﻿ 基于速度预测的导引律剩余时间估计<sup>*</sup>
 文章快速检索 高级检索

1. 烟台南山学院 电气与电子工程系, 烟台 265713;
2. 海军航空工程学院 控制工程系, 烟台 264001;
3. 山东南山国际飞行有限公司, 烟台 265713

Time-to-go estimation for guidance laws based on velocity prediction
ZHANG Youan1, LIANG Yong2, LIU Jingmao3, SUN Yumei1
1. Department of Electrical and Electronic Engineering, Yantai Nanshan University, Yantai 265713, China;
2. Department of Control Engineering, Naval Aeronautical and Astronautical University, Yantai 264001, China;
3. Shandong Nanshan International Flight Co., Ltd., Yantai 265713, China
Received: 2016-10-10; Accepted: 2016-12-23; Published online: 2017-01-11 14:14
Foundation item: National Natural Science Foundation of China (61273058); China Postdoctoral Science Foundation (20100471796)
Corresponding author. LIANG Yong, E-mail: ytliangyong@sina.com
Abstract: The idea of piecewise linear approximation and piecewise iterations is extended to the anti-ship missile's piecewise velocity prediction. Time-to-go estimation algorithms suitable for anti-ship missiles with time varying velocity are designed for proportional navigation guidance law and a biased proportional navigation guidance law with impact angle control both in the case of large lead angle. The proposed time-to-go estimation algorithms, which are based on the anti-ship missiles' differential equation of velocity in closed form and the current piecewise-iterative time-to-go estimation algorithms for the above mentioned guidance laws, perform piecewise-iterative prediction to the future velocity of anti-ship missiles for two flight cases: one for turning flight on level, the other for nearly straight flight on level, and then make corrections to the current time-to-go estimation algorithms. A range-to-go estimation formula is also given for the biased proportional navigation guidance law with impact angle control in the case of nearly straight flight on level. Numerical simulations are provided to illustrate the effectiveness of the proposed algorithm.
Key words: proportional navigation guidance     biased proportional navigation guidance     time-to-go estimation     lead angle     impact time control     anti-ship missiles     time varying velocity     velocity prediction

Tahk等[6]提出了一种递推的剩余时间预测算法，但其剩余时间估计误差较大。Lam[7]推导出了2种计算剩余时间的闭环解析解，但其假设条件比较理想。Ryoo等[8]针对最优导引律/攻击角度控制-0型(OGL/IAC-0) 导引律，提出了一种估计剩余时间的算法，但难以满足时间控制的精度要求。Whang和Ra[9-10]对比例导引律情况，提出了一种基于Kalman滤波的剩余时间估计算法；另外，对偏置比例导引律情况，推导出了一种剩余时间估计滤波器，但该算法不适用于初始前置角较大的情况。Shin等[11]应用导引指令历史数据提出了一种剩余时间估计算法，但其计算量较大。Cho和Ryoo[12]针对速度变化规律具有一定不确定性的导弹，推导出了一类加权能量最优导引律，对导弹未来速度曲线进行了预测，对剩余时间进行了估计，但其估计精度难以满足时间控制要求。李辕等[13]分别针对顺轨与逆轨拦截飞行轨迹的特点，基于预测碰撞点设计了相应的剩余飞行时间估计算法。但上述算法在导弹前置角较大时估计精度都不高。

1 问题描述

 (1)
 图 1 寻的制导示意图 Fig. 1 Schematic diagram of homing guidance

2 比例导引律的剩余时间估计 2.1 闭环形式的反舰导弹速度方程

 (2)
 (3)
 (4)

 (5)

 (6)

2.2 剩余时间估计算法

A1) 将当前时刻测得的Rqθ作为估算当前时刻剩余时间tgo的估计值的初始条件，φ=q-θ，令 =0，定义，意为向下取整，即舍去任何小数部分取整，Ω为取定的小角度，例如取10°，表示每一分割段前置角的变化量。

B1) 当 >Ω时，转C1)；否则，转F1)。

C1) 当 >时，若 >，则取Δφ1=-(-)，否则取Δφ1= -；当φ0=时，若φ0=，则取Δφ1=-Ω，否则取Δφ1=Ωpp-1。

D1) 以当前被处理的分割段的起点处导弹的飞行速度作为该分割段的飞行速度(即认为该分割段飞行速度的大小为已知常值)，求出该分割段末端处的对应状态变量，即由式(4) 解算Δt，由式(3) 解算φ(t0t)，由式(2) 解算R(t0t)，转A2)。

E1) tφ0φ(t0t)，R0R(t0t), 转B1)。

F1) 转A3)。

G1) t。当前时刻的剩余时间估计结束。

A2) 假设在当前被处理的分割段[t0, t0t]内，导弹的速度是匀加速或者匀减速变化的。由V(t0)和，根据式(6) 计算，暂时认为区间[t0, t0t]内导弹的加速度恒为 ，计算出t0t时刻导弹速度的初始预测值Vp(t0t)=V(t0)+Δt；由Vp(t0t)和(t0t)，再根据式(6) 计算出对应的 t)；取作为[t0, t0t]内的平均加速度，计算出t0t时刻导弹速度的一个校正预测值

B2) 计算分割段[t0, t0t]内的平均速度，根据平均速度V和式(4) 对Δt进行更新，根据更新后的Δt再次按照A2) 的过程计算出V(t0t)。

C2) V(t0)←V(t0t)，迭代次数更新ckck+1，转E1)。

A3) 当Ω时，表明导引转弯平飞段基本结束、开始转入近似直线飞行的时刻，通过前面导引转弯平飞段的计算，已经得到了这时的t0V(t0)、φ(t0)和R(t0)，根据式(5) 可算出。以此为初始条件，考虑弯曲航程的影响，可估算出近似直线飞行段的剩余飞行航程

B3) 根据选定的航程长度ΔLL(t0)进行分割，计算

C3) 如果n=1，转E3)；否则，计算，假设在当前被处理的剩余飞行航程分割段[L, LL]内(与其对应的时间区间用[t0, t0t]表示)，导弹的速度是匀加速或者匀减速变化的。由V(t0)和，根据式(6) 计算，初步预测导弹飞过分割段区间[L, LL]所需要的时间ΔtpL/V(t0)，假设区间[t0, t0tp]内反舰导弹的加速度恒为，计算出t0tp时刻导弹速度的一个初始预测值V(t0tp)=V(t0)+Δtp；由V(t0tp)和，再根据式(6) 计算出对应的；取 Δtp))作为[t0, t0tp]内的平均加速度，计算出t0tp时刻导弹速度的一个校正预测值V(t0tp)=V(t0)+ 。将Δtp更新为ΔtL/[0.5(V(t0)+V(t0tp))]。计算出t0t时刻导弹速度的校正预测值

D3) tV(t0)←V(t0t)，迭代次数(即分段数) ckck+1，nn-1，LLL，转C3)。

E3) 这一步对应于近似直线飞行段的最后一个分割段[L, 0]。计算，由V(t0)和，根据式(6) 计算，初步预测导弹飞过分割段[L, 0]所需时间Δtp=L/V(t0)，假设该区间[t0, t0tp]内导弹加速度恒为，计算出t0tp时刻导弹速度的一个初始预测值V(t0tp)=V(t0)+Δtp；由V(t0tp)和 =0，再根据式(6) 计算出对应的V·(t0tp)；取 作为[t0, t0tp]内的平均加速度，计算出t0tp时刻导弹速度的校正预测值V(t0tp)=V(t0)+ 。将Δtp更新为Δt=L/[0.5(V(t0)+V(t0tp))]。计算出t0t时刻导弹速度的校正预测值V(t0t)=V(t0)+ 。迭代次数(即分段数)更新ckck+1，转G1)。

3 偏置比例导引律的剩余时间估计

 (7)

 (8)

a1) 令 =0，将测得的Rqθ作为估计算法的初始值，注意αs, 0=θ0-Nq0+(N-1)θdφ0=q0-θ0

b1) 若αs, 0≠0，转c1)；否则，算法结束。

c1) 按文献[15]中的公式确定α1和Δt

d1) 按文献[15]中的公式分别计算，计算t)αs, 0

e1) 若α1≠0，转a2)；否则，转a3)。

f1) tV(t0)←V(t0t)，αs, 0αs(t0t)，，迭代次数更新；转b1)。

g1) tV(t0)←V(t0t)，αs, 0αs(t0t)，迭代次数更新ckck+1；转b1)。

a2) 与比例导引情况下通过分段迭代算法对导弹未来速度的大小进行预测的计算步骤基本相同，不同之处在于计算时要用式(8)。

b2) 计算分割段[t0, t0t]内的平均速度V=0.5(V(t0)+V(t0t))；由于文献[15]确定Δt的式中只有B6=R0/(KVcos φ0)与速度有关，因此，时间更新为Δt←(V/V(t0))Δt；更新Δt后，按照a2) 的过程计算V(t0t)，tV(t0)←V(t0t)，αs, 0αs(t0t)，φ0φ0+ ，迭代次数更新ckck+1；转f1)。

a3) 当分段迭代算法中的α1=0 时，表示转弯平飞段基本结束、开始转入近似直线飞行段，通过转弯平飞段的计算，已经得到了这时的 t 0V ( t 0)、φ(t0)、R(t0)和 αs (t0)。进一步由式(8) 可算出(t0)，假设 β 在近似直线飞行段由(t0)线性地趋于零，依此利用式(6) 可对导弹未来速度的大小进行预测。以 φ(t0)、R(t0)和 αs (t0)为初始条件，可推导出在偏置比例导引律(式(7))作用下近似直线飞行段的剩余飞行航程的估计公式为

b3) 根据选定的用于分段的一个固定的航程长度ΔLL(t0)进行分割，计算

c3) 如果n=1，转e3)，否则，可仿照比例导引律情况下的步骤C3)，计算出t0t时刻导弹速度的一个校正预测值V(t0t)=V(t0)+

d3) tV(t0)←V(t0t)，迭代次数(即分段数)更新ckck+1，nn-1，LLL，转c3)。

e3) 这一步对应于近似直线飞行段的最后一个分割段[L, 0]，可仿照比例导引律情况下的步骤E3)，计算出t0t时刻导弹速度的一个校正预测值V(t0t)=V(t0)+ tV(t0)←V(t0t)，αs, 0αs(t0t)，进行迭代次数更新；转g1)。

4 仿真结果

 图 2 比例导引律情况仿真结果 Fig. 2 Simulation results for proportional navigation guidance law

 图 3 偏置比例导引律情况仿真结果 Fig. 3 Simulation results for biased proportional navigation guidance law

5 结论

1) 将分段迭代求解的思想扩展到对导弹的时变速度进行分段预测。

2) 分别给出了适用于导弹速度时变情况的大前置角下比例导引律和偏置比例导引律的剩余时间估计算法。

3) 该算法以现有分段迭代算法为基础，依据闭环形式的反舰导弹速度微分方程，分转弯平飞段和近似直线飞行段2种情况，分别对导弹未来速度的大小进行预测并对剩余时间进行修正。

4) 算法中给出了偏置比例导引律作用下近似直线飞行段剩余飞行航程的估计公式。

5) 计算结果表明，在导弹飞行速度大小为时变的情况下，不管是采用比例导引律，还是采用带角度控制的偏置比例导引律，该算法得到的剩余时间估计精度相对于现有分段迭代剩余时间估计算法的估计精度都有非常明显的提高。

 [1] JEON I S, LEE J I, TAHK M J. Impact-time-control guidance law for anti-ship missiles[J]. IEEE Transactions on Control Systems Technology, 2006, 14 (2): 260–266. DOI:10.1109/TCST.2005.863655 [2] JEON I S, LEE J I, TAHK M J. Homing guidance law for cooperative attack of multiple missiles[J]. Journal of Guidance, Control, and Dynamics, 2010, 33 (1): 275–280. DOI:10.2514/1.40136 [3] 李新三, 汪立新, 王明建, 等. 基于MPSC和CPN制导方法的协同制导律[J]. 北京航空航天大学学报, 2016, 42 (9): 1857–1863. LI X S, WANG L X, WANG M J, et al. Cooperative guidance law based on MPSC and CPN guidance method[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (9): 1857–1863. (in Chinese) [4] 孙雪娇, 周锐, 吴江, 等. 多导弹分布式协同制导与控制方法[J]. 北京航空航天大学学报, 2014, 40 (1): 120–124. SUN X J, ZHOU R, WU J, et al. Distributed cooperative guidance and control for multiple missiles[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (1): 120–124. (in Chinese) [5] 赵启伦, 陈建, 董希旺, 等. 拦截高超声速目标的异类导弹协同制导律[J]. 航空学报, 2016, 37 (3): 936–948. ZHAO Q L, CHEN J, DONG X W, et al. Cooperative guidance law for heterogeneous missiles intercepting hypersonic weapon[J]. Acta Aeronautica et Astronautica Sinica, 2016, 37 (3): 936–948. (in Chinese) [6] TAHK M J, RYOO C K, CHO H J. Recursive time-to-go estimation for homing guidance missiles[J]. IEEE Transactions on Aerospace and Electronic Systems, 2002, 38 (1): 13–24. DOI:10.1109/7.993225 [7] LAM V C. Time-to-go estimate for missile guidance:AIAA-2005-6459[R].Reston:AIAA, 2005. [8] RYOO C K, CHO H J, TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology, 2006, 14 (3): 483–492. DOI:10.1109/TCST.2006.872525 [9] WHANG I H, RA W S.Time-to-go estimation filter for anti-ship missile application[C]//SICE Annual Conference. Piscataway, NJ:IEEE Press, 2008:247-250. [10] WHANG I H, RA W S.Time-to-go estimator for missiles guided by BPNG[C]//International Conference on Control, Automation and Systems.Piscataway, NJ:IEEE Press, 2008:463-467. [11] SHIN H S, CHO H S, TSOURDOS A.Time-to-go estimation using guidance command history[C]//Proceedings of the 18th IFAC World Congress.Laxenburg:IFAC Secretariat, 2011:5531-5536. [12] CHO H J, RYOO C K. Implementation of optimal guidance laws using predicted missile velocity profiles[J]. Journal of Guidance, Control, and Dynamics, 1999, 22 (4): 579–588. DOI:10.2514/2.4420 [13] 李辕, 赵继广, 白国玉, 等. 基于预测碰撞点的剩余飞行时间估计方法[J]. 北京航空航天大学学报, 2016, 42 (8): 1667–1674. LI Y, ZHAO J G, BAI G Y, et al. Method of time-to-go estimation based on predicted crack point[J]. Journal of Beijing University of Aeronautics and Astronautics, 2016, 42 (8): 1667–1674. (in Chinese) [14] 张友安, 马国欣. 大前置角下比例导引律的剩余时间估计算法[J]. 哈尔滨工程大学学报, 2013, 34 (11): 1409–1414. ZHANG Y A, MA G X. Time-to-go estimation algorithm for the proportional navigation guidance law with a large lead angle[J]. Journal of Harbin Engineering University, 2013, 34 (11): 1409–1414. (in Chinese) [15] ZHANG Y A, MA G X, WU H L. A biased proportional navigation guidance law with large impact angle constraint and the time-to-go estimation[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228 (10): 1725–1734. DOI:10.1177/0954410013513754

#### 文章信息

ZHANG Youan, LIANG Yong, LIU Jingmao, SUN Yumei

Time-to-go estimation for guidance laws based on velocity prediction

Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(10): 1980-1986
http://dx.doi.org/10.13700/j.bh.1001-5965.2016.0782