﻿ 基于有限元方法的场磨式电场传感器标定装置优化设计
 文章快速检索 高级检索

1. 北京航空航天大学自动化科学与电气工程学院, 北京 100191;
2. 中国电力科学研究院高电压所, 北京 100192;
3. 国网山西省电力公司检修分公司, 太原 030000

Optimum design of calibration device for field mill type electric field sensor based on finite element method
CUI Yong1 , YUAN Haiwen1, ZHAO Luxing2, HU Duo3
1. School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;
2. High Voltage Department, China Electric Power Research Institute, Beijing 100192, China;
3. Maintenance Branch, State Grid Shanxi Electric Power Company, Taiyuan 030000, China
Abstract: Field mill type electric field sensors are widely used to measure the total electric field at ground level under the high voltage direct current (HVDC) transmission lines. The size of the traditional calibration device is extremely large and it is not very convenient to move for outdoor measurement usage. To overcome this disadvantage, a new kind of reduced scale calibration device with preferable portability was elaborated applied in measurement of the total electric field at ground level under the high voltage direct current transmission lines. The finite element analysis method was employed to establish the three dimensional model of the electric field sensor calibration device. The numerical simulation analysis based on the finite element method was made with the respect to the dimension and structure and other key parameters for the portable calibration device. The structure parameter of the calibration device was optimally designed based on the simulation result. In addition, the reduced-scale portable calibration device was compared with the traditional calibration device by experiments. Based on the experimental and the simulation results, the proposed portable device demonstrates that it can accomplish the accurate and flexible demands of the electric field calibration.
Key words: HVDC power transmission     field mill type electric field sensors     calibration device     finite element analysis     electric field measurement

1 设计原理

 图 1 场磨式电场传感器的标定装置Fig. 1 Calibration device for field mill type electric field sensor

2 结构参数的有限元分析

 图 2 标定装置和被检电场传感器的几何模型Fig. 2 Geometric model of calibration device and tested electric field sensor
 图 3 标定装置的剖分图Fig. 3 Mesh diagram of calibration device
 图 4 标定装置极板间电场分布图Fig. 4 Distribution diagram of electric field between two plates of calibration device
2.1 极板间距和极板直径对电场的影响

 图 5 不同H下的标定装置极板间的电场分布Fig. 5 Distribution of electric field between two plates of calibration device with different H
 图 6 不同H下电场传感器感应片上方电场的畸变Fig. 6 Distortion of electric field over sensing plate between two plates of calibration device with different H

 图 7 H=5 cm时不同直径极板的电场分布Fig. 7 Distribution of electric field with different L when H=5 cm

2.2 传感器外壳与标定装置的相对位置

 图 8 标定装置相对传感器倾斜时的几何模型Fig. 8 Geometric model when calibration device inclined relative to sensor
 图 9 标定装置与传感器间有相对倾斜时与没有相对倾斜时的电场分布对比Fig. 9 Electric field distribution when calibration device and sensor with and without relative incline

 图 10 电场传感器与标定装置相对位置变化时感应片上方电场分布的变化Fig. 10 Change of electric field distribution over sensing plate with different relative location between electric field sensor and calibration device
3 实验结果与分析

 图 11 便携式电场传感器标定装置Fig. 11 Portable calibration device for electric field sensor

 图 12 标准的电场传感器标定装置Fig. 12 Standard calibration device for electric field sensor
 图 13 便携式标定装置产生的实际电场强度Fig. 13 Real electric field strength of portable calibration device

4 结 论

1) 本文给出了标定装置及电场传感器的有限元模型,基于该模型,采用有限元方法对电场传感器标定装置进行了结构参数的分析和设计,所设计的标定装置克服了传统标定装置体积大、不便于移动的缺点.

2) 标定装置两极板间距和极板直径对电场的影响较大,当两极板间距离为5 cm时,产生的电场的畸变率较小.

3) 被检电场传感器与标定装置的相对位置对标定结果影响较大,在实际使用中,两者的相对位置必须固定.

 [1] 刘振亚.特高压直流输电工程电磁环境[M].北京:中国电力出版社,2009:14-20.Liu Z Y.UHVDC transmission engineering electromagnetic environment[M].Beijing:China Electric Power Press,2009:14-20(in Chinese). [2] 陆家榆,鞠勇.±800kV直流输电线路电磁环境限值研究[J].中国电力,2006,39(10):37-42.Lu J Y,Ju Y.±800kV DC transmission line electromagnetic environment research[J].China Power,2006,39(10):37-42(in Chinese). Cited By in Cnki (38) [3] 田丰,余占清,曾嵘,等.高海拔地区UHVDC输电线路电晕可听噪声影响因素分析[J].高电压技术,2012,38(12):3125-3132.Tian F,Yu Z Q,Zeng R,et al.Influence factors of audible noise caused by corona discharge on UHVDC transmission lines under high altitude condition[J].High Voltage Engineering,2012,38(12):3125-3132(in Chinese). Cited By in Cnki (8) [4] 邓军,肖瑶,楚金伟,等.云南-广东±800kV特高压直流线路无线电干扰仿真计算与测试分析[J].高电压技术,2013,39(3):597-604.Deng J,Xiao Y,Chu J W,et al.Analysis of simulative calculation and measurement of radio interference from yunnan-guangdong±800kV UHVDC transmission lines[J].High Voltage Engineering,2013,39(3):597-604(in Chinese). Cited By in Cnki (5) [5] 崔翔,周象贤,卢铁兵.高压直流输电线路离子流场计算方法研究进展[J].中国电机工程学报,2012,32(36):130-141.Cui X,Zhou X X,Lu T B.Recent progress in the calculation methods of ion flow field of HVDC transmission lines[J].Proceedings of the CSEE,2012,32(36):130-141(in Chinese). Cited By in Cnki (9) [6] 张建功,马士新,张广洲,等.直流电场测量装置研制[J].高电压技术,2009,35(12):3027-3030.Zhang J G,Ma S X,Zhang G Z,et al.Development of measurement device for DC electric-field strength[J].High Voltage Engineering,2009,35(12):3027-3030(in Chinese). Cited By in Cnki (6) [7] 杨勇.高压直流模拟试验短线段下地面3维合成电场的计算分析[J].高电压技术,2013,39(3):2843-2847.Yang Y.Calculation analysis on three-dimensional total electric field at ground level under short HVDC simulation test line section[J].High Voltage Engineering,2013,39(3):2843-2847(in Chinese). Cited By in Cnki (5) [8] 张洪钏,袁海文,陆家榆,等.交直流混合电场旋转式一体化测试仪的研制[J].电网技术,2012,36(12):182-188.Zhang H C,Yuan H W,Lu J Y,et al.Development of an integrative rotary test instrument for AC/DC hybrid electric field[J].Power System Technology,2012,36(12):182-188(in Chinese). Cited By in Cnki (3) [9] Cui Y,Lv J,Yuan H,et al.Development of a wireless sensor network for distributed measurement of total electric field under HVDC transmission lines[J].International Journal of Distributed Sensor Networks,2014:850842. Click to display the text [10] Cui Y,Wang Q,Yuan H,et al.Relative localization in wireless sensor networks for measurement of electric fields under HVDC transmission lines[J].Sensors,2015,15(2):3540-3564. Click to display the text [11] Fort A,Mugnaini M,Vignoli V,et al.Design,modeling,and test of a system for atmospheric electric field measurement[J].IEEE Transactions on Instrumentation and Measurement,2011,60(8):2778-2785. Click to display the text [12] Bateman M G,Stewart M F,Podgorny S J,et al.A low-noise,microprocessor-controlled,internally digitizing rotating-vane electric field mill for airborne platforms[J].Journal of Atmospheric and Oceanic Technology,2007,24(7):1245-1255. Click to display the text [13] 郑凤杰,夏善红,陈贤祥.三维电场传感器仿真优化及性能测试[J].传感技术学报,2008,21(6):946-950.Zheng F J,Xia S H,Chen X X.Simulation optimization and performance test of three dimensional electric field sensor[J].Chinese Journal of Sensors and Actuators,2008,21(6):946-950(in Chinese). Cited By in Cnki (7) [14] Tant P,Bolsens B,Sels T,et al.Design and application of a field mill as a high-voltage DC meter[J].IEEE Transactions on Instrumentation and Measurement,2007,56(4):1459-1464. Click to display the text [15] IEEE Std 1227TM-1990(R2010).IEEE guide for the measurement of DC electric-field strength and ion related quantities[S].Piscataway,NJ:IEEE Press,1990:1-50. Click to display the text [16] Selezneva A N.Instrument for calibrating means of measuring electric field strength[J].Measurement Techniques,1983,26(10):850-852. Click to display the text

#### 文章信息

CUI Yong, YUAN Haiwen, ZHAO Luxing, HU Duo

Optimum design of calibration device for field mill type electric field sensor based on finite element method

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(10): 1807-1812.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0783