文章快速检索 高级检索

Some influence factors in aerodynamic heat transfer numerical simulation of jet-interaction flow
LIN Boxi , YAN Chao , LI Yachao
School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Received: 2015-06-09; Accepted: 2015-08-06; Published online: 2016-06-20 12: 00
Corresponding author. Tel.:010-82317019. E-mail:yanchao@buaa.edu.cn
Abstract: When simulate the aerothermal environment of thrust jet and its interaction flow on an engineering vehicle geometry, people always use some approximate modeling to the full chemical reaction flow,then the influence to the simulation results of an approximate treatment for real gas and the modification to internal geometry of the thruster nozzle must to be manifested. By doing numerical test and compare results of some calculations, two main influence factors were studied to show the laws in approximate numerical simulation. One of which is how the possible modifications to thruster internal geometry influence on wall heat flux distribution of jet-interaction flow field. The second is when using a methodology of ideal gas equivalence to model fuel thruster jet, how different matching methods of the thruster exit boundary thermodynamic parameters influence the exhaust jet morphology and wall heat flux distribution. These computation results reveal the two main influence factors in aerodynamic heat transfer approximate simulation of thrust jet, and could be used to guide engineering applications.
Key words: computational fluid dynamics (CFD)     jet flow     similarity criterion     numerical simulation     aerodynamic heat transfer

1 计算模型 1.1 计算几何模型

 图 1 计算几何模型示意图 Fig. 1 Schematic diagram of computational model geometry
1.2 燃气喷流参数

 参数 密度/(kg·m-3) 静温/K 静压/kPa 马赫数 数值 0.016 6 1 119.3 7.38 4.06

1.3 喷管内流模拟方法

 (1)

1.4 空气喷流的出口参数匹配方法

 (2)

 (3)

 (4)

 (5)

1) 质量流不变

 (6)

P=ρRTMa=vj/a 代入,并考虑到前面2种已经满足的参数得

 (7)

2) 保持空气与燃气静温相等

 (8)

3) 保持空气与燃气静焓相等

 (9)

4) 保持空气与燃气总焓相等

 (10)

 (11)

 参数 匹配方法 密度/ (kg·m-3) 静温/ K 速度/ (m·s-1) 静压/ kPa 比热 比 马赫 数 燃气喷管 0.016 6 1 119.4 3 033.8 7.38 1.28 4.06 质量流 0.016 6 1 549.1 3 033.8 7.38 1.40 3.85 静温守恒 0.023 0 1 119.4 2 603.5 7.38 1.40 3.88 静焓守恒 0.012 7 2 023.3 3 500.2 7.38 1.40 3.88 总焓守恒 0.015 4 1 667.2 3 177.3 7.38 1.40 3.88

2 计算方法 2.1 网 格

2.2 数值方法

2.3 数值方法的确认

 图 2 实验纹影图与CFD等密度线图对比 Fig. 2 Experiment schlieren photographs versus CFD density contours
 图 3 壁面热流CFD结果与实验值对比 Fig. 3 Comparison of CFD and experiment wall heat flux results
3 计算结果及分析 3.1 喷管内流模拟比较

 图 4 喉道计算所得喷管出口流动参数均匀度 Fig. 4 Averaged flow parameters at real gas thruster exit when simulated from throat

 模拟位置 密度/(kg·m-3) 静温/K 速度/(m·s-1) 静压/kPa 马赫数 空气喷管出口 0.022 9 1 119.2 2 603.5 7.38 3.88 空气喷管较短截断 0.023 3 1 137.3 2 560.2 7.81 3.83 空气喷管较长截断 0.023 8 1 145.9 2 517.6 8.46 3.84 空气喷管喉道 0.021 1 1 071.6 2 518.1 7.42 4.07

 图 5 喷管中心截面等马赫线图 Fig. 5 Mach contours around thrust jet center cross plane

 图 6 不同喷管几何外形中心截面波系图 Fig. 6 Shock system around thrust jet center cross plane of different geometries

 图 7 不同几何外形模拟沿x轴向壁面热流分布 Fig. 7 Simulated wall heat flux distribution along x axis by different geometry

3.2 模拟参数比较

 图 8 不同参数匹配方法喷管中心截面波系图 Fig. 8 Shock system around thrust jet center cross plane by different parameter match methods

 图 9 壁面等压力线 Fig. 9 Pressure contours on wall surface

 图 10 喷管中心截面等温线 Fig. 10 Temperature contours on thrust jet center cross plane

 图 11 不同匹配方法沿x轴向壁面热流分布 Fig. 11 Wall heat flux distribution along x axis by different match methods

4 结 论

1) 当模拟内流时,对喷管几何外形的选取会对喷流形态产生影响。不模拟内喷管流动,出口参数匹配较好,喷流较“直立”,热流最大；模拟内部流动越多,喷管出口参数偏离设计状态越多,喷管外流场波系出现改变,导致热流逐渐增大。如果目标是如何匹配已知燃气喷口的物性参数,兼顾均衡膨胀转角、黏性的影响,从较短的喷管模拟是一种折中的选择。

2) 采用空气喷流模拟燃气喷流时,除动力学相似外,传热量受到热力学匹配参数的影响。文中采用的4种相似匹配方法各有特点,静焓守恒方法热流计算结果最大,静温守恒方法热流计算结果最低,具体选择需要根据设计要求决定。

 [1] WATANABE S,TAKAKI R,YAMAMOTO Y.RCS gas-jet interaction in the hypersonic flight experiment,HYFLEX:AIAA-1997-0524[R].Reston:AIAA,1997. Click to display the text [2] 耿云飞, 阎超. 联合激波针-逆向喷流方法的新概念研究[J]. 空气动力学学报,2010, 28 (4) : 436 –440. Cited By in Cnki (0) [3] GRAHAM M J, WEINACHT P, BRANDEIS J. Numerical investigation of supersonic jet interaction for finned bodies[J]. Journal of Spacecraft and Rockets,2002, 39 (3) : 376 –383. Click to display the text [4] 陈坚强, 赫新, 张毅锋, 等. 跨大气层飞行器RCS干扰数值模拟研究[J]. 空气动力学学报,2006, 24 (2) : 182 –186. CHEN J Q, HE X, ZHANG Y F, et al. The numerical study on RCS interaction for trans-atmospheric vehicle[J]. Acta Aerodynamica Sinica,2006, 24 (2) : 182 –186. (in Chinese). Cited By in Cnki (0) | Click to display the text [5] 周松柏.超声速内外流干扰的数值方法研究及其实验验证与应用[D].长沙:国防科技大学,2009:28-33. ZHOU S B.Research on numerical method,experimental verification and application in simulation jet interaction in supersonic external flow[D].Changsha:National University of Defense Technology,2009:28-33(in Chinese). (in Chinese). Cited By in Cnki (0) | Click to display the text [6] 梁杰, 阎超, 李志辉, 等. 稀薄过渡流区横向喷流干扰效应数值模拟研究[J]. 空气动力学学报,2013, 31 (1) : 27 –33. LIANG J, YAN C, LI Z H, et al. Numerical investigation of lateral jet interaction effects in rare field transition flow regime[J]. Acta Aerodynamica Sinica,2013, 31 (1) : 27 –33. (in Chinese). Cited By in Cnki (0) | Click to display the text [7] 邓有奇, 阎超, 吴晓军, 等. 战术导弹横向喷流数值模拟[J]. 北京航空航天大学学报,2005, 31 (4) : 477 –480. DENG Y Q, YAN C, WU X J, et al. Numerical investigation of supersonic jet interactions for tactical bodies[J]. Journal of Beijing University of Aeronautics and Astronautics,2005, 31 (4) : 477 –480. (in Chinese). Cited By in Cnki (0) | Click to display the text [8] 杨彦广, 刘君, 唐志共. 横向喷流干扰中的真实气体效应研究[J]. 空气动力学学报,2006, 24 (1) : 28 –33. YANG Y G, LIU J, TANG Z G. A study of real gas effects on lateral jet interaction[J]. Acta Aerodynamica Sinica,2006, 24 (1) : 28 –33. (in Chinese). Cited By in Cnki (0) | Click to display the text [9] 李海燕, 董维中, 朱国林. 高超声速喷管非平衡黏性流动的数值研究[J]. 航空学报,2006, 27 (2) : 204 –207. LI H Y, DONG W Z, ZHU G L. Numerical simulation of non-equilibrium viscous flows in hypersonic nozzles[J]. Acta Aeronautica et Astronautica Sinica,2006, 27 (2) : 204 –207. (in Chinese). Cited By in Cnki (0) | Click to display the text [10] 贺旭照, 秦思, 曾学军, 等. 模拟飞行条件下的吸气式高超声速飞行器后体尾喷流干扰问题实验方案研究[J]. 推进技术,2014, 35 (10) : 1310 –1316. HE X Z, QIN S, ZENG X J, et al. Experiment scheme research on afterbody nozzle plume interferenece of air-breathing hypersonic vehicle fly condition[J]. Journal of Propulsion Technology,2014, 35 (10) : 1310 –1316. (in Chinese). Cited By in Cnki (0) | Click to display the text [11] PINDZOLA M.Jet simulation in ground test facilities:AD-1963-440903[R].North Atlantic:AD,1963:11-13. Click to display the text [12] 李素偱. 喷流控制飞行器姿态的物理问题[M]. 北京: 中国宇航出版社, 2003 : 93 -94. LI S X. Physical problem of control aerocraft by jet. Physical problem of control aerocraft by jet[M]. Beijing: China Astronautic Publishing House, 2003 : 93 -94. (in Chinese). Cited By in Cnki (0) | Click to display the text [13] CHAMBERLAIN R,DANG A A,MCCLURE D.Effect of exhaust chemistry on reaction jet control:AIAA-1999-0806[R].Reston:AIAA,1999. Click to display the text [14] PAO S P,DEERE K A,ABDOL-HAMID K S.Establishing approaches to modeling the ares I-X and ares I roll control system with free-stream interaction:AIAA-2011-1056[R].Reston:AIAA,2011. Click to display the text [15] 孙得川, 杨建文, 白荣博. 喷流气体性质对导弹侧向喷流流场的影响[J]. 空气动力学学报,2010, 28 (6) : 720 –723. SUN D C, YANG J W, BAI R B. The effect of gas properties on the lateral jet interaction flowfield[J]. Acta Aerodynamica Sinica,2010, 28 (6) : 720 –723. (in Chinese). Cited By in Cnki (0) | Click to display the text [16] HIRSCHELE H, WEILANDC. 高超声速飞行器启动热力学设计问题精选[M]. 北京: 国防工业出版社, 2013 : 33 -38. HIRSCHEL E H, WEILAND C. Selected aerothermodynamic design problems of hypersonic flight vehicles[M]. Beijing: National Defense Industry Press, 2013 : 33 -38. (in Chinese). Cited By in Cnki (0) | Click to display the text [17] 阎超. 计算流体力学方法及应用[M]. 北京: 北京航空航天大学出版社, 2006 : 83 -105. YAN C. Computational fluid dynamics theory and application[M]. Beijing: Beihang University Press, 2006 : 83 -105. (in Chinese). Cited By in Cnki (0) | Click to display the text [18] GENG Y F, YU J, KONG W X. Investigation on a new method of adaptive drag reduction and non-ablation thermal protection system for hypersonic vehicles[J]. Acta Aerodynamica Sinica,2012, 30 (4) : 492 –501. Click to display the text [19] HAYASHI K, ASO S, TANI Y. Experimental study on thermal protection system by opposing jet in supersonic flow[J]. Journal of Spacecraft & Rockets,2012, 43 (1) : 233 –236. Click to display the text

#### 文章信息

LIN Boxi, YAN Chao, LI Yachao

Some influence factors in aerodynamic heat transfer numerical simulation of jet-interaction flow

Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6): 1210-1218
http://dx.doi.org/10.13700/j.bh.1001-5965.2015.0379