﻿ X型尾翼临近空间飞艇隐身特性仿真
 文章快速检索 高级检索
X型尾翼临近空间飞艇隐身特性仿真

Simulation on stealth characteristics of X-tail near space airship
XIAO Houdi, LIU Longbin, LÜ Mingyun
School of Aeronautic Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:In order to reduce the radar cross section (RCS) of near space airship, the effect on the RCS of near space airship was studied, when its X-tail has different deformation angles. The RCS character effect of head, side and tail in the near space airship was simulated, when X-tail has different deformation angles based on physical optics method. Physical optics and multilevel fast multipole method (MLFMM) were applied to simulate the RCS of contrast ball, and the results show that the physical optics method is accurate and appropriate. The simulation results show that the X-tail angle on different deformation has less influence on head RCS of airship, but has great influence on side RCS of airship. The side RCS reduced to 13.7% when deformation angle changed from 0 ° to 20 °. The deformation of X-tail can significantly improve the performance of near space airship lateral stealth, while increasing the other direction RCS.
Key words: near space airship     X-tail     stealth     physical optics     multilevel fast multipole method (MLFMM)

1 X型尾翼临近空间飞艇隐身特性仿真 1.1 仿真原理[15]

RCS的计算方法,常用的有物理光学法、几何光学法、几何绕射理论、物理绕射理论、等效电磁流法、射线追踪法、时域有限差分法、快速多级子法和矩量法等.本文采用物理光学法分析X型尾翼临近空间飞艇的RCS高频特性.物理光学法一般是将模型表面用诸多三角面元来近似.将全部三角面元的RCS进行叠加,得到模型的RCS.一个面元的RCS计算公式如下:

1.2 初始模型RCS仿真

X型尾翼临近空间飞艇的RCS仿真过程为:用CATIA软件建立其模型(如图 1所示);生成三角形网格并导出网格文件,本文中初始模型共计生成74978个三角形网格(如图 2所示);用基于物理光学法编写的VC程序仿真出X型尾翼临近空间飞艇的RCS仿真值(如图 3所示).仿真初始条件为:雷达俯仰角为0°;入射波长λ=0.03m,即X波段,模型的俯仰角和滚转角均为0°.

 参数 尺寸 飞艇长度 100 飞艇高度 30 吊舱底距飞艇轴线距离 15 吊舱底宽度 10 尾翼半翼展 15 尾翼翼根弦长 25 尾翼翼尖弦长 9

 图 1 X型尾翼临近空间飞艇三维模型 Fig. 1 3D model of X-tail near space airship

 图 2 X型尾翼临近空间飞艇三维模型网格 Fig. 2 3D grid of X-tail near space airship

 图 3 X型尾翼临近空间飞艇RCS仿真结果 Fig. 3 RCS numerical simulation results of X-tail near space airship

 图 4 X型尾翼变形示意图 Fig. 4 X-tail deformation schematic

 图 5 临近空间飞艇头向、侧向、尾向RCS曲线 Fig. 5 Near space airship RCS curves from head, side and tail direction

1.4 雷达俯仰角变化对X型尾翼临近空间飞艇侧向RCS特性的影响

 图 6 45°变形角临近空间飞艇网格 Fig. 6 NearNear space airship grid when deformation angle is 45°

 图 7 X型尾翼变形角为45°时的临近空间 飞艇RCS特性(β=0°) Fig. 7 RCS of near space airship when deformation angle of X-tail is 45°(β=0°)

 图 8 探测雷达的俯仰角变化对X型尾翼临近空间 飞艇侧向RCS的影响(β=45°) Fig. 8 Impact of changes in pitch angle detection of radar on X-tail near space airship lateral RCS(β=45°)

 图 9 对比球VC程序计算模型网格 Fig. 9 Grid of contrast ball when calculated using VC program

 图 10 对比球FEKO计算模型 Fig. 10 Model of contrast ball when calculated using FEKO

FEKO采用的是多层快速多极子法.其中,对比球探测雷达方位角在0°~180°变化,步长为5°.模型的俯仰角和滚转角均为0°.分别对VC和FEKO计算的对比球侧向±30°RCS取算数平均值.FEKO计算结果为-8.995dB·m2,VC计算结果为-9.120dB·m2.统计分析知两者之间差别只有2.83%.说明本文采用的物理光学法是准确合适的.

3 结 论

1) 为了提高临近空间飞艇蒙皮材料的隔热性能,在飞艇表面镀一层金属以增大其对太阳光的热反射率进而起到隔热的作用,这样一来临近空间飞艇的电磁散射特性就相当于一个金属导体,为了提高其生存能力其隐身特性的研究将变得有必要.

2) X型尾翼变形角的不同对临近空间飞艇头向±30°的RCS算术平均值影响较小.

3) X型尾翼变形角的不同对临近空间飞艇侧向±30°的RCS算术平均值影响较大.变形角从0°增加到20°时侧向±30°的RCS算术平均值从42.00dB·m2减小到33.37dB·m2,仅为0°时的13.7%;之后当变形角在20°~85°之间时RCS基本趋于稳定;在变形角为90°时侧向±30°的RCS算数平均值又回达到43.06dB·m2,这是由于此时尾翼翼尖的平面被电磁波垂直照射,增大了散射强度,这一点说明在设计时要尽量避免翼尖平面的出现,可以用楔形翼尖.

4) X型尾翼的变形可以显著改善临近空间飞艇侧向隐身性能,同时也导致其他方向的RCS的增大.

 [1] Lee Y,Kim D,Yeom C.Development of Korean high altitude platform systems[J].International Journal of Wireless Information Networks,2006,13(1):31-42. Click to display the text [2] Yu D,Lv X.Configurations analysis for high-altitude/long-endurance airships[J].Aircraft Engineering and Aerospace Technology,2010,82(1):48-59. Click to display the text [3] Pankine A,Nock K,Li Z,et al.Stratospheric satellites for earth observations[J].Bulletin of the American Meteorological Society,2009,90(8):1109-1119. Click to display the text [4] Miura R,Suzuki M.Preliminary flight test program on telecom and broadcasting using high altitude platform stations[J].Wireless Personal Communications,2003,24(2):341-361. Click to display the text [5] Rango F D,Trpea M,Marano S.Integrated services on high altitude platform: receiver driven smart selection of HAP-Geo satellite wireless access segment and performance evaluation[J].International Journal of Wireless Information Networks,2006,13(1):77-94. Click to display the text [6] 曹旭,高诚贤.PBO基质平流层飞艇蒙皮材料的制备研究[J].高科技纤维与应用,2009,34(4):37-42.Cao X,Gao C X.Fabrication and investigation of envelope materials for strato-spheric aircraft with PBO fabric as load-carriers[J].Hi-Tech Fiber & Application,2009,34(4):37-42(in Chinese). Cited By in Cnki (2) [7] 白向红.飞艇蒙皮材料力学性能演化规律研究[D].哈尔滨:哈尔滨工业大学,2009.Bai X H.Law of the mechanical properties of the evolution of the airship skin material[D].Harbin:Harbin Institute of Technology,2009(in Chinese). Cited By in Cnki (2) [8] 曹旭,顾正铭,王伟志.可用于平流层飞艇蒙皮的PBO织物编织和性能研究[J].航天返回与遥感,2008,29(3):57-62.Cao X,Gu Z M,Wang W Z.Weave and performance investigation of PBO fabric for stratosphere airship envelope[J].Spacecraft Recovery & Remote Sensing, 2008,29(3):57-62(in Chinese). Cited By in Cnki (5) [9] 谭惠丰,刘羽熙,刘宇艳,等.临近空间飞艇蒙皮材料研究进展和需求分析[J].复合材料学报,2012,29(6): 1-8.Tan H F,Liu Y X,Liu Y Y,et al.Research progress and requirement analysis of envelope materials for near space airship[J].Acta Materiae Compositae Sinica,2012,29(6): 1-8(in Chinese). Cited By in Cnki (3) [10] 顾正铭.平流层飞艇蒙皮材料的研究[J].航天返回与遥感,2007,28(1):62-66.Gu Z M.Research of stratospheric airship' skin material[J].Spacecraft Recovery & Remote Sensing,2007,28(1):62-66(in Chinese). Cited By in Cnki (23) [11] 王晓亮,单雪雄.平流层飞艇空气动力估算[J].力学季刊,2006,27(2):295-304.Wang X L,Shan X X.Aerodynamic estimation for stratosphere airship[J].Chinese Quarterly of Machanics,2006,27(2):295-304(in Chinese). Cited By in Cnki (21) [12] 王明建,黄新生.平流层飞艇平台建模与仿真分析[J].计算机仿真,2008,25(5):47-50.Wang M J,Huang X S.Modeling and simulation analysis of stratospheric airship platform[J].Computer Simulation,2008,25(5):47-50(in Chinese). Cited By in Cnki (12) [13] 缪敏昌,黄德赞,彭敏.飞艇吊舱隐身特性研究[J].航空工程进展,2011,2(4):415-418.Miao M C,Huang D Z,Peng M.Research on characteristic of airship gondola stealth[J].Advances in Aeronautical Science and Engineering,2011,2(4):415-418(in Chinese). Cited By in Cnki | Click to display the text [14] Lin L,Igor P.A review of airship structural research and development[J].Progress in Aerospace Sciences,2009,45(1):83-96. [15] 岳奎志,孙聪,姬金祖.双立尾对战斗机隐身特性的数值模拟[J].北京航空航天大学报,2014,40(2):160-165.Yue K Z,Sun C,Ji J Z.Numerical simulation on the stealth characteristics of twin-vertical-tails for fighter[J].Journal of Beijing University of Aeronautics and Astronautics,2014,40(2):160-165(in Chinese). Cited By in Cnki (2) [16] 王钢林,罗明强,武哲.临近空间浮空器总体参数的优化设计研究[J].航天控制,2008,26(2):9-13.Wang G L,Luo M Q,Wu Z.Optimization onsizing of high-altltude/long-endurance airship[J].Aerospace Control,2008,26(2):9-13(in Chinese) Cited By in Cnki (5)

#### 文章信息

XIAO Houdi, LIU Longbin, LÜ Mingyun
X型尾翼临近空间飞艇隐身特性仿真
Simulation on stealth characteristics of X-tail near space airship

Journal of Beijing University of Aeronautics and Astronsutics, 2015, 41(1): 181-186.
http://dx.doi.org/10.13700/j.bh.1001-5965.2014.0047