranged 4 times the length of the uniform temperature zone. The maximum temperature deviation in the uniform temperature zone is 0.03℃. For a given structure of the vertical furnace, increasing the height of the heating wire and optimizing the design of the sensor layout and temperature control method of the furnace body can improve the temperature field uniformity. This method provides ideas for optimizing temperature field uniformity of the same type of electric heating furnace.
Keywords: LiNbO3 waveguides     proton exchange furnace     temperature field     uniformity     numerical simulation

1 模型建立 1.1 物理模型

 图 1 质子交换炉系统实际模型 Fig. 1 Practical model of proton exchange furnace system

1) 炉膛内的温度是本文的研究重点，故将模型简化为内径0.12 m，高0.8 m的圆柱体。

2) 加热丝均匀缠绕在炉膛周围，可假设壁面热流量是均匀的。

1.2 数学模型

1.2.1 质子交换炉内空气的传热模型

 (1)

 (2)

 (3)

 (4)

1.2.2 CFD模型

CFD模型是基于微元内的质量守恒、动量守恒和能量守恒确定的一组偏微分方程。基本控制方程包括质量守恒方程、动量守恒方程和能量守恒方程，数学表达式为[13]

 (5)

x方向动量守恒方程：

 (6)

y方向动量守恒方程：

z方向动量守恒方程：

 (7)

 (8)

2 FLUENT仿真 2.1 网格划分及边界条件设置

 边界名称 边界类型 边界条件 参数 炉顶 壁面 对流 传热系数=10W/(m2·K)自由流体温度为300K 炉壁 壁面 热流量 没有加热丝覆盖的壁面：热流量=0；有加热丝覆盖的壁面：热流量=UDF flux 炉底 壁面 热流量 热流量=0

2.2 模拟监测点设置

2.3 求解器的设置

3 不同方案下的仿真结果与对比分析

 图 2 3种控温方式的传感器位置布置 Fig. 2 Sensor position arrangement of three kinds of temperature control methods

 序号 控温方式 传感器位置布置 加热丝布置高度/m 1 整段控温 z=0 h=2Δh=0.4 2 h=3Δh=0.6 3 h=4Δh=0.8 4 z=0.2m h=2Δh=0.4 5 h=3Δh=0.6 6 h=4Δh=0.8 7 两段控温 组合方式1 h=2Δh=0.4 8 h=3Δh=0.6 9 h=4Δh=0.8 10 组合方式2 h=2Δh=0.4 11 h=3Δh=0.6 12 h=4Δh=0.8 13 三段控温 组合方式1 h=2Δh=0.4 14 h=3Δh=0.6 15 h=4Δh=0.8 16 组合方式2 h=2Δh=0.4 17 h=3Δh=0.6 18 h=4Δh=0.8

 (9)

 图 3 整段控温时传感器位置对质子交换炉均匀性的影响 Fig. 3 Effect of sensor position on uniformity of proton exchange furnace under only one temperature controller
 图 4 两段控温时传感器位置对质子交换炉均匀性的影响 Fig. 4 Effect of sensor position on uniformity of proton exchange furnace under two temperature controllers
 图 5 三段控温时传感器位置对质子交换炉均匀性的影响 Fig. 5 Effect of sensor position on uniformity of proton exchange furnace under three temperature controllers

 图 6 方案18、方案12、方案3的y=0截面的温度分布云图 Fig. 6 Temperature distribution contour of y=0 cross-section for Scheme 18, Scheme 12 and Scheme 3

 序号 最佳方案 最大偏差ΔTmax/℃ 3 整段控温，传感器位置布置在z=0，加热丝布置高度h=4Δh 1.73 12 两段控温，传感器位置布置组合方式2，加热丝布置高度h=4Δh 0.95 18 三段控温，传感器位置布置组合方式2，加热丝布置高度h=4Δh 0.03

4 结论

1) 整段控温、两段控温、三段控温下改变传感器位置布置对加热丝布置高度h=2Δh的均匀性影响最大，优化传感器的位置可以改善炉内温度场的均匀性。

2) 在相同的控制方式下，加热丝布置高度越高，炉内均匀温区长度越长。

3) 对比分析18种设计方案的仿真结果，采用三段控温、3个传感器位置分别布置在3段加热丝中间、加热丝布置高度h=4Δh时炉内温度场均匀性最好，长度为200 mm的均匀温区内最大温度偏差为0.03℃，满足生产工艺的要求。

4) 利用FLUENT软件对设计方案进行仿真，这种方法可缩短设备调试周期，节约成本，同时该方法也为同类电加热炉的温度场均匀性优化设计提供了思路。

 [1] FAKHRI M A, AL-DOURI Y, HASHIM U, et al. Optical investigation of nanophotonic lithium niobate-based optical waveguide[J]. Applied Physics B, 2015, 121(1): 107-116. DOI:10.1007/s00340-015-6206-x [2] CAO L, ABOKETAF A, WANG Z H, et al. Hybrid amorphous silicon(a-Si:H)-LiNbO3 electro-optic modulator[J]. Optics Communications, 2014, 330: 40-44. DOI:10.1016/j.optcom.2014.05.021 [3] FAKHRI M A, AL-DOURI Y, HASHIM U, et al. Annealing temperature effects on morphological and optical studies of nano and micro photonics lithium niobate using for optical waveguide applications[J]. Australian Journal of Basic & Applied Sciences, 2015, 9(12): 128-133. [4] SHEN L, HE J J, YANG C H, et al. Temperature uniformity control of large-scale vertical quench furnaces for aluminum alloy thermal treatment[J]. IEEE Transactions on Control Systems Technology, 2015, 24(1): 24-39. [5] EMADI A, SABOONCHI A, TAHERI M, et al. Heating characteristics of billet in a walking hearth type reheating furnace[J]. Applied Thermal Engineering, 2014, 63(1): 396-405. DOI:10.1016/j.applthermaleng.2013.11.003 [6] LING Z, CHEN J, FANG X, et al. Experimental and numerical investigation of the application of phase change materials in a simulative power batteries thermal management system[J]. Applied Energy, 2014, 121: 104-113. DOI:10.1016/j.apenergy.2014.01.075 [7] PANG L, WANG M, WANG W, et al. Optimal thermal design of a stacked mini-channel heat sink cooled by a low flow rate coolant[J]. Entropy, 2013, 15(11): 4716-4731. [8] 唐家鹏. ANSYS FLUENT 16.0超级学习手册[M]. 北京: 人民邮电出版社, 2016: 502-507. TANG J P. ANSYS FLUENT 16.0 super study manual[M]. Beijing: People's Posts and Telecommunications Press, 2016: 502-507. (in Chinese) [9] CHICATELLI A, HARTLEY T T, COLE G, et al.Interdisciplinary modeling using computational fluid dynamics and control theory[C]//American Control Conference.Piscataway, NJ: IEEE Press, 1994, 3: 3438-3443. [10] YANG Y, REUTER M A, HARMAN D T M. CFD modelling for control of hazardous waste incinerator[J]. Control Engineering Practice, 2003, 11(1): 93-101. [11] GAO X J, WANG S Y, WANG P.The evaluation method of PID controller parameter tuning based on FLUENT[C]//Control and Decision Conference.Piscataway, NJ: IEEE Press, 2015: 4850-4854. https://ieeexplore.ieee.org/document/7162784 [12] 李友荣, 吴双应, 石万元, 等. 传热分析与计算[M]. 北京: 中国电力出版社, 2013: 3-15. LI Y R, WU S Y, SHI W Y, et al. Heat transfer analysis and calculation[M]. Beijing: China Electric Power Press, 2013: 3-15. (in Chinese) [13] 王福军. 计算流体动力学分析:CFD软件原理与应用[M]. 北京: 清华大学出版社, 2004: 7-11. WANG F J. Computational fluid dynamics analysis:Principles and applications of CFD software[M]. Beijing: Tsinghua University Press, 2004: 7-11. (in Chinese) [14] 朱能伟, 方晓东. 基于FLUENT的准分子激光器气体流场数值仿真[J]. 中国激光, 2016, 43(9): 44-49. ZHU N W, FANG X D. Numerical simulation of gas flow field in excimer laser based on FLUENT[J]. Chinese Laser, 2016, 43(9): 44-49. (in Chinese) [15] 胡坤, 李振北. ANSYS ICEM CFD工程实例详解[M]. 北京: 人民邮电出版社, 2014: 34-39. HU K, LI Z B. Detailed explanation of ANSYS ICEM CFD project[M]. Beijing: People's Posts and Telecommunications Press, 2014: 34-39. (in Chinese)

#### 文章信息

FU Na, ZHANG Xi

Analysis and optimization of temperature field uniformity of proton exchange furnace

Journal of Beijing University of Aeronautics and Astronsutics, 2019, 45(4): 735-742
http://dx.doi.org/10.13700/j.bh.1001-5965.2018.0350