文章快速检索 高级检索

1. 北京林业大学 工学院, 北京 100083;
2. 北京航空航天大学 航空科学与工程学院, 北京 100083

Airship's longitudinal motion impact analysis based on coupling ballonet
YOU Yingjie1,2 , MI Panpan2 , LYU Mingyun2 , LIU Wending1
1. School of Engineering, Beijing Forestry University, Beijing 100083, China ;
2. School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Received: 2015-06-25; Accepted: 2015-09-18; Published online: 2016-06-25 12: 00
Foundation item: Industry-research Project of China Aviation Industry(Cxy2014BH04)
Corresponding author. Tel 010-82338116 E-mail:lv503@buaa.edu.cn.
Abstract: Large high-altitude airship has a high volume ratio which even exceeds 90%, so it will induce significant impact on airship's motion because of the ballonets dynamics. Considering one large-scale airship whose cruise altitude is 6 000 m, ballonets dynamics based on the cylindrical container was established and airship longitudinal motion equations containing ballonets were further formulated. Finally, numerical simulation of airship longitudinal motion was performed and results were compared with that of airship model without ballonet dynamics. Results indicate that ballonets dynamics will make a difference to airship's pitch motion, easily inducing motion divergence and ballonets' coupling impacts reduce when the airship rises. In the meantime, the smaller the diameter of ballonets is, the smaller the dynamic coupling effect is when ballonets' volume is unchanged. In addition, the controllability of airship will be weakened because of ballonets, which should be taken into account during airship design.
Key words: airship design     ballonet     longitudinal motion     flight dynamics     stratospheric airship

1 飞艇运动建模 1.1 飞艇模型结构

 图 1 大型飞艇示意图 Fig. 1 Large airship sketch

 参数 数值 飞艇长度/m 129.5 飞艇最大直径/m 32 飞艇囊体体积/ m3 69 413 起飞质量/t 82.6 海平面副气囊体积占比/% 74.6

1.2 飞艇动力学建模及其线性化

1) 飞艇为刚体，忽略其弹性效应，即保持飞艇体积不变。

2) 飞艇具有纵向对称面，且重心位于纵向对称平面内，惯性积Ixy=Iyz=0。

3) 飞艇体积中心与浮心重合。

 (1)

 (2)

Fd为动力矢量，只与速度量有关：

 (3)

FA为气动力矢量，计算采用Mueller和Paluszek[13]的半经验模型：

 (4)

FB为浮力矢量，FG为重力矢量，FT为推力矢量，都表示为3个坐标轴的力和力矩分量，这里不再赘述。

 (5)
 (6)
 (7)
 (8)

2 副气囊动力学模型

 CG—飞艇重心；—推力；lfx—前气囊轴向距离；lax—后气囊轴向距离；lfz—前气囊z向距离；laz—后气囊z向距离。 图 2 包含副气囊的飞艇 Fig. 2 An airship with ballonets

 (9)

 (10)

 c.g.—副气囊的质心位置；I0—固定块的转动惯量。 图 3 副气囊动力学模型 Fig. 3 Dynamic model of ballonet
 (11)

 (12)

 (13)

 (14)

3 副气囊与飞艇方程耦合

 n ξn mn/kg ωn/(rad·s-1) 1 1.841 7.438 3.338 2 5.331 0.224 5.681 3 8.536 0.053 7.188 4 11.706 0.021 8.418 5 14.864 0.01 9.486

 (15)

 (16)

 (17)

 (18)
 (19)
 (20)
 (21)

 (22)
 (23)

 (24)

 (25)
 (26)
 (27)
 (28)

 (29)

 (30)

4 数值仿真 4.1 飞艇稳定性分析

 图 4 不同高度下飞艇的稳定性特性 Fig. 4 Airship stability characteristics at different heights

 参数 d h lfx >lax lfz laz 数值 40 22.95 25 40 3.22 3.52

4.2 飞艇操纵性分析

 图 5 飞艇升降舵0.1 rad响应特性 Fig. 5 Airship response of elevator at 0.1 rad

4.3 飞艇副气囊形状影响分析

 图 6 飞艇响应 Fig. 6 Airship response
 图 7 飞艇的稳定性特性 Fig. 7 Airship stability characteristics

 图 8 飞艇响应 Fig. 8 Airship response
 图 9 飞艇的稳定性特性 Fig. 9 Airship stability characteristics
5 结 论

1) 对于体积巨大的高空大型飞艇，副气囊占比很大，其动力学耦合效应不可忽略，对飞艇俯仰运动产生很大影响，随着飞艇升空，副气囊体积减小，耦合效应也逐渐减小。

2) 大型飞艇在副气囊耦合效应下的操纵稳态响应值小于忽略耦合效应的响应值，即耦合效应将降低飞艇的操纵性，且随着飞艇高度增加，这种影响会逐渐减小。所以，在进行飞艇设计的时候需要予以考虑。

3) 保持飞艇副气囊体积不变，副气囊形状越“瘦高”，其基频越远离飞艇钟摆频率，动力学耦合效应的影响越小；形状越“矮胖”，副气囊运动基频越接近飞艇钟摆特征频率，耦合现象越明显。

 [1] CHU A,BLACKMORE M,CHOLENDT R,et al.A novel concept for stratospheric communications and surveillance:Star light:AIAA-2007-2601[R].Reston:AIAA,2007. Click to display the text [2] YOKOMAKU Y.Overview of stratospheric platform airship R&D program in Japan[C]//The 2nd Stratospheric Platform Systems Workshop,2000:21-22. Click to display the text [3] ABRAMSON H N. The dynamic behavior of liquids in moving containers[M]. 版本 Washington,D.C.: NASA, 1996 : 1 -21. Click to display the text [4] MAEKAWA S, SAITO K. The effect of ballonet slosh on an airship's longitudinal motion[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2004, 47 (155) : 44 –50. Click to display the text [5] DELAURIER J. Influence of ballonet motions on the longitudinal stability of tethered aerostats[J]. Journal of Aircraft,1980, 17 (5) : 305 –312. Click to display the text [6] NAKADATE M.Development and flight test of SPF-2 low altitude stationary flight test vehicle[C]//AIAA 5th ATIO and AIAA 16th Lighter-than-Air Systems Technology Conference and Balloon Systems.Reston:AIAA,2005:999-1011. Click to display the text [7] LI Y W, NAHON M, SHARF I. Airship dynamics modeling:A literature review[J]. Progress in Aerospace Sciences,2011, 47 (3) : 217 –239. Click to display the text [8] ASHRAF M Z, CHOUDHRY M A. Dynamic modeling of the airship with Matlab using geometrical aerodynamic parameters[J]. Aerospace Science and Technology,2013, 25 (1) : 56 –64. Click to display the text [9] ATKINSON C J,URSO R G.Modeling of apparent mass effects for the real-time simulation of a hybrid airship[C]//AIAA Modeling and Simulation Technologies Conference.Reston:AIAA,2006:821-832. Click to display the text [10] TUCKERMAN L B.Inertia factors of ellipsoids for use in airship design:NASA-TR-210[R].Washington,D.CNASA,1926. Click to display the text [11] ZHAO X W, YANG B C, HUANG S X. Calculation of the rotary inertia of ellipsoid[J]. Physics and Engineering,2007, 17 (2) : 28 –29. Click to display the text [12] KHOURY G A, GILLETT J D. Airship technology[M]. Cambridge: Cambridge University Press, 2012 : 34 -56. Click to display the text [13] MUELLER J B,PALUSZEK M A.Development of an aerodynamic model and control law design for a high altitude airship[C]//AIAA Unmanned Unlimited Technical Conference,Workshop and Exhibit.Reston:AIAA,2004,1:415-431. Click to display the text [14] KULCZYCKI E A,JOHNSON J R,BAYARD D S,et al.On the development of parameterized linear analytical longitudinal airship models:AIAA-2008-7260[R].Reston:AIAA,2008. Click to display the text [15] SEMERARO N, GRIMALDI T, PESA M L, et al. New approach and results on the stability and control of airship[J]. Pathologica,2014, 62 (911) : 344 –354. Click to display the text [16] SASA S, HARADA K. Flight control testing of an unmanned airship model of 25 m long[J]. Aeronautical & Space Science Japan,2004, 52 : 30 –36. Click to display the text [17] SEMERARO N, GRIMALDI T, PESA M L, et al. New approach and results on the stability and control of airship[J]. Pathologica,2014, 62 (911) : 344 –354. Click to display the text

#### 文章信息

YOU Yingjie, MI Panpan, LYU Mingyun, LIU Wending

Airship's longitudinal motion impact analysis based on coupling ballonet

Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6): 1303-1310
http://dx.doi.org/10.13700/j.bh.1001-5965.2015.0427