文章快速检索 高级检索

Rapid modeling of impingement pipe in turbine blade
LI Jixing , XI Ping
School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Received: 2015-06-11; Accepted: 2015-07-30; Published online: 2016-06-20 12: 00
Corresponding author. Tel.:010-82316768 E-mail:xiping@buaa.edu.cn
Abstract: Impingement pipe is the core component of the impingement cooling in turbine blade. In order to realize the rapid modeling of impingement pipe in turbine blade with complex cooling structure, a generative rapid modeling method was proposed.Firstly, the body of pipe was created by section curves which suits the shape of channel in blade and generated by curves created by insect-shape method. Then by using envelope surface trimming method and along-curve array method, the modeling stability and efficiency of cooling hole and hump are guaranteed.And the fitting precision between impingement pipe and blade is guaranteed by an iterative formula about protrude position.Finally, a rapid impingement pipe modeling program was developed based on UG Open API, and the modeling result validated the feasibility of the proposed method.
Key words: impingement pipe     parametric design     turbine blade     modeling     UG Open API

1 问题提出

 图 1 冲击冷却气流示意图 Fig. 1 Schematic diagram of cooling flow of impingement cooling in blade
 图 2 冲击冷却结构及导管示意图 Fig. 2 Schematic diagram of impingement cooling structure and pipe

2 导管建模方案分析

 图 3 造型方法与曲面数量 Fig. 3 Modeling method and number of surfaces

 图 4 打孔易出现的问题 Fig. 4 Possible errors in creation of holes

1) 管身曲面由截面线整体放样生成,必须与叶片叶型、隔肋曲面相适应,并且具有一定光顺性,满足冷气流通的气动需求。

2) 设计突起球心的定位算法,使突起与叶片内腔的贴合达到预定精度。

3) 实现冲击孔或突起的沿曲面按某种规则阵列,减轻设计人员负担。

4) 设计裁剪算法使冲击孔与突起建模具有稳定性。

 图 5 导管整体建模方案 Fig. 5 Project design of pipe modeling

3 导管快速建模方法

3.1 管身快速建模方法

 图 6 管身外型截面线 Fig. 6 Section curves of body of pipe

 参数名 参数几何意义 D1 截形曲线向内偏置距离 C1 管身外型前缘处桥接圆弧半径 C2 管身外型叶背处桥接圆弧半径 C3 管身外型叶盆处桥接圆弧半径 D2 管身厚度

 图 7 8种可能出现的桥接圆弧 Fig. 7 Eight possible bridge curves

1) 求交点P1,并将距离P1点较近的曲线端点视为曲线始点Ps,较远的点视为曲线终点Pe

2) 计算P1在曲线S1上的参数u1,在S2上的参数t1。并计算曲线S1在参数u1处的切矢T1和曲线S2t1处的切矢T2,由于S1S2参数化方向未知,T1T2指向不可确定,暂按图 8所示方向。

 图 8 参考向量的获取 Fig. 8 Creation of reference vector

3) 分别求曲线S1S2在始点处的参数u0t0

4) 曲线S1设置标识λ,若u0=0,λ=-1；若u0=1,λ=1。S2标识类推。

5) 设置参数步移δ=0.01；取 u2=u1+λ·δ, 并计算曲线S1在参数u2处的点P3 。类推在曲线S2上得到P4,创建参考向量

6) 若,则T1=－T1。若T2 ＜0,T2=－T2 。经此步骤后,T1T2均由曲线始点Ps指向曲线终点Pe。限于图像效果,T1T2最终指向图中未予示出。

7) 令T=T1+T2,将T单位化,将点P1沿T平移距离r(桥接圆弧半径),得点P,则P必位于图 7d所在区域,可以作为圆弧d的圆心参考。

3.2 截交包络裁剪法

 图 9 截交包络裁剪法 Fig. 9 Intersect-envelope trimming method

1) 在目标体外表面上选取一点P,作为创建工具体的参考点；创建工具体,使其尺寸足以完成特征正常创建,见图 9(a)

2) 工具体与目标体求交得一个或多个实体,从中选取P点所在实体,记为B。此处需要注意的是,做布尔交运算时管身实体和圆柱实体都必须保留。

3) 查询实体B所有面,存于链表中,从中删除P点所在曲面F0以及与F0相连的所有面,将链表中剩余的面缝合为一个片体T,见图 9(b)

4) 延展片体T裁剪工具体,见图 9(c)

3.3 特征等弧长阵列方法

 图 10 阵列曲线的获取 Fig. 10 Creation of array-curve
3.4 突起创建方法

 图 11 突起建模方法流程图 Fig. 11 Flowchart of hump modeling procedure
4 参数化建模实现

 图 12 导管建模结果 Fig. 12 Result of modeling of impingement pipe
 图 13 涡轮叶片快速建模系统与导管建模程序 Fig. 13 Turbine blade rapid modeling system and impingement pipe modeling module
5 结 论

1) 提出了基于截形方法的管身创建方法。

2) 解决了参数化建模中桥接圆弧圆心参考点选取问题。

3) 通过设计截交包络裁剪法,解决了叶片或导管等管道状模型参数化设计易出现的裁剪问题。

4) 构建了定位突起的球心迭代公式,解决了管身突起的创建问题。

5) 设计了针对突起和冲击孔的等弧长阵列方法,有效提高了突起和冲击孔的建模效率。

 [1] 冯国泰, 顾中华, 温风波, 等. 燃气涡轮机气冷涡轮气动设计体系设计思想及其应用[J]. 工程热物理学报,2009, 30 (11) : 1841 –1848. FENG G T, GU Z H, WEN F B, et al. Aerodynamic design system & ideology of air-cooled turbine and its application to gas turbines[J]. Journal of Engineering Thermophysics,2009, 30 (11) : 1841 –1848. (in Chinese). Cited By in Cnki (0) | Click to display the text [2] 陈凯.燃气涡轮冷却结构设计与气热弹多场耦合的数值研究[D].哈尔滨:哈尔滨工业大学,2010:6-9. CHEN K.Numerical research of gas turbine cooling structure design with aerodynamic thermal mechanical conjugate methods[D].Harbin:Harbin Institute of Technology,2010:6-9(in Chinese). (in Chinese). Cited By in Cnki (0) | Click to display the text [3] 谷振鹏, 王开. 冲击加气膜组合式换热效果的试验研究[J]. 航空发动机,2010, 36 (5) : 52 –55. GU Z P, WANG K. Experiments invetisgation on heat transfer effectiveness of combined implingment and film[J]. Aeroengine,2010, 36 (5) : 52 –55. (in Chinese). Cited By in Cnki (0) | Click to display the text [4] 宋玉旺, 席平. 基于特征造型技术的涡轮叶片参数化设计[J]. 北京航空航天大学学报,2004, 30 (4) : 321 –324. SONG Y W, XI P. Parametric design of turbine blade based onfeature modeling[J]. Journal of Beijing University of Aeronautics and Astronautics,2004, 30 (4) : 321 –324. (in Chinese). Cited By in Cnki (0) | Click to display the text [5] 朱谦, 宁涛, 席平. 基于引导线的涡轮气冷叶片伸根建模方法[J]. 北京航空航天大学学报,2012, 38 (8) : 1085 –1089. ZHU Q, NING T, XI P. Root extending section of turbine blade modeling method based on guide curves[J]. Journal of Beijing University of Aeronautics and Astronautics,2012, 38 (8) : 1085 –1089. (in Chinese). Cited By in Cnki (0) | Click to display the text [6] 张宝源, 席平, 杨炯. 复合弯扭涡轮叶片尾缝的快速建模[J]. 北京航空航天大学学报,2014, 40 (1) : 48 –53. ZHANG B Y, XI P, YANG J. Rapid modeling of trailing edge slots in bowed-twisted turbine blade[J]. Journal of Beijing University of Aeronautics and Astronautics,2014, 40 (1) : 48 –53. (in Chinese). Cited By in Cnki (0) | Click to display the text [7] 杨炯, 席平, 胡毕富, 等. 适应弯扭隔肋的涡轮叶片多种扰流肋造型方法[J]. 北京航空航天大学学报,2014, 40 (6) : 775 –781. YANG J, XI P, HU B F, et al. Multi-type ribs of turbine blade modeling method fitting bowed-twist wall[J]. Journal of Beijing University of Aeronautics and Astronautics,2014, 40 (6) : 775 –781. (in Chinese). Cited By in Cnki (0) | Click to display the text [8] 迟重然.气冷涡轮叶片的传热设计[D].哈尔滨:哈尔滨工业大学,2011:45-56. CHI C R.Heat transferring design for air-cooling turbine blades[D].Harbin:Harbin Institute of Technology,2011:45-56(in Chinese). (in Chinese). Cited By in Cnki (0) | Click to display the text [9] 王松涛, 迟重然, 温风波, 等. 涡轮动叶冷却结构设计方法Ⅰ:参数化设计[J]. 工程热物理学报,2011, 32 (4) : 581 –584. WANG S T, CHI C R, WEN F B, et al. Cooling structures design for turbine blade I:Parametric design[J]. Journal of Engineering Thermophysics,2011, 32 (4) : 581 –584. (in Chinese). Cited By in Cnki (0) | Click to display the text [10] 曹率, 莫蓉, 宫中伟. 航空涡轮叶片气膜孔参数化建模研究[J]. 航空计算技术,2011, 41 (3) : 77 –81. CAO S, MO R, GONG Z W. Research on parametric modeling of aeronautic turbine blade film hole[J]. Aeronautical Computing Technique,2011, 41 (3) : 77 –81. (in Chinese). Cited By in Cnki (0) | Click to display the text [11] XIA Y.The research of turbine blade modeling CAD system[D].Xi'an:Northwestern Polytechnical University,2004:19-22(in Chinese). Cited By in Cnki (0) [12] CHEN R Z,XI P.Analysis-oriented parametric modeling technology[C]//20122nd International Conference on IEEE Computer Science and Network Technology (ICCSNT).Piscataway,NJ:IEEE Press,2012:1208-1211. Click to display the text [13] LIU Y,FENG X,JIANG Z,et al.High-precision modeling of turbine blade from cross-section data[C]//2010 International Conference on IEEE Measuring Technology and Mechatronics Automation(ICMTMA).Piscataway,NJ:IEEE Press,2010,2:390-393. Click to display the text [14] KORAKIANITIS T, PANTAZOPOULOS G I. Improved turbine-blade design techniques using 4th-order parametric-spline segments[J]. Computer Aided Design,1993, 25 (5) : 289 –299. Click to display the text

#### 文章信息

LI Jixing, XI Ping

Rapid modeling of impingement pipe in turbine blade

Journal of Beijing University of Aeronautics and Astronsutics, 2016, 42(6): 1149-1155
http://dx.doi.org/10.13700/j.bh.1001-5965.2015.0386