﻿ 航空发动机变几何涡轮增压性能研究<sup>*</sup>
 文章快速检索 高级检索

Research on performance of variable geometry turbocharger for aero engine
XU Bin, ZHOU Fan, YANG Shichun, TIAN Fugang, TAN Longxing
School of Transportation Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Received: 2016-08-02; Accepted: 2016-11-04; Published online: 2016-12-26 14:38
Foundation item: Aeronautical Science Foundation of China (2013ZB51018)
Corresponding author. XU Bin, E-mail: xbacb@buaa.edu.cn
Abstract: A variable geometry turbocharger method was used to adjust the power of the engine. It's regulation law and characteristics was studied. According to the turbine flow model, the influence of different nozzle ring opening degrees on the turbocharger was analyzed under the same operating conditions. In GT-POWER, a variable geometry turbocharger engine model was established, and the application of the variable geometry turbocharger engine to recover the power of the sea was verified by the simulation and analysis of different working conditions. The results show that the engine can significantly improve the engine altitude adjustable range, enhancing the ceiling of engine usage from 5 km to 6 km, which is of guiding significance for application of variable geometry turbocharger to restoring power and the regulation of nozzle ring opening degree.
Key words: aero piston engine     variable geometry turbocharger     power characteristics     adjustable range     ceiling of usage

1 发动机建模及仿真

 参数 数值 工作形式 四缸四冲程航空汽油机 最大扭矩/(N·m) 2 142 额定功率/kW 73.5 额定转速/(r·min-1) 5 500 使用升限/km 5 增压方式 单级废气阀涡轮增压

 图 1 发动机原机GT-POWER仿真模型 Fig. 1 Simulation model of original engine in GT-POWER environment

2 变几何涡轮增压器的调节规律分析与建模 2.1 变几何涡轮增压器调节分析

 (1)

 图 2 不同喷嘴环开度时涡轮进气压力随曲轴转角变化 Fig. 2 Variation of intake pressure with crank angle at different nozzle ring opening degrees

 图 3 5 km高度下不同节气门开度时涡轮功率随喷嘴环开度变化 Fig. 3 Variation of turbine power with nozzle ring opening degree at height of 5 km under different throttle opening degrees

 (2)

 图 4 5 km高度下不同节气门开度时进气压力随喷嘴环开度变化 Fig. 4 Variation of intake pressure with nozzle ring opening degree at height of 5 km under different throttle opening degrees

 图 5 变几何涡轮增压器调节原理 Fig. 5 Adjustment principle of VGT
2.2 建立变几何涡轮增压仿真模型

 图 6 采用变几何涡轮增压的发动机GT-POWER仿真模型 Fig. 6 Simulation model of engine with VGT in GT-POWER environment
3 匹配变几何涡轮增压器的发动机性能

3.1 变几何涡轮增压发动机功率特性

 图 7 变几何涡轮增压发动机与原机功率随高度与转速的变化 Fig. 7 Variation of power of engine with VGT and original engine with height and speed
 图 8 转速5 500 r/min时变几何涡轮增压发动机与原机功率随高度与节气门开度的变化 Fig. 8 Variation of power of engine with VGT and original engine with height and throttle opening degree when speed is 5 500 r/min
 图 9 变几何涡轮增压发动机与原机扭矩随高度与转速的变化 Fig. 9 Variation of torque of engine with VGT and original engine with height and speed
 图 10 转速5 500 r/min时变几何涡轮增压发动机与原机扭矩随高度与节气门开度的变化 Fig. 10 Variation of torque of engine with VGT and original engine with height and throttle opening degree when speed is 5 500 r/min

 % 高度/km 转速/(r·min-1) 5 500 5 000 4 500 4 000 3 500 4 0.25 0.76 0.34 8.69 14.65 5 2.25 1.07 3.01 16.01 14.77 6 0.59 0.02 2.16 18.73 10.95 7 4.11 3.07 10.32 24.99 13.47

3.2 变几何涡轮增压发动机可调范围分析

 图 11 变几何涡轮增压发动机和原机在5 km高度下可调范围对比(转速、节气门开度) Fig. 11 Comparison of adjustable range between original engine and engine with VGT when height is 5 km (speed and throttle opening degree)

3.3 进气压力与燃油消耗率分析

 图 12 5 km高度下不同节气门开度时原机与变几何涡轮增压发动机进排气压力对比 Fig. 12 Comparison of intake pressure and exhaust pressure between original engine and engine with VGT when height is 5 km under different throttle opeing degrees

 图 13 5 km高度下原机与变几何涡轮增压发动机燃油消耗率对比 Fig. 13 Comparison of fuel consumption rate between original engine and engine with VGT when height is 5 km

4 结论

1) 在发动机低转速区工作时，变几何涡轮增压发动机功率下降较平缓，而原机采用的废气阀增压功率下降较快。

2) 在高空工况下，变几何涡轮增压发动机扭矩显著大于原机，有利于发动机提高低速性能、增加工作范围；但是原机最大扭矩要略大于变几何涡轮增压发动机。

3) 在燃油消耗率方面，在高速时，变几何涡轮增压发动机燃油消耗率高于原机；低速时，低于原机。

 [1] 丁水汀, 鲍梦瑶, 杜发荣. 航空活塞发动机涡轮增压系统的安全边界研究[J]. 航空动力学报, 2011, 26 (11): 2534–2542. DING S T, BAO M Y, DU F R. Safety margins analysis on turbocharging system in aircraft piston engine[J]. Journal of Aerospace Power, 2011, 26 (11): 2534–2542. (in Chinese) [2] 徐斌, 谭龙兴, 杨世春, 等. 飞机使用升限对增压活塞发动机的匹配要求[J]. 北京航空航天大学学报, 2014, 40 (12): 1643–1647. XU B, TAN L X, YANG S C, et al. Requirement from maximum rate of climbing of aircraft service ceiling to turbocharged reciprocating engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40 (12): 1643–1647. (in Chinese) [3] ZAMBONI G, CAPOBIANCO M. Influence of high and low pressure EGR and VGT control on in-cylinder pressure diagrams and rate of heat release in an automotive turbocharged diesel engine[J]. Applied Thermal Engineering, 2013, 51 (1): 586–596. [4] YU B, DONG M C, BIAN W C.A low cost method for establishing hardware-in-loop platform for aviation piston engine electronic controller[C]//International Symposium on Computers and Informatics.Lyon:Atlantis Press, 2015:1289-1298. [5] 边文超. 航空活塞发动机控制器实物在回路仿真系统设计[D]. 南京: 南京航空航天大学, 2013: 14-59. BIAN W C.Research on hardware-in-loop simulation system of controller for an aviation piston engine[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2013:14-59(in Chinese). [6] 李红. VNT增压器控制系统研究[D]. 沈阳: 沈阳理工大学, 2013: 40-46. LI H.Research of VNT turbocharger control system[D].Shen-yang:Shenyang Ligong University, 2013:40-46(in Chinese). [7] Rotax Aircraft Engine.Operation, manual for ROTAX engine type 914 F[R].Vils:BRP-Rotax GmbH & Co.KG, Rotax Part:899374, 2007. [8] 朱大鑫. 涡轮增压与涡轮增压器[M]. 北京: 机械工业出版社, 1992: 113-166. ZHU D X. Turbo charging method and turbocharger[M]. Beijing: Mechanical Industry Press, 1992: 113-166. (in Chinese) [9] 郭林福, 马朝臣, 鲍捷. 车用可变几何涡轮增压器执行机构的设计计算[J]. 车用发动机, 2002 (2): 5–8. GUO L F, MA C C, BAO J. Design and calculation of control mechanism for variable geometry turbocharger used in automobile[J]. Vehicle Engine, 2002 (2): 5–8. (in Chinese) [10] 陈红. 航空涡轮增压汽油机特性及其优化特性匹配研究[D]. 北京: 北京交通大学, 2008: 28-34. CHEN H.Study on characteristics of aviation turbo gasoline engine and optimization research[D].Beijing:Beijing Jiaotong University, 2008:28-34(in Chinese). [11] 周帆, 徐斌, 杨世春, 等. 基于神经网络PID的电动汽车轮毂电机调速设计与仿真[J]. 车辆与动力技术, 2015 (2): 53–57. ZHOU F, XU B, YANG S C, et al. Design and simulation of electric vehicle in-hub motor speed control based on neural network PID[J]. Vehicle & Power Technology, 2015 (2): 53–57. (in Chinese) [12] 彭成成. 高压共轨柴油机可变涡轮增压器匹配及控制策略研究[D]. 长春: 吉林大学, 2015: 71-79. PENG C C.Research on VNT match and control strategy of high pressure common rail diesel engine[D].Changchun:Jilin University, 2015:71-79(in Chinese). [13] 徐斌, 刘波, 杨世春, 等. 某型航空活塞发动机进排气系统优化分析[J]. 航空动力学报, 2014, 29 (3): 624–630. XU B, LIU B, YANG S C, et al. Optimization analysis of a aircraft piston engine intake and exhaust system[J]. Journal of Aerospace Power, 2014, 29 (3): 624–630. (in Chinese) [14] 刘波. 电辅助航空涡轮增压器匹配特性研究[D]. 北京: 北京航空航天大学, 2015: 36-40. LIU B.Electric assisted aviation turbocharger matching characteristic research[D].Beijing:Beihang University, 2015:36-40(in Chinese). [15] 徐斌, 谭龙兴, 杨世春, 等. 航空活塞发动机使用升限分析[J]. 北京航空航天大学学报, 2013, 39 (12): 1568–1572. XU B, TAN L X, YANG S C, et al. Analysis of service ceiling on piston aero-engine[J]. Journal of Beijing University of Aeronautics and Astronautics, 2013, 39 (12): 1568–1572. (in Chinese)

文章信息

XU Bin, ZHOU Fan, YANG Shichun, TIAN Fugang, TAN Longxing

Research on performance of variable geometry turbocharger for aero engine

Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(8): 1523-1530
http://dx.doi.org/10.13700/j.bh.1001-5965.2016.0639