文章快速检索 高级检索
TBM液压管道抗振结构设计方法

1. 中南大学 机电工程学院, 长沙 410083;
2. 中南大学 高性能复杂制造国家重点实验室, 长沙 410083

Design method of anti-vibration structure for TBM hydraulic pipe
NING Haihui1, ZHANG Huailiang1,2, QU Wei1, PENG Huan1
1. College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China;
2. State Key Laboratory of High Performance and Complex Manufacturing, Central South University, Changsha 410083, China
Received: 2016-02-23; Accepted: 2016-05-13; Published online: 2016-06-15
Foundation item: National Basic Research Program of China (2013CB035404)
Corresponding author. ZHANG Huailiang, E-mail:zhl2001@csu.edu.cn
Abstract: Against the problem that strong vibration has effect on the performance of hydraulic pipe during the working process of tunnel boring machine, the transverse vibration mathematical model of the clamped-clamped hydraulic pipe under the foundation vibration was built; The methods of Galerkin and equivalent bending moment were adopted to solve pipe's maximum stress, and the correctness of mathematical model was verified by experiments. The influence rule of foundation vibration parameters on pipe's maximum stress was researched and the normal-failure areas of pipe under different foundation vibration parameters were obtained on the basis of maximum stress criterion. The anti-vibration structural design method was developed based on flow-pressure-strong vibration parameters. The results indicate that foundation vibration causes dramatic increase of hydraulic pipe stress and thus leads to its performance failure, and the new design method can effectively improve the performance of pipe under the strong vibration environment.
Key words: foundation vibration     hydraulic pipe     stress analysis     anti-vibration structure     design method

1 横向振动下输液管道数学模型

 图 1 管道理论模型 Fig. 1 Theoretical model of pipe

 (1)

1.1 方程的无量纲化

 (2)
1.2 方程的离散化

 (3)

1.3 管道最大应力求解

 (4)

 (5)
2 管道应力响应仿真及实验验证 2.1 应力响应仿真

 参数 数值 壁厚/m 0.004 管道内径/m 0.05 管道弹性模量/GPa 201 管道固支间距/m 2 管材密度/(kg·m-3) 7 985 管材泊松比 0.3 流体平均流速/(m·s-1) 3 流体密度/(kg·m-3) 890

 图 2 2个典型时刻管道位移、弯矩和最大应力的分布 Fig. 2 Displacement, bend moment and maximum stress distribution of pipe at two typical moments

 图 3 应力敏感截面上最大应力响应 Fig. 3 Maximum stress response of stress sensitive section

2.2 实验验证

 1-油源开关；2-变量泵；3，13，17-单向阀；4-调速阀；5，12-电磁溢流阀；6-换向阀；7，15-电磁换向阀；8-液控单向阀；9-动力液压缸；10-惯性负载；11-加载液压缸；14-电磁减压阀；16-溢流阀；18-定量泵；19-过滤器。 图 4 实验系统液压原理图 Fig. 4 Hydraulic schematic diagram of experimental system

 图 5 应变测试结果 Fig. 5 Strain test results

 图 6 应力仿真曲线及与实验结果局部对比图 Fig. 6 Local contrast chart of stress simulation curves and experimental results

3 管道抗振结构设计方法及实例应用

3.1 管道抗振结构设计方法

 图 7 最大应力随基础振动频率变化规律 Fig. 7 Change rules of maximum stress with foundation vibration frequency

 图 8 不同固支间距下管道失效区域图 Fig. 8 Area chart of pipe failure under different support spans

 图 9 强振动环境下抗振结构设计流程图 Fig. 9 Design flow chart of anti-vibration structure in strong vibration environment

3.2 实例应用

 图 10 不同固支间距下管道最大应力 Fig. 10 Maximum pipe stress underdifferent support spans

 图 11 不同基础振动参数下的失效区域 Fig. 11 Failure area of different foundationvibration parameters

 图 12 调整内径后的失效区域图 Fig. 12 Failure area chart after innerdiameter's optimization

3.3 实例验证

 图 13 优化后应力敏感截面上最大应力响应 Fig. 13 Maximum stress response of stresssensitive section ofter optimizing

4 结论

1) 确定了管道在不同基础振动参数下工作的正常-失效区域，能有效判断强振动环境下的管道是否满足工作要求。

2) 振幅较小时，管道失效区域随着管长减小而往高频移动，即在高频低幅环境下管道固支间距不宜过短。

3) 制定了不同基础振动下以流量-压力-强振动为依据的抗振结构设计方法，能有效改善强振动环境下管道的工作性能。

 [1] KOYAMA Y. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology, 2003, 18 (2): 145–159. [2] LI X H, YU H B, YUAN M Z, et al.Study on the linear dynamic model of shield TBM cutterhead driving system[C]//IECON 2011-37th Annual Conference on IEEE Industrial Electronics Society.Piscataway, NJ:IEEE Press, 2011:3864-3871. [3] 吴晓南, 舒浩纹, 昝林峰, 等. 试压工况下盾构隧道内输气管道应力分析[J]. 天然气工业, 2013, 33 (3): 73–77. WU X N, SHU H W, ZAN L F, et al. Stress analysis of gas pipeline in tunnels on pressure testing condition[J]. Natural Gas Industry, 2013, 33 (3): 73–77. (in Chinese) [4] XIA L, HUANG K, HONG F L, et al. Stress analysis of suspended gas pipeline[J]. Applied Mechanics and Materials, 2013, 448 (1): 1359–1362. [5] XIAO N W, SHI J W, HONG F L, et al. Analysis of hot oil pipe-line stress influencing factors[J]. Advanced Materials Research, 2014, 887 (1): 899–902. [6] 耿艳辉, 詹晨菲. 生产线液压系统长大管道设计[J]. 流体传动与控制, 2012, 52 (3): 21–24. GENG Y H, ZHAN C F. Design of long and large pipeline of hydraulic system used in product line[J]. Fluid Power Transmission and Control, 2012, 52 (3): 21–24. (in Chinese) [7] 朱博. 工程机械液压系统管路设计及装配原则[J]. 建筑机械, 2011 (2): 94–97. ZHU B. Principle of pipeline design and assembly for hydraulic system of construction machinery[J]. Construction Machinery, 2011 (2): 94–97. (in Chinese) [8] SVEDEMAN S J, ARNOLD K E. Criteria for sizing multiphase flowlines for erosive/corrosive service[J]. SPE Production & Facilities, 1996, 9 (1): 74–80. [9] NAYYAR M L.ASME code for pressure piping, B31:ASME B31.1b-2009[S].New York:ASME, 2009:6-10. [10] JIN J D, ZOU G S. Bifurcations and chaotic motions in the autonomous system of a restrained pipe conveying fluid[J]. Journal of Sound and Vibration, 2003, 260 (5): 783–805. DOI:10.1016/S0022-460X(02)00982-3 [11] SEMLER C, LI G X, PAIDOUSSIS M P. The nonlinear equations of motion of pipes conveying fluid[J]. Journal of Sound and Vibration, 1994, 169 (5): 577–599. DOI:10.1006/jsvi.1994.1035 [12] 邹光胜, 金基铎, 闻邦椿. Melnikov方法在输流管混沌运动研究中的应用[J]. 力学与实践, 2004, 26 (2): 29–32. ZOU G S, JIN J D, WEN B C. Application of Melnikov method in the study of chaotic motions of pipe conveying fluid[J]. Mechanics in Engineering, 2004, 26 (2): 29–32. (in Chinese) [13] PAIDOUSSIS M P, LI G X, RAND R H. Chaotic motions of a constrained pipe conveying fluid:Comparison between simulation analysis and experiment[J]. ASME Journal of Applied Mechanics, 1991, 58 (2): 559–565. DOI:10.1115/1.2897220 [14] STOSIAK M. Vibration insulation of hydraulic system control components[J]. Archives of Civil and Mechanical Engineering, 2011, 11 (1): 237–248. DOI:10.1016/S1644-9665(12)60186-1 [15] 陈炳瑞, 冯夏庭, 曾雄辉, 等. 深埋隧洞TBM掘进微震实时监测与特征分析[J]. 岩石力学与工程学报, 2011, 30 (2): 275–283. CHEN B R, FENG X T, ZENG X H, et al. Real-time microseismic monitoring and its characteristic analysis during TBM tunneling in deep-buried tunnel[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30 (2): 275–283. (in Chinese) [16] 苏华友.双护盾TBM开挖深埋隧洞围岩稳定性研究[D].成都:西南交通大学, 2009:36-40. SU H Y.Surrounding rock stability study of double-shield TBM during tunneling in deep-buried tunnel[D].Chengdu:Southwest Jiaotong University, 2009:36-40(in Chinese).

#### 文章信息

NING Haihui, ZHANG Huailiang, QU Wei, PENG Huan
TBM液压管道抗振结构设计方法
Design method of anti-vibration structure for TBM hydraulic pipe

Journal of Beijing University of Aeronautics and Astronsutics, 2017, 43(2): 344-351
http://dx.doi.org/10.13700/j.bh.1001-5965.2016.0135