文章快速检索 高级检索

Numerical simulation of adsorption characteristics of magnetic take-up roll for amorphous ribbon
SONG Yanming, YANG Yang
School of Mechanical Engineering and Automation, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:Take-up roll (TUR) is a key component in amorphous ribbon automatic production line. Take-up rate of TUR determines the ribbon quality and production rate. Because the line speed of amorphous ribbon in the ribbon process is fast and the amorphous ribbon suffers from different resistance, TUR should generate enough adsorption force to overcome the different resistance conditions. According to the requirements of ribbon production process, the structure of magnetic TUR with NdFeB permanent magnet was proposed. The finite element method was used to analyze magnetic adsorption characteristics in different ribbon steps. The magnetic adsorption force contour and magnetic field distribution were obtained along different axes under different air gaps. The calculation results show that the magnetic TUR can supply enough adsorption force to take up the ribbon when air gap is smaller than 30 mm in specification range. Finally, the maximum magnetic adsorption force under different air gaps were measured by spot tests. It is verified that the test result is consistent with the simulation result.
Key words: amorphous ribbon     permanent magnet     take-up roll     adsorption force     air gap

 图 1 非晶带材制备及卷取过程示意图 Fig. 1 Schematic of preparation and take-up process of amorphous ribbon

 图 2 第一吸附步骤受力分析图 Fig. 2 Force analysis image of the first adsorption step
1.2 非晶带材与卷取辊同步转动不分离条件

 图 3 第二吸附步骤受力分析图 Fig. 3 Force analysis image of the second adsorption step

 图 4 磁性卷取辊结构示意图 Fig. 4 Structure schematic of magnetic take-up roll

 参数 数值 磁性卷取辊外径 350 两排永磁铁中心面间距离 50 永磁铁长度 32 永磁铁宽度 10 永磁铁厚度 6
3 计算模型

1) 通过初步实验验证,非晶带材主要受到磁性卷取辊下方10块永磁铁的吸附作用.将磁性卷取辊简化,并假设非晶带材在吸附过程中不发生弯曲变形.图 5所示为第一吸附步骤简化模型示意图,在第一吸附步骤中,非晶带材与卷取辊相对运动,把非晶带材某时刻进入到卷取辊范围的位置作为坐标系原点O,简化卷辊本体绕O1O2轴转动,非晶带材沿x向行进.非晶带材进入卷取辊范围时,z向位置同样会影响卷取辊的吸附特性.

 图 5 第一吸附步骤简化模型示意图 Fig. 5 Simplified model schematic of the first adsorption step

2) 第二吸附步骤中,非晶带材吸附在卷取辊表面并与卷取辊以相同转速绕O1O2轴转动.第二吸附步骤简化模型示意图如图 6所示.

 图 6 第二吸附步骤简化模型示意图 Fig. 6 Simplified model schematic of the second adsorption step
3.2 边界条件及网格划分

4.1 第一吸附步骤磁性卷取辊吸附特性

 图 7 非晶带材受磁吸附力变化图(L=1 mm) Fig. 7 Variation image of magnetic adsorption force on amorphous ribbon(L=1 mm)

 图 8 第一吸附过程磁感应场强度分布(L=1 mm) Fig. 8 Magnetic flux density distribution of the first adsorption step(L=1 mm)

 图 9 不同x向行进距离下的流场压力场分布(L=1 mm) Fig. 9 Pressure field distribution of flow field under different x-direction distances(L=1 mm)

 图 10 非晶带材表面气流作用力分布(L=1 mm) Fig. 10 Air pressure force distribution on surface of amorphous ribbon(L=1 mm)

 图 11 非晶带材合力分布(L=1 mm) Fig. 11 Total force distribution on amorphous ribbon(L=1 mm)

 图 12 第二吸附步骤磁感应强度分布 Fig. 12 Magnetic flux density distribution of the second adsorption step

 图 13 不同z向位置下第二吸附步骤磁吸附力变化曲线 Fig. 13 Magnetic adsorption force variation curves with different z-direction locations of the second adsorption step

 图 14 磁吸附力实验系统 Fig. 14 Magnetic adsorption force test system

 图 15 不同气隙下的y向最大磁吸附力(z=1 mm) Fig. 15 Maximum magnetic adsorption force in y-direction with different air gaps(z=1 mm)

 图 16 磁性卷取辊成功率实验装置 Fig. 16 Efficiency test facility of magnetic take-up roll
6 结 论

1) 当气隙范围小于30 mm时,在给定的空间坐标范围内,磁吸附力大于起卷过程中的阻力.

2) 在第二吸附步骤中产生的磁吸附力相对于卷取辊对称面呈对称分布.

3) 实验与数值模拟方法测得不同气隙下的y向最大磁吸附力的变化趋势相同,二者的最大相对误差为10%.

 [1] Ishikawa K, Seki Y,Kita K,et al.Hydrogen permeation in rapidly quenched amorphous and crystallized Nb20Ti40Ni40 alloy ribbons[J].International Journal of Hydrogen Energy,2011,36(2):1784-1792. Click to display the text [2] Satyajeet S. Amorphous phase formation in mechanically alloyed Fe-based systems[D].Florida:University of Central Florida, 2008. [3] 王绪威,刘广玉. 非晶态合金压力敏感元件和传感器[J].航空学报,1988,9(4):115-122. Wang X W,Liu G Y.Amorphous alloy pressure sensors and transducers[J].Acta Aeronautica et Astronautica Sinica,1988,9(4): 115-122(in Chinese). Cited By in Cnki (1) [4] Nicholas D. Amorphous metals in electric-power distribution applications[J].Materials Research Society,1998,23(5):50-56. Click to display the text [5] 刘峰,张晋渊, 张珂,等.Fe83B17 非晶带材冷却速率的量化与表征[J].西安工业大学学报,2010,30(1):34-60. Liu F,Zhang J Y,Zhang K,et al.The cooling rate quantification and characterization of Fe83B17amorphous ribbon[J].Journal of Xi'an Technological University,2010,30(1):34-60(in Chinese). Cited By in Cnki [6] Li D,Zhuang J, Liu T,et al.The pressure loss and ribbon thickness prediction in gap controlled planar-flow casting process[J].Journal of Materials Processing Technology,2011,211(11):1764-1767. Click to display the text [7] Zhang H W, Zhang W Y,Yan A,et al.The hard magnetic properties of nanocomposite Nd3.6Pr5.4Fe83Co3B5 ribbons prepared by melt spinning[J].Materials Science and Engineering A-Structural Materials Properties Microstructure and Processing,2001,304:997-1000. [8] Keyvanaraa A, Gholamipour R,Mirdamadi S,et al.Effect of quenching wheel speed on the structure,magnetic properties and magnetoimpedance effect in Co64Fe4Ni2B19-xSi8Cr3Alx(x=0,1 and 2) melt-spun ribbons[J].Journal of Magnetism and Magnetic Materials,2010,322(18):2680-2683. Click to display the text [9] 桂仲成,陈强, 孙振国.多体柔性永磁吸附爬壁机器人[J].机械工程学报,2008,44(6):177-182. Gui Z C,Chen Q,Sun Z G.Wall climbing robot employing multi-body flexible permanent magnetic adhesion system[J].Journal of Mechanical Engineering,2008,44(6):177-182(in Chinese). Cited By in Cnki (17) [10] Shen W M, Gu J,Shen Y J.Proposed wall climbing robot with permanent magnetic tracks for inspecting oil tanks[C]//IEEEInternational Conference on Mechatronics & Automation,2005,4:2072-2077. Click to display the text [11] Md R A M Z, Khairul S M S.Development of a low cost small sized in-pipe robot[J].Procedia Engineering,2012,41:1469-1475. Click to display the text [12] Guo H, Wang W,Xing W,et al.Design of electrical/mechanical hybrid 4-redundancy brushless DC torque motor[J].Chinese Journal of Aeronautics,2010,23(2):211-215. Click to display the text [13] Yan H S, Wang H,Liu J Y.Structural synthesis of novel integrated DC gear motors[J].Mechanism and Machine Theory,2006,41(11):1289-1305. Click to display the text [14] 房建成,孙津济. 一种磁悬浮飞轮用新型永磁偏置径向磁轴承[J].北京航空航天大学学报,2006,32(11):1304-1307. Fang J C,Sun J J.New permanent magnet biased radial magnetic bearing in magnetic suspending fly wheel application[J].Journal of Beijing University of Aeronautics and Astronautics,2006,32(11):1304-1307(in Chinese). Cited By in Cnki (27) [15] 刘虎,房建成. 新型永磁偏置轴向磁轴承的磁力特性[J].机械工程学报,2010,46(8):167-174. Liu H,Fang J C.Magnetic force characteristics of a novel permanent magnet biased axial magnetic bearing[J].Journal of Mechanical Engineering,2010,46(8):167-174(in Chinese). Cited By in Cnki (14) [16] 陈亮,梁国柱, 邓新宇,等.贮箱内低温推进剂汽化过程的CFD数值仿真[J].北京航空航天大学学报,2013,39(2):264-268. Chen L,Liang G Z,Deng X Y,et al.CFD numerical simulation of cryogenic propellant vaporization in tank[J].Journal of Beijing University of Aeronautics and Astronautics,2013,39(2):264-268(in Chinese). Cited By in Cnki [17] 冯德利,招启军, 徐国华.基于CFD方法的直升机前飞状态配平分析[J].航空学报,2013,34(10):2256-2264. Feng D L,Zhao Q J,Xu G H.Trim analysis of helicopter in forward flight based on CFD method[J].Acta Aeronautica et Astronautica Sinica,2013,34(10):2256-2264(in Chinese). Cited By in Cnki

#### 文章信息

SONG Yanming, YANG Yang

Numerical simulation of adsorption characteristics of magnetic take-up roll for amorphous ribbon

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(3): 472-478.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0180