﻿ 小攻角对后掠机翼边界层稳定性及转捩的影响
 文章快速检索 高级检索

1. 天津大学力学系, 天津 300072;
2. 中国空气动力研究与发展中心空气动力学国家重点实验室, 绵阳 621000

Effect of attack angle on stability and transition in a swept-wing boundary layer
JING Zhenrong1, SUN Pengpeng1, HUANG Zhangfeng1,2
1. Department of Mechanics, Tianjin University, Tianjin 300072;
2. State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China
Abstract: Attack angle is one of the key parameters to the cross-flow instability of swept-wing boundary layers. For swept NACA0012 airfoil with infinite spanwise length, the basic flow field was calculated by solving the three-dimensional compressible Navier-Stokes equations numerically, the neutral curve and the evolution curve of growth rate were obtained by solving the Orr-Sommerfeld equation, the effect of attack angle on the cross-flow stability was analyzed by linear stability theory (LST), and the transition position was predicted by eN method. It is found that, the growth of unstable waves in the leeward is inhibited but enhanced in the windward. Transition firstly occurs in the windward, and the transition position predicted by eN method is about 0.1 to 0.2 of the chord length with the N factor of about 6 when the disturbance velocity is 0.05% of the free-stream velocity.
Key words: attack angle     swept-wing     hydrodynamic stability     transition     eN method

1 数值计算方法

2 计算模型和条件

 图 1 计算模型坐标示意图 Fig. 1 Sketch map of the model coordinate

 图 2 计算网格示意图 Fig. 2 Sketch map of the computational domain

 图 3 压力系数沿弦长方向分布 Fig. 3 Distribution of pressure coefficient along chord

 图 4 横流速度剖面 Fig. 4 Profile of the crossflow velo city

3 数值结果分析 3.1 基本流分析

 图 5 不同攻角下的压力系数 Fig. 5 Pressure coefficients with different attack angles

 图 6 在ξ=100处的流向速度U-剖面 Fig. 6 Profile of flow velocity U- at ξ=100

 图 7 在ξ=100处横流速度剖面 Fig. 7 Profile of crossflow velocity at ξ=100

3.2 中性曲线

 图 8 中性稳定曲线(β=3) Fig. 8 Neutral stability curves (β=3)

 图 9 中性稳定曲线(ω=0) Fig. 9 Neutral stability curves (ω=0)

3.3 N值曲线及转捩预测

 图 10 eN方法的N值曲线 Fig. 10 N factor in eN method

 图 11 值随攻角的变化曲线 Fig. 11 factor changing with attack angle

 图 12 初始扰动幅值A0随攻角的变化曲线 Fig. 12 Curves of amplitude A0 changing with attack angle

 图 13 转捩位置ξ随攻角的变化曲线 Fig. 13 Curves of transition position ξ changing with attack angle

4 结 论

1) 随着攻角的增大,流向速度在迎风面逐渐减小,而横流速度线性增大,在背风面反之.

2) 攻角对中性驻波的展向波数影响较小,但是驻波的中性曲线在流向的最大位置对攻角很敏感,在迎风面/背风面随着攻角的增加呈线性增加/减小.

3) 扰动波的增长在迎风面得到加强,在背风面受到抑制.

4) 迎风面转捩最容易发生,随着攻角的增大,转捩位置向机翼前缘移动.

5) 当扰动速度为来流速度的0.05%时,转捩发生的N值在6左右,转捩发生的位置在0.1~0.2个弦长之间.

 [1] Joslin R D.Overview of laminar flow control[M].Virginia:National Aeronautics and Space Administration, Langley Research Center, 1998. [2] 周恒,赵耕夫.流动稳定性[M].北京:国防工业出版社, 2004:157-158. Zhou H, Zhao G F.Hydrodynamic stability[M].Beijing:National Defense Industry Press, 2004:157-158(in Chinese). [3] 吴永健.横流不稳定性实验研究[D].南京:南京航空航天大学, 2002. Wu Y J.Experimental study on crossflow instabilities in the boundary-layer of swept wing[D].Nanjing:Nanjing University of Aeronautics and Astronautics, 2002(in Chinese). Cited By in Cnki (2) [4] Boltz F W, Kenyon G C, Allen C Q.Effects of sweep angle on the boundary-layer stability characteristics of an untapered wing at low speeds, Technical Note:D-338[R].Moffett Field:National Aeronautics and Space Administration, 1960. [5] Haynes T S.Nonlinear stability and saturation of crossflow vortices in swept-wing boundary layers[D].Tempe:Arizona State University, 1996. [6] Dagenhart J R, Saric W S.Crossflow stability and transition experiments in swept-wing flow[M].Virginia:National Aeronautics and Space Administration, Langley Research Center, 1999:1, 7. Click to display the text [7] Reibert M S, Saric W S.Review of swept-wing transition, AIAA-1997-1816[R].Reston:AIAA, 1997. Click to display the text [8] Bushnell D M, Malik M R, Harvey W D.Transition prediction in external flows via linear stability theory[C]//Symposium Transsonicum Ⅲ.Berlin Heidelberg:Springer-Verlag, 1988:225. Click to display the text [9] Arnal D, Gasparian G, Salinas H.Recent advances in theoretical methods for laminar-turbulent transition prediction[J].AIAA, 1998:98-0223. Click to display the text [10] 孙朋朋,黄章峰.后掠角对后掠机翼边界层稳定性及转捩的影响[J].北京航空航天大学学报, 2015, 41(7):1313-1321. Sun P P, Huang Z F.Effect of the sweep angle on the stability and transition in a swept-wing boundary layer[J].Journal of Beijing University of Aeronautics and Astronautics, 2015, 41(7):1313-1321(in Chinese). Cited By in Cnki [11] 李锋,汪翼云,崔尔杰.翼型大攻角绕流的数值模拟[J].航空学报, 1992, 13(1):17-22. Li F, Wang Y Y, Cui E J.The numerical simulation of compressible flow around an airfoil at high angle of attack[J].Acta Aeronautica et Astronautica Sinica, 1992, 13(1):17-22(in Chinese). Cited By in Cnki (16) [12] 吴鋆,王晋军,李天.NACA0012翼型低雷诺数绕流的实验研究[J].实验流体力学, 2013, 27(6):32-38. Wu J, Wang J J, Li T.Experimental investigation on low Reynolds number behavior of NACA0012 airfoil[J].Journal of Experiments in Fluid Mechanics, 2013, 27(6):32-38(in Chinese). Cited By in Cnki (1) [13] 吴鋆,李天,王晋军.低Reynolds数NACA0012翼型绕流的流动特性分析[J].实验力学, 2014, 29(3):265-272. Wu J, Li T, Wang J J.Characteristic analysis of flow around NACA0012 airfoil in a low-Reynold-number media[J].Journal of Experimental Mechanics, 2014, 29(3):265-272(in Chinese). Cited By in Cnki [14] 袁湘江,李国良,刘智勇,等.小攻角高超声速钝锥边界层失稳特性[J].航空动力学报, 2011, 26(12):2805-2811. Yuan X J, Li G L, Liu Z Y, et al.Study of the instability characteristic in the boundary layer of a hypersonic blunt cone at low angle of attack[J].Journal of Aerospace Power, 2011, 26(12):2805-2811(in Chinese). Cited By in Cnki [15] 王斌,白存儒,杨广郡,等.后掠机翼低速流动转捩位置的升华法测量[J].实验力学, 2009, 24(3):197-201. Wang B, Bai C R, Yang G J, et al.Measurement of transition location change of swept wing in a low speed flow based on sublimation method[J].Journal of Experimental Mechanics, 2009, 24(3):197-201(in Chinese). Cited By in Cnki (2) [16] 孙朋朋.马赫数、攻角及后掠角对后掠机翼边界层稳定性及转捩的影响[D].天津:天津大学, 2015. Sun P P.Effect of Mach number, attack angle and sweep angle on the stability and transition in a swept-wing boundary layer[D].Tianjin:Tianjin University, 2015(in Chinese). Cited By in Cnki [17] 黄章峰,逯学志,于高通.机翼边界层的横流稳定性分析和转捩预测[J].空气动力学学报, 2014, 32(1):14-20. Huang Z F, Lu X Z, Yu G T.Cross-flow instability analysis and transition prediction of airfoil boundary layer[J].ACTA Aerodynamic Sinica, 2014, 32(1):14-20(in Chinese). Cited By in Cnki (1) [18] 韩步璋,黄奕裔,张其威,等.NACA0012翼型跨音速测压实验研究[J].南京航空航天大学学报, 1987, 19(2):92-102. Han B Z, Hang Y Y, Zhang Q W, et al.An experiment of pressure measurement for NACA0012 airfoil in a transonic wind tunnel[J].Journal of Nanjing Aeronautical Institute, 1987, 19(2):92-102(in Chinese). Cited By in Cnki (1) [19] Huang Z F, Cao W, Zhou H.The mechanism of breakdown in laminar-turbulent transition of a supersonic boundary layer on a flat plate-temporal mode[J].Science in China Series G:Mechanics and Astronomy, 2005, 48(5):614-625. Click to display the text

#### 文章信息

JING Zhenrong, SUN Pengpeng, HUANG Zhangfeng

Effect of attack angle on stability and transition in a swept-wing boundary layer

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(11): 2177-2183.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0769