文章快速检索     高级检索
  北京化工大学学报(自然科学版)  2017, Vol. 44 Issue (2): 124-128   DOI: 10.13543/j.bhxbzr.2017.02.020
0

引用本文  

孟明会, 崔丽鸿, 白欣叶, 王海峰. 二元半规范双小波框架滤波器的构造[J]. 北京化工大学学报(自然科学版), 2017, 44(2): 124-128. DOI: 10.13543/j.bhxbzr.2017.02.020.
MENG MingHui, CUI LiHong, BAI XinYe, WANG HaiFeng. Construction of semi-canonical wavelet bi-frame filters with two variables[J]. Journal of Beijing University of Chemical Technology (Natural Science), 2017, 44(2): 124-128. DOI: 10.13543/j.bhxbzr.2017.02.020.

基金项目

大学生创新创业训练计划(zd2016058)

第一作者

孟明会, 女, 1990年生, 硕士生.

通信联系人

崔丽鸿, E-mail:mathcui@163.com

文章历史

收稿日期:2016-10-23
二元半规范双小波框架滤波器的构造
孟明会 , 崔丽鸿 , 白欣叶 , 王海峰     
北京化工大学 理学院, 北京 100029
摘要:多元双小波框架的构造由于其较大的自由度和计算的复杂性,一直是小波框架研究内容的难点问题之一。本文提出了一类具有规范滤波器的二元双小波框架的构造方案。具体地,对给定的一对低通滤波器组,利用混合酉扩展原理,首先建立可以生成半规范双小波框架的高通滤波器对的最小数目,然后根据滤波器和多相矩阵之间的关系,给出了构造双小波框架滤波器的具体方案。
关键词半规范双小波框架    混合酉扩展原理    模矩阵    多相矩阵    
Construction of semi-canonical wavelet bi-frame filters with two variables
MENG MingHui , CUI LiHong , BAI XinYe , WANG HaiFeng     
Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
Abstract: Due to the greater freedom and the complexity of calculation, the construction of multivariate wavelet bi-frames has always been one of the difficult problems in the study of wavelet frames. This paper gives a method for the construction of wavelet bi-frames having two variables with canonical filters. Specifically, for a pair of given lowpass filters, we first establish the smallest number of highpass filters which need be added to give a semi-canonical wavelet bi-frame filter by using the mixed unitary extension principle, and then we obtain the construction method based on the relationship between the filters and the polyphase matrix.
Key words: semi-wavelet bi-frame    mixed unitary extension principle    modulation matrix    polyphase matrix    
引言

近年来,基于多分辨分析(MRA)的小波紧框架的构造和应用成为小波分析的热点研究内容,主要是由于它集框架和MRA的优点于一身,具有对分段光滑函数的稀疏逼近性、保证框架分解和重构的快速算法等特点,在实际应用中有着良好的效果[1-3]。国内外有关小波框架的研究很多,Chui等[4]利用Kronecker积构造了多元小波紧框架;Li等[5]利用周期化方法,构造了多元周期性双小波框架;Jiang等[6]构造了高度对称的双小波框架,用于三角形表面网格的多分辨率处理;随后他们又构造了具有理想高通滤波器的六边形二元紧小波框架滤波器组[7],然后对该结果进行了推广,提出规范滤波器的概念,构造了具有规范滤波器的低维小波紧框架系统[8]

文献[8]的思想是对给定的低维样条函数,利用酉扩展原理,首先求出构成紧小波框架系统所需高通滤波器的最小数目,然后根据滤波器和多相矩阵之间的关系,给出具体的滤波器构造方案。本文在文献[8]的工作基础上做了进一步的研究,将其构造思想推广到双小波框架,利用混合酉扩展原理,重点研究了一类具有规范滤波器的二元双小波框架的构造方案,证明生成半规范双小波框架至少需要7对高通滤波器,并给出了所需构造的滤波器的3种具体形式。

1 二元半规范双小波框架的相关概念

{Vj}jZ是伸缩因子为2的加细函数ψ(0)(x)生成的L2(R2)的MRA,且Ψ={ψ(1)ψ(2),…,ψ(L)}⊂V1,那么对实值序列qk(l), ψ(l)(l=0, 1, …, L)满足

$ {\psi ^{\left( l \right)}}\left( x \right) = {2^2}\sum\limits_{k \in {Z^2}} {q_k^{\left( l \right)}{\psi ^{\left( l \right)}}\left( {2x - k} \right)} ,x \in {R^2} $

或等价于

$ {{\hat \psi }^{\left( l \right)}}\left( {2\omega } \right) = {q^{\left( l \right)}}\left( \omega \right){{\hat \psi }^{\left( l \right)}}\left( \omega \right),\omega \in {R^2} $

其中,q(l)(ω)=$\sum\limits_{k \in {Z^2}} {q_k^{\left( l \right)}{{\rm{e}}^{-{\rm{i}}k\omega }}} $q(0)称作细化面具或低通滤波器, q(l)(l=1, 2, …, L)称作小波面具或高通滤波器。当q(0)={qk(0)}kZ2含有有限个非零项时,称q(0)有一个紧支集,并称q(0)(ω)为有限脉冲反应滤波器(FIR)。

Ψ={ψ(1), ψ(2), …, ψ(L)}⊂L2(R2),定义小波系统X(Ψ)={ψj, k(l), 1≤lL; jZ, kZ2},其中,ψj, k(l)=2j/2ψ(l)(2jx-k),jZ, kZ2

定义1  对任意f(x)∈L2(R2),若f(x)可表示成

$ f = \sum\limits_{l = 1}^L {\sum\limits_{j \in Z} {\sum\limits_{k \in {Z^2}} {\left\langle {f,\tilde \psi _{j,k}^{\left( l \right)}} \right\rangle \psi _{j,k}^{\left( l \right)}} } } $

其中,ψj, k(l)X(Ψ),$\tilde \psi _{j, k}^{\left( l \right)} \in X\left( {\mathit{\tilde \Psi }} \right)$,则称X(Ψ)、X(Ψ)构成一组双小波框架。

定义2  已知一对FIR滤波器q(0)(ω)、${\tilde q^{\left( 0 \right)}}\left( \omega \right)$,假设ψ(0)(x)和${\tilde \psi ^{\left( 0 \right)}}\left( x \right)$R2上关于c=(c1, c2)对称,其中cj=0或1/2(j=1, 2),对l=1, 2, 3,令

$ {q^{\left( l \right)}}\left( \omega \right) = \left\{ \begin{array}{l} {{\rm{e}}^{{\rm{i}}\rho \left( {{\eta _l}} \right)\omega }}{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _l}} \right)\;\;\;\;若2c{\eta _l}是奇数\\ {{\rm{e}}^{{\rm{i}}\rho \left( {{\eta _l}} \right)\omega }}\overline {{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _l}} \right)} \;\;\;\;若2c{\eta _l}是偶数 \end{array} \right. $ (1)
$ {{\tilde q}^{\left( l \right)}}\left( \omega \right) = \left\{ \begin{array}{l} {{\rm{e}}^{{\rm{i}}\rho \left( {{\eta _l}} \right)\omega }}{q^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _l}} \right)\;\;\;\;若2c{\eta _l}是奇数\\ {{\rm{e}}^{{\rm{i}}\rho \left( {{\eta _l}} \right)\omega }}\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _l}} \right)} \;\;\;\;若2c{\eta _l}是偶数 \end{array} \right. $ (2)

其中,η0=(0, 0), η1=(1, 0), η2=(1, 1), η3=(0, 1);ρ(η0)=(0, 0), ρ(η1)=(1, 1), ρ(η2)=(1, 0), ρ(η4)=(0, 1)。此时,称由式(1)、(2) 定义的q(l)(ω)、${\tilde q^{\left( l \right)}}\left( \omega \right)$(l=1, 2, 3) 为规范滤波器对。

一般情况下,对给定的加细函数ψ(0)ψ(0),由式(1) 和(2) 中的高通滤波器定义的ψ(l)ψ(l)(l=1, 2, 3) 所生成的小波系统X(Ψ)和X(Ψ)不一定能构成L2(R2)的双小波框架。本文考虑利用混合酉扩展原理,在原有系统中添加滤波器q(l)q(l)(l=1, 4, …, L),使其构成双小波框架滤波器组。

定义3  若{q(1)(ω), …, q(3)(ω)}和{q(1)(ω), …,q(3)(ω)}是按照式(1) 和(2) 定义的,则称双小波框架滤波器组{q(0)(ω), …, q(L)(ω)}和{q(0)(ω),…,q(L)(ω)}(L≥4) 为半规范双小波框架滤波器组。

对滤波器组{q(0)(ω), q(1)(ω), …, q(L)(ω)},Mq(0), …, q(L)(ω)和Wq(0), …, q(L)(ω)分别表示它的模矩阵和多相矩阵,具体形式如下:

$ \begin{array}{l} {\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) = \\ \left[ {\begin{array}{*{20}{c}} {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _0}} \right)}&{{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _1}} \right)}& \cdots &{{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _3}} \right)}\\ {{q^{\left( 1 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _0}} \right)}&{{q^{\left( 1 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _1}} \right)}& \cdots &{{q^{\left( 1 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _3}} \right)}\\ \vdots & \vdots & \vdots & \vdots \\ {{q^{\left( L \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _0}} \right)}&{{q^{\left( L \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _1}} \right)}& \cdots &{{q^{\left( L \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _3}} \right)} \end{array}} \right] \end{array} $
$ \begin{array}{l} {\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) = \\ \left[ {\begin{array}{*{20}{c}} {q_0^{\left( 0 \right)}\left( \omega \right)}&{q_1^{\left( 0 \right)}\left( \omega \right)}& \cdots &{q_3^{\left( 0 \right)}\left( \omega \right)}\\ {q_0^{\left( 1 \right)}\left( \omega \right)}&{q_1^{\left( 1 \right)}\left( \omega \right)}& \cdots &{q_3^{\left( 1 \right)}\left( \omega \right)}\\ \vdots & \vdots & \vdots & \vdots \\ {q_0^{\left( L \right)}\left( \omega \right)}&{q_1^{\left( L \right)}\left( \omega \right)}& \cdots &{q_3^{\left( L \right)}\left( \omega \right)} \end{array}} \right] \end{array} $

模矩阵和多相矩阵满足

$ {\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) = {\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right)\mathit{\boldsymbol{U}}\left( \omega \right), $

其中U(ω)=$\frac{1}{2}{\left[{{{\rm{e}}^{-{\rm{i}}{\eta _k}\left( {\omega + \pi {\eta _j}} \right)}}} \right]_{0 \le k < 4, 0 \le j < 4'}}$

与之对应的混合酉扩展原理如下。

引理1  对滤波器组{q(0)(ω), …, q(L)(ω)}和$\left\{ {{{\tilde q}^{\left( 0 \right)}}\left( \omega \right), \cdots, {{\tilde q}^{\left( L \right)}}\left( \omega \right)} \right\}$X(Ψ)和$X\left( {\mathit{\tilde \Psi }} \right)$构成双小波框架,只需满足下列条件之一:

(a)模矩阵Mq(0), …, q(L)(ω)和${\mathit{\boldsymbol{\tilde M}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots, {{\tilde q}^{\left( L \right)}}}}\left( \omega \right)$满足

$ {\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) * {{\mathit{\boldsymbol{\tilde M}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( \omega \right) = {\mathit{\boldsymbol{I}}_4} $ (3)

(b)多相矩阵Wq(0), …, q(L)(ω)和${\mathit{\boldsymbol{\tilde W}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots, {{\tilde q}^{\left( L \right)}}}}\left( \omega \right)$满足

$ {\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( \omega \right) = {\mathit{\boldsymbol{I}}_4} $ (4)
2 二元半规范双小波框架滤波器的构造

为利用混合酉扩展原理构造双小波框架,本文假设加细函数ψ(0)${\tilde \psi ^{\left( 0 \right)}}$对应的细化面具满足

$ \sum\limits_{k = 0}^3 {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right) < 1} $ (5)

下面讨论构成半规范双小波框架滤波器组至少有7对高通滤波器。

定理1  已知一对FIR低通滤波器q(0)(ω)、$\tilde q$(0)(ω)满足式(5),若滤波器组{q(0)(ω), …, q(L)(ω)}和{$\tilde q$(0)(ω), …, $\tilde q$(L)(ω)}是一对半规范双小波框架滤波器组,其中q(1)(ω), q(2)(ω), q(3)(ω)和$\tilde q$(1)(ω),$\tilde q$(2)(ω), $\tilde q$(3)(ω)是按照式(1) 和(2) 定义的,则L≥7。

证明  令Mq(0), …, q(3)(ω)和分别表示{q(0)(ω), …, q(3)(ω)}和{q(0)(ω),…,q(3)(ω)}的模矩阵。那么

$ \begin{array}{l} {\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( \omega \right) * {{\mathit{\boldsymbol{\tilde M}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( \omega \right) = \left[ {\sum\limits_{k = 0}^3 {} } \right.\\ \left. {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \right]{\mathit{\boldsymbol{I}}_4}。\end{array} $

Mq(0), …, q(L)(ω)和${\boldsymbol{\tilde M}_{{{\tilde q}^{\left( 0 \right)}}, \cdots, {{\tilde q}^{\left( L \right)}}}}$的上半部分,可得到

$ \begin{array}{l} {\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( \omega \right) = {\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( {2\omega } \right)U\left( \omega \right)\\ {{\mathit{\boldsymbol{\tilde M}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( \omega \right) = {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( {2\omega } \right)U\left( \omega \right) \end{array} $

Wq(0), …, q(3)(ω)和Wq(4), …, q(L)(ω)分别表示{q(0)(ω), …, q(3)(ω)}和{q(4)(ω), …, q(L)(ω)}的多相矩阵,同理${\boldsymbol{\tilde W}_{{{\tilde q}^{\left( 0 \right)}}, \cdots, {{\tilde q}^{\left( 0 \right)}}}}\left( \omega \right)$${\boldsymbol{\tilde W}_{{{\tilde q}^{\left( 4 \right)}}, \cdots, {{\tilde q}^{\left( L \right)}}}}\left( \omega \right)$分别表示{$\tilde q$(0)(ω), …, $\tilde q$(3)(ω)}和{$\tilde q$(4)(ω), …, $\tilde q$(L)(ω)}的多相矩阵,那么

$ \begin{array}{l} {\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( {2\omega } \right) = \left[ {\sum\limits_{k = 0}^3 {} } \right.\\ \left. {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \right]{\mathit{\boldsymbol{I}}_4} \end{array} $ (6)

由式(4) 可知

$ \left[ {\begin{array}{*{20}{c}} {{\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( {2\omega } \right)}\\ {{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right)} \end{array}} \right] * \left[ {\begin{array}{*{20}{c}} {{{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( {2\omega } \right)}\\ {{{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( {2\omega } \right)} \end{array}} \right] = {\mathit{\boldsymbol{I}}_4}, $

$ \begin{array}{l} {\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( {2\omega } \right) + \\ {\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( {2\omega } \right) = {\mathit{\boldsymbol{I}}_4} \end{array} $

结合式(6),可得

$ \begin{array}{l} {\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( {2\omega } \right) = \left[ {1 - \sum\limits_{k = 0}^3 {} } \right.\\ \left. {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \right]{\mathit{\boldsymbol{I}}_4} \end{array} $ (7)

又由式(5)

$ 1 - \sum\limits_{k = 0}^3 {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _k}} \right)} < 0 $

那么

$ \begin{array}{l} rank\left[ {{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right)} \right] = rank\left[ {{{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}} \right.\\ \left. {\left( {2\omega } \right)} \right] = rank\left[ {{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( {2\omega } \right)} \right] = 4。\end{array} $

所以L-4+1≥4,即L≥7。证毕。

于是,要构造有最少高通滤波器数目的半规范双小波框架,只需构造{q(4), q(5), q(6), q(7)}和{$\tilde q$(4), $\tilde q$(5), $\tilde q$(6), $\tilde q$(7)}满足式(7) 即可。或者说找到一对4×4的三角多相矩阵Wq(4), …, q(7)(2ω)和${\mathit{\boldsymbol{\tilde W}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots, {{\tilde q}^{\left( 7 \right)}}}}\left( {2\omega } \right)$满足

$ \begin{array}{l} {\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( 7 \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( 7 \right)}}}}\left( {2\omega } \right) = \left[ {1 - \sum\limits_{k = 0}^3 {} } \right.\\ \left. {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \right]{\mathit{\boldsymbol{I}}_4}。\end{array} $

若找到这样一对矩阵,那么

$ \left[ {\begin{array}{*{20}{c}} {{q^{\left( 4 \right)}}\left( \omega \right)}\\ {{q^{\left( 5 \right)}}\left( \omega \right)}\\ {{q^{\left( 6 \right)}}\left( \omega \right)}\\ {{q^{\left( 7 \right)}}\left( \omega \right)} \end{array}} \right] = \frac{1}{2}\mathit{\boldsymbol{W}}\left( {2\omega } \right)\left[ {\begin{array}{*{20}{c}} {{{\rm{e}}^{ - {\rm{i}}{\eta _0}\omega }}}\\ {{{\rm{e}}^{ - {\rm{i}}{\eta _1}\omega }}}\\ {{{\rm{e}}^{ - {\rm{i}}{\eta _2}\omega }}}\\ {{{\rm{e}}^{ - {\rm{i}}{\eta _3}\omega }}} \end{array}} \right] $ (8)
$ \left[ {\begin{array}{*{20}{c}} {{{\tilde q}^{\left( 4 \right)}}\left( \omega \right)}\\ {{{\tilde q}^{\left( 5 \right)}}\left( \omega \right)}\\ {{{\tilde q}^{\left( 6 \right)}}\left( \omega \right)}\\ {{{\tilde q}^{\left( 7 \right)}}\left( \omega \right)} \end{array}} \right] = \frac{1}{2}\mathit{\boldsymbol{\tilde W}}\left( {2\omega } \right)\left[ {\begin{array}{*{20}{c}} {{{\rm{e}}^{ - {\rm{i}}{\eta _0}\omega }}}\\ {{{\rm{e}}^{ - {\rm{i}}{\eta _1}\omega }}}\\ {{{\rm{e}}^{ - {\rm{i}}{\eta _2}\omega }}}\\ {{{\rm{e}}^{ - {\rm{i}}{\eta _3}\omega }}} \end{array}} \right] $ (9)

$ R\left( \omega \right) = 1 - \sum\limits_{k = 0}^3 {\overline {{q^{\left( 0 \right)}}\left( {\omega /2 + {\rm{\pi }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega /2 + {\rm{\pi }}{\eta _k}} \right)} , $

则R(ω)可写成

$ R\left( \omega \right) = \overline {{g_1}\left( \omega \right)} {{\tilde g}_1}\left( \omega \right) + \overline {{g_2}\left( \omega \right)} {{\tilde g}_2}\left( \omega \right) + \overline {{g_3}\left( \omega \right)} {{\tilde g}_3}\left( \omega \right)。$

定义z1=e-iω1z2=e-iω2,用K表示矩阵中每行非零元个数,则所需构造的高通滤波器有下面3种情况:

(1) K=1时

$ \mathit{\boldsymbol{W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}} {{g_1}\left( \omega \right)}&0&0&0\\ 0&{{g_1}\left( \omega \right)}&0&0\\ 0&0&{{g_1}\left( \omega \right)}&0\\ 0&0&0&{{g_1}\left( \omega \right)} \end{array}} \right] $
$ \mathit{\boldsymbol{\tilde W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}} {{{\tilde g}_1}\left( \omega \right)}&0&0&0\\ 0&{{{\tilde g}_1}\left( \omega \right)}&0&0\\ 0&0&{{{\tilde g}_1}\left( \omega \right)}&0\\ 0&0&0&{{{\tilde g}_1}\left( \omega \right)} \end{array}} \right] $

根据式(8) 和(9)

$ {q^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}{g_1}\left( {2\omega } \right), $
$ {q^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}{g_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}\left( {{\omega _1} + {\omega _2}} \right)}} = \frac{1}{2}{g_1}\left( {2\omega } \right){z_1}{z_2} $
$ {q^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}{g_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}{\omega _1}}} = \frac{1}{2}{g_1}\left( {2\omega } \right){z_1}, $
$ {q^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}{g_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}{\omega _2}}} = \frac{1}{2}{g_1}\left( {2\omega } \right){z_2}, $
$ {{\tilde q}^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right), $
$ {{\tilde q}^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}\left( {{\omega _1} + {\omega _2}} \right)}} = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){z_1}{z_2} $
$ {{\tilde q}^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}{\omega _1}}} = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){z_1}, $
$ {{\tilde q}^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}{\omega _2}}} = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){z_2}; $

(2) K=2时

$ \mathit{\boldsymbol{W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}} 0&{ - {g_1}\left( \omega \right)}&{{g_2}\left( \omega \right)}&0\\ { - {g_1}\left( \omega \right)}&0&0&{{g_2}\left( \omega \right)}\\ {\overline {{{\tilde g}_2}\left( \omega \right)} }&0&0&{\overline {{{\tilde g}_1}\left( \omega \right)} }\\ 0&{\overline {{{\tilde g}_2}\left( \omega \right)} }&{\overline {{{\tilde g}_1}\left( \omega \right)} }&0 \end{array}} \right] $
$ \mathit{\boldsymbol{\tilde W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}} 0&{ - {{\tilde g}_1}\left( \omega \right)}&{{{\tilde g}_2}\left( \omega \right)}&0\\ { - {{\tilde g}_1}\left( \omega \right)}&0&0&{{{\tilde g}_2}\left( \omega \right)}\\ {\overline {{g_2}\left( \omega \right)} }&0&0&{\overline {{g_1}\left( \omega \right)} }\\ 0&{\overline {{g_2}\left( \omega \right)} }&{\overline {{g_1}\left( \omega \right)} }&0 \end{array}} \right] $

根据式(8) 和(9)

$ {q^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_1}\left( {2\omega } \right){z_1} + {g_2}\left( {2\omega } \right){z_1}{z_w}} \right], $
$ {q^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_1}\left( {2\omega } \right) + {g_2}\left( {2\omega } \right){z_2}} \right], $
$ {q^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {\overline {{{\tilde g}_2}\left( {2\omega } \right)} + \overline {{{\tilde g}_1}\left( {2\omega } \right)} \;{z_2}} \right], $
$ {q^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {\overline {{{\tilde g}_2}\left( {2\omega } \right)} \;{z_1} + \overline {{{\tilde g}_1}\left( {2\omega } \right)} \;{z_1}{z_2}} \right], $
$ {{\tilde q}^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_1}\left( {2\omega } \right){z_1} + {{\tilde g}_2}\left( {2\omega } \right){z_1}{z_w}} \right], $
$ {{\tilde q}^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_1}\left( {2\omega } \right) + {{\tilde g}_2}\left( {2\omega } \right){z_2}} \right], $
$ {{\tilde q}^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {\overline {{g_2}\left( {2\omega } \right)} + \overline {{g_1}\left( {2\omega } \right)} \;{z_2}} \right], $
$ {{\tilde q}^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {\overline {{g_2}\left( {2\omega } \right)} \;{z_1} + \overline {{g_1}\left( {2\omega } \right)} \;{z_1}{z_2}} \right]; $

(3) K=3时

$ \mathit{\boldsymbol{W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}} 0&{{g_1}\left( \omega \right)}&{{g_2}\left( \omega \right)}&{{g_3}\left( \omega \right)}\\ { - {g_1}\left( \omega \right)}&0&{ - \overline {{{\tilde g}_3}\left( \omega \right)} }&{\overline {{{\tilde g}_2}\left( \omega \right)} }\\ { - {g_2}\left( \omega \right)}&{\overline {{{\tilde g}_3}\left( \omega \right)} }&0&{ - \overline {{{\tilde g}_1}\left( \omega \right)} }\\ { - {g_3}\left( \omega \right)}&{ - \overline {{{\tilde g}_2}\left( \omega \right)} }&{\overline {{{\tilde g}_1}\left( \omega \right)} }&0 \end{array}} \right] $
$ \mathit{\boldsymbol{\tilde W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}} 0&{{{\tilde g}_1}\left( \omega \right)}&{{{\tilde g}_2}\left( \omega \right)}&{{{\tilde g}_3}\left( \omega \right)}\\ { - {{\tilde g}_1}\left( \omega \right)}&0&{ - \overline {{g_3}\left( \omega \right)} }&{\overline {{g_2}\left( \omega \right)} }\\ { - {{\tilde g}_2}\left( \omega \right)}&{\overline {{g_3}\left( \omega \right)} }&0&{ - \overline {{g_1}\left( \omega \right)} }\\ { - {{\tilde g}_3}\left( \omega \right)}&{ - \overline {{g_2}\left( \omega \right)} }&{\overline {{g_1}\left( \omega \right)} }&0 \end{array}} \right] $

根据式(8) 和(9)

$ {q^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {{g_1}\left( {2\omega } \right) + {g_2}\left( {2\omega } \right){z_1}{z_2} + {g_3}\left( {2\omega } \right){z_2}} \right], $
$ {q^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_1}\left( {2\omega } \right) - \overline {{{\tilde g}_3}\left( {2\omega } \right)} {z_1}{z_2} + \overline {{{\tilde g}_2}\left( {2\omega } \right)} {z_2}} \right], $
$ {q^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_2}\left( {2\omega } \right) + \overline {{{\tilde g}_3}\left( {2\omega } \right)} {z_1} - \overline {{{\tilde g}_1}\left( {2\omega } \right)} {z_2}} \right], $
$ {q^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_3}\left( {2\omega } \right) - \overline {{{\tilde g}_2}\left( {2\omega } \right)} {z_1} + \overline {{{\tilde g}_1}\left( {2\omega } \right)} {z_1}{z_2}} \right], $
$ {{\tilde q}^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {{{\tilde g}_1}\left( {2\omega } \right) + {{\tilde g}_2}\left( {2\omega } \right){z_1}{z_2} + {{\tilde g}_3}\left( {2\omega } \right){z_2}} \right], $
$ {{\tilde q}^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_1}\left( {2\omega } \right) - \overline {{g_3}\left( {2\omega } \right)} {z_1}{z_2} + \overline {{g_2}\left( {2\omega } \right)} {z_2}} \right], $
$ {{\tilde q}^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_2}\left( {2\omega } \right) + \overline {{g_3}\left( {2\omega } \right)} {z_1} - \overline {{g_1}\left( {2\omega } \right)} {z_2}} \right], $
$ {{\tilde q}^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_3}\left( {2\omega } \right) - \overline {{g_2}\left( {2\omega } \right)} {z_1} + \overline {{g_1}\left( {2\omega } \right)} {z_1}{z_2}} \right]。$
3 结束语

本文利用混合酉扩展原理,证明了对给定的一对低通滤波器,生成二元半规范双小波框架所需的高通滤波器对的最小数目为7。由于{q(1), q(2), q(3)}和{$\tilde q$(1)$\tilde q$(2), $\tilde q$(3)}已知,半规范双小波框架滤波器的构造问题就归结为求{q(4)q(5)q(6)q(7)}和{$\tilde q$(4), $\tilde q$(5), $\tilde q$(6), $\tilde q$(7)}。根据滤波器和多相矩阵之间的关系,可构造出所求滤波器的3种具体形式。

参考文献
[1]
Daubechies I, Han B, Ron A, et al. Framelets:MRA-based constructions of wavelet frames[J]. Applied and Computational Harmonic Analysis, 2003, 14(1): 1-46. DOI:10.1016/S1063-5203(02)00511-0
[2]
Cai J F, Chan R H, Shen Z W. A framelet-based image inpainting algorithm[J]. Applied and Computational Harmonic Analysis, 2008, 24(2): 131-149. DOI:10.1016/j.acha.2007.10.002
[3]
Han B, Mo Q. Symmetric MRA tight wavelet frames with three generators and high vanishing moments[J]. Applied and Computational Harmonic Analysis, 2005, 18(1): 67-93. DOI:10.1016/j.acha.2004.09.001
[4]
Chui C K, He W J. Construction of multivariate tight frames via Kronecker products[J]. Applied and Computational Harmonic Analysis, 2001, 11(2): 305-312. DOI:10.1006/acha.2001.0355
[5]
Li Y Z, Jia H F. The construction of multivariate periodic wavelet bi-frames[J]. Journal of Mathematical Analysis and Applications, 2014, 412(2): 852-865. DOI:10.1016/j.jmaa.2013.11.021
[6]
Jiang Q T, Pounds D K. Highly symmetric bi-frames for triangle surface multiresolution processing[J]. Applied and Computational Harmonic Analysis, 2011, 31(3): 370-391. DOI:10.1016/j.acha.2011.01.007
[7]
Jiang Q T. Hexagonal tight frame filter banks with idealized high-pass filters[J]. Advances in Computational Mathematics, 2009, 31(1/2/3): 215-236.
[8]
Jiang Q T, Shen Z W. Tight wavelet frames in low dimensions with canonical filters[J]. Journal of Approximation Theory, 2015, 196: 55-78. DOI:10.1016/j.jat.2015.02.008