引言
近年来,基于多分辨分析(MRA)的小波紧框架的构造和应用成为小波分析的热点研究内容,主要是由于它集框架和MRA的优点于一身,具有对分段光滑函数的稀疏逼近性、保证框架分解和重构的快速算法等特点,在实际应用中有着良好的效果[1-3]。国内外有关小波框架的研究很多,Chui等[4]利用Kronecker积构造了多元小波紧框架;Li等[5]利用周期化方法,构造了多元周期性双小波框架;Jiang等[6]构造了高度对称的双小波框架,用于三角形表面网格的多分辨率处理;随后他们又构造了具有理想高通滤波器的六边形二元紧小波框架滤波器组[7],然后对该结果进行了推广,提出规范滤波器的概念,构造了具有规范滤波器的低维小波紧框架系统[8]。
文献[8]的思想是对给定的低维样条函数,利用酉扩展原理,首先求出构成紧小波框架系统所需高通滤波器的最小数目,然后根据滤波器和多相矩阵之间的关系,给出具体的滤波器构造方案。本文在文献[8]的工作基础上做了进一步的研究,将其构造思想推广到双小波框架,利用混合酉扩展原理,重点研究了一类具有规范滤波器的二元双小波框架的构造方案,证明生成半规范双小波框架至少需要7对高通滤波器,并给出了所需构造的滤波器的3种具体形式。
1 二元半规范双小波框架的相关概念
{Vj}j∈Z是伸缩因子为2的加细函数ψ(0)(x)生成的L2(R2)的MRA,且Ψ={ψ(1),ψ(2),…,ψ(L)}⊂V1,那么对实值序列qk(l), ψ(l)(l=0, 1, …, L)满足
$
{\psi ^{\left( l \right)}}\left( x \right) = {2^2}\sum\limits_{k \in {Z^2}} {q_k^{\left( l \right)}{\psi ^{\left( l \right)}}\left( {2x - k} \right)} ,x \in {R^2}
$
|
或等价于
$
{{\hat \psi }^{\left( l \right)}}\left( {2\omega } \right) = {q^{\left( l \right)}}\left( \omega \right){{\hat \psi }^{\left( l \right)}}\left( \omega \right),\omega \in {R^2}
$
|
其中,q(l)(ω)=$\sum\limits_{k \in {Z^2}} {q_k^{\left( l \right)}{{\rm{e}}^{-{\rm{i}}k\omega }}} $,q(0)称作细化面具或低通滤波器, q(l)(l=1, 2, …, L)称作小波面具或高通滤波器。当q(0)={qk(0)}k∈Z2含有有限个非零项时,称q(0)有一个紧支集,并称q(0)(ω)为有限脉冲反应滤波器(FIR)。
对Ψ={ψ(1), ψ(2), …, ψ(L)}⊂L2(R2),定义小波系统X(Ψ)={ψj, k(l), 1≤l≤L; j∈Z, k∈Z2},其中,ψj, k(l)=2j/2ψ(l)(2jx-k),j∈Z, k∈Z2。
定义1 对任意f(x)∈L2(R2),若f(x)可表示成
$
f = \sum\limits_{l = 1}^L {\sum\limits_{j \in Z} {\sum\limits_{k \in {Z^2}} {\left\langle {f,\tilde \psi _{j,k}^{\left( l \right)}} \right\rangle \psi _{j,k}^{\left( l \right)}} } }
$
|
其中,ψj, k(l)∈X(Ψ),$\tilde \psi _{j, k}^{\left( l \right)} \in X\left( {\mathit{\tilde \Psi }} \right)$,则称X(Ψ)、X(Ψ)构成一组双小波框架。
定义2 已知一对FIR滤波器q(0)(ω)、${\tilde q^{\left( 0 \right)}}\left( \omega \right)$,假设ψ(0)(x)和${\tilde \psi ^{\left( 0 \right)}}\left( x \right)$在R2上关于c=(c1, c2)对称,其中cj=0或1/2(j=1, 2),对l=1, 2, 3,令
$
{q^{\left( l \right)}}\left( \omega \right) = \left\{ \begin{array}{l}
{{\rm{e}}^{{\rm{i}}\rho \left( {{\eta _l}} \right)\omega }}{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _l}} \right)\;\;\;\;若2c{\eta _l}是奇数\\
{{\rm{e}}^{{\rm{i}}\rho \left( {{\eta _l}} \right)\omega }}\overline {{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _l}} \right)} \;\;\;\;若2c{\eta _l}是偶数
\end{array} \right.
$
|
(1) |
$
{{\tilde q}^{\left( l \right)}}\left( \omega \right) = \left\{ \begin{array}{l}
{{\rm{e}}^{{\rm{i}}\rho \left( {{\eta _l}} \right)\omega }}{q^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _l}} \right)\;\;\;\;若2c{\eta _l}是奇数\\
{{\rm{e}}^{{\rm{i}}\rho \left( {{\eta _l}} \right)\omega }}\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _l}} \right)} \;\;\;\;若2c{\eta _l}是偶数
\end{array} \right.
$
|
(2) |
其中,η0=(0, 0), η1=(1, 0), η2=(1, 1), η3=(0, 1);ρ(η0)=(0, 0), ρ(η1)=(1, 1), ρ(η2)=(1, 0), ρ(η4)=(0, 1)。此时,称由式(1)、(2) 定义的q(l)(ω)、${\tilde q^{\left( l \right)}}\left( \omega \right)$(l=1, 2, 3) 为规范滤波器对。
一般情况下,对给定的加细函数ψ(0)、ψ(0),由式(1) 和(2) 中的高通滤波器定义的ψ(l)、ψ(l)(l=1, 2, 3) 所生成的小波系统X(Ψ)和X(Ψ)不一定能构成L2(R2)的双小波框架。本文考虑利用混合酉扩展原理,在原有系统中添加滤波器q(l)、q(l)(l=1, 4, …, L),使其构成双小波框架滤波器组。
定义3 若{q(1)(ω), …, q(3)(ω)}和{q(1)(ω), …,q(3)(ω)}是按照式(1) 和(2) 定义的,则称双小波框架滤波器组{q(0)(ω), …, q(L)(ω)}和{q(0)(ω),…,q(L)(ω)}(L≥4) 为半规范双小波框架滤波器组。
对滤波器组{q(0)(ω), q(1)(ω), …, q(L)(ω)},Mq(0), …, q(L)(ω)和Wq(0), …, q(L)(ω)分别表示它的模矩阵和多相矩阵,具体形式如下:
$
\begin{array}{l}
{\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) = \\
\left[ {\begin{array}{*{20}{c}}
{{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _0}} \right)}&{{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _1}} \right)}& \cdots &{{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _3}} \right)}\\
{{q^{\left( 1 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _0}} \right)}&{{q^{\left( 1 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _1}} \right)}& \cdots &{{q^{\left( 1 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _3}} \right)}\\
\vdots & \vdots & \vdots & \vdots \\
{{q^{\left( L \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _0}} \right)}&{{q^{\left( L \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _1}} \right)}& \cdots &{{q^{\left( L \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _3}} \right)}
\end{array}} \right]
\end{array}
$
|
$
\begin{array}{l}
{\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) = \\
\left[ {\begin{array}{*{20}{c}}
{q_0^{\left( 0 \right)}\left( \omega \right)}&{q_1^{\left( 0 \right)}\left( \omega \right)}& \cdots &{q_3^{\left( 0 \right)}\left( \omega \right)}\\
{q_0^{\left( 1 \right)}\left( \omega \right)}&{q_1^{\left( 1 \right)}\left( \omega \right)}& \cdots &{q_3^{\left( 1 \right)}\left( \omega \right)}\\
\vdots & \vdots & \vdots & \vdots \\
{q_0^{\left( L \right)}\left( \omega \right)}&{q_1^{\left( L \right)}\left( \omega \right)}& \cdots &{q_3^{\left( L \right)}\left( \omega \right)}
\end{array}} \right]
\end{array}
$
|
模矩阵和多相矩阵满足
$
{\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) = {\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right)\mathit{\boldsymbol{U}}\left( \omega \right),
$
|
其中U(ω)=$\frac{1}{2}{\left[{{{\rm{e}}^{-{\rm{i}}{\eta _k}\left( {\omega + \pi {\eta _j}} \right)}}} \right]_{0 \le k < 4, 0 \le j < 4'}}$。
与之对应的混合酉扩展原理如下。
引理1 对滤波器组{q(0)(ω), …, q(L)(ω)}和$\left\{ {{{\tilde q}^{\left( 0 \right)}}\left( \omega \right), \cdots, {{\tilde q}^{\left( L \right)}}\left( \omega \right)} \right\}$,X(Ψ)和$X\left( {\mathit{\tilde \Psi }} \right)$构成双小波框架,只需满足下列条件之一:
(a)模矩阵Mq(0), …, q(L)(ω)和${\mathit{\boldsymbol{\tilde M}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots, {{\tilde q}^{\left( L \right)}}}}\left( \omega \right)$满足
$
{\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) * {{\mathit{\boldsymbol{\tilde M}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( \omega \right) = {\mathit{\boldsymbol{I}}_4}
$
|
(3) |
(b)多相矩阵Wq(0), …, q(L)(ω)和${\mathit{\boldsymbol{\tilde W}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots, {{\tilde q}^{\left( L \right)}}}}\left( \omega \right)$满足
$
{\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( \omega \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( \omega \right) = {\mathit{\boldsymbol{I}}_4}
$
|
(4) |
2 二元半规范双小波框架滤波器的构造
为利用混合酉扩展原理构造双小波框架,本文假设加细函数ψ(0)、${\tilde \psi ^{\left( 0 \right)}}$对应的细化面具满足
$
\sum\limits_{k = 0}^3 {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right) < 1}
$
|
(5) |
下面讨论构成半规范双小波框架滤波器组至少有7对高通滤波器。
定理1 已知一对FIR低通滤波器q(0)(ω)、$\tilde q$(0)(ω)满足式(5),若滤波器组{q(0)(ω), …, q(L)(ω)}和{$\tilde q$(0)(ω), …, $\tilde q$(L)(ω)}是一对半规范双小波框架滤波器组,其中q(1)(ω), q(2)(ω), q(3)(ω)和$\tilde q$(1)(ω),$\tilde q$(2)(ω), $\tilde q$(3)(ω)是按照式(1) 和(2) 定义的,则L≥7。
证明 令Mq(0), …, q(3)(ω)和
分别表示{q(0)(ω), …, q(3)(ω)}和{q(0)(ω),…,q(3)(ω)}的模矩阵。那么
$
\begin{array}{l}
{\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( \omega \right) * {{\mathit{\boldsymbol{\tilde M}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( \omega \right) = \left[ {\sum\limits_{k = 0}^3 {} } \right.\\
\left. {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \right]{\mathit{\boldsymbol{I}}_4}。\end{array}
$
|
取Mq(0), …, q(L)(ω)和${\boldsymbol{\tilde M}_{{{\tilde q}^{\left( 0 \right)}}, \cdots, {{\tilde q}^{\left( L \right)}}}}$的上半部分,可得到
$
\begin{array}{l}
{\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( \omega \right) = {\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( {2\omega } \right)U\left( \omega \right)\\
{{\mathit{\boldsymbol{\tilde M}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( \omega \right) = {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( {2\omega } \right)U\left( \omega \right)
\end{array}
$
|
令Wq(0), …, q(3)(ω)和Wq(4), …, q(L)(ω)分别表示{q(0)(ω), …, q(3)(ω)}和{q(4)(ω), …, q(L)(ω)}的多相矩阵,同理${\boldsymbol{\tilde W}_{{{\tilde q}^{\left( 0 \right)}}, \cdots, {{\tilde q}^{\left( 0 \right)}}}}\left( \omega \right)$和${\boldsymbol{\tilde W}_{{{\tilde q}^{\left( 4 \right)}}, \cdots, {{\tilde q}^{\left( L \right)}}}}\left( \omega \right)$分别表示{$\tilde q$(0)(ω), …, $\tilde q$(3)(ω)}和{$\tilde q$(4)(ω), …, $\tilde q$(L)(ω)}的多相矩阵,那么
$
\begin{array}{l}
{\mathit{\boldsymbol{M}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( {2\omega } \right) = \left[ {\sum\limits_{k = 0}^3 {} } \right.\\
\left. {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \right]{\mathit{\boldsymbol{I}}_4}
\end{array}
$
|
(6) |
由式(4) 可知
$
\left[ {\begin{array}{*{20}{c}}
{{\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( {2\omega } \right)}\\
{{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right)}
\end{array}} \right] * \left[ {\begin{array}{*{20}{c}}
{{{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( {2\omega } \right)}\\
{{{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( {2\omega } \right)}
\end{array}} \right] = {\mathit{\boldsymbol{I}}_4},
$
|
则
$
\begin{array}{l}
{\mathit{\boldsymbol{W}}_{{q^{\left( 0 \right)}}, \cdots ,{q^{\left( 3 \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 0 \right)}}, \cdots ,{{\tilde q}^{\left( 3 \right)}}}}\left( {2\omega } \right) + \\
{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( {2\omega } \right) = {\mathit{\boldsymbol{I}}_4}
\end{array}
$
|
结合式(6),可得
$
\begin{array}{l}
{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( {2\omega } \right) = \left[ {1 - \sum\limits_{k = 0}^3 {} } \right.\\
\left. {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \right]{\mathit{\boldsymbol{I}}_4}
\end{array}
$
|
(7) |
又由式(5)
$
1 - \sum\limits_{k = 0}^3 {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{\pi }}{\eta _k}} \right)} < 0
$
|
那么
$
\begin{array}{l}
rank\left[ {{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right)} \right] = rank\left[ {{{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}} \right.\\
\left. {\left( {2\omega } \right)} \right] = rank\left[ {{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( L \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( L \right)}}}}\left( {2\omega } \right)} \right] = 4。\end{array}
$
|
所以L-4+1≥4,即L≥7。证毕。
于是,要构造有最少高通滤波器数目的半规范双小波框架,只需构造{q(4), q(5), q(6), q(7)}和{$\tilde q$(4), $\tilde q$(5), $\tilde q$(6), $\tilde q$(7)}满足式(7) 即可。或者说找到一对4×4的三角多相矩阵Wq(4), …, q(7)(2ω)和${\mathit{\boldsymbol{\tilde W}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots, {{\tilde q}^{\left( 7 \right)}}}}\left( {2\omega } \right)$满足
$
\begin{array}{l}
{\mathit{\boldsymbol{W}}_{{q^{\left( 4 \right)}}, \cdots ,{q^{\left( 7 \right)}}}}\left( {2\omega } \right) * {{\mathit{\boldsymbol{\tilde W}}}_{{{\tilde q}^{\left( 4 \right)}}, \cdots ,{{\tilde q}^{\left( 7 \right)}}}}\left( {2\omega } \right) = \left[ {1 - \sum\limits_{k = 0}^3 {} } \right.\\
\left. {\overline {{q^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega + {\rm{ \mathsf{ π} }}{\eta _k}} \right)} \right]{\mathit{\boldsymbol{I}}_4}。\end{array}
$
|
若找到这样一对矩阵,那么
$
\left[ {\begin{array}{*{20}{c}}
{{q^{\left( 4 \right)}}\left( \omega \right)}\\
{{q^{\left( 5 \right)}}\left( \omega \right)}\\
{{q^{\left( 6 \right)}}\left( \omega \right)}\\
{{q^{\left( 7 \right)}}\left( \omega \right)}
\end{array}} \right] = \frac{1}{2}\mathit{\boldsymbol{W}}\left( {2\omega } \right)\left[ {\begin{array}{*{20}{c}}
{{{\rm{e}}^{ - {\rm{i}}{\eta _0}\omega }}}\\
{{{\rm{e}}^{ - {\rm{i}}{\eta _1}\omega }}}\\
{{{\rm{e}}^{ - {\rm{i}}{\eta _2}\omega }}}\\
{{{\rm{e}}^{ - {\rm{i}}{\eta _3}\omega }}}
\end{array}} \right]
$
|
(8) |
$
\left[ {\begin{array}{*{20}{c}}
{{{\tilde q}^{\left( 4 \right)}}\left( \omega \right)}\\
{{{\tilde q}^{\left( 5 \right)}}\left( \omega \right)}\\
{{{\tilde q}^{\left( 6 \right)}}\left( \omega \right)}\\
{{{\tilde q}^{\left( 7 \right)}}\left( \omega \right)}
\end{array}} \right] = \frac{1}{2}\mathit{\boldsymbol{\tilde W}}\left( {2\omega } \right)\left[ {\begin{array}{*{20}{c}}
{{{\rm{e}}^{ - {\rm{i}}{\eta _0}\omega }}}\\
{{{\rm{e}}^{ - {\rm{i}}{\eta _1}\omega }}}\\
{{{\rm{e}}^{ - {\rm{i}}{\eta _2}\omega }}}\\
{{{\rm{e}}^{ - {\rm{i}}{\eta _3}\omega }}}
\end{array}} \right]
$
|
(9) |
令
$
R\left( \omega \right) = 1 - \sum\limits_{k = 0}^3 {\overline {{q^{\left( 0 \right)}}\left( {\omega /2 + {\rm{\pi }}{\eta _k}} \right)} \;{{\tilde q}^{\left( 0 \right)}}\left( {\omega /2 + {\rm{\pi }}{\eta _k}} \right)} ,
$
|
则R(ω)可写成
$
R\left( \omega \right) = \overline {{g_1}\left( \omega \right)} {{\tilde g}_1}\left( \omega \right) + \overline {{g_2}\left( \omega \right)} {{\tilde g}_2}\left( \omega \right) + \overline {{g_3}\left( \omega \right)} {{\tilde g}_3}\left( \omega \right)。$
|
定义z1=e-iω1,z2=e-iω2,用K表示矩阵中每行非零元个数,则所需构造的高通滤波器有下面3种情况:
(1) K=1时
$
\mathit{\boldsymbol{W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}}
{{g_1}\left( \omega \right)}&0&0&0\\
0&{{g_1}\left( \omega \right)}&0&0\\
0&0&{{g_1}\left( \omega \right)}&0\\
0&0&0&{{g_1}\left( \omega \right)}
\end{array}} \right]
$
|
$
\mathit{\boldsymbol{\tilde W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}}
{{{\tilde g}_1}\left( \omega \right)}&0&0&0\\
0&{{{\tilde g}_1}\left( \omega \right)}&0&0\\
0&0&{{{\tilde g}_1}\left( \omega \right)}&0\\
0&0&0&{{{\tilde g}_1}\left( \omega \right)}
\end{array}} \right]
$
|
根据式(8) 和(9)
$
{q^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}{g_1}\left( {2\omega } \right),
$
|
$
{q^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}{g_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}\left( {{\omega _1} + {\omega _2}} \right)}} = \frac{1}{2}{g_1}\left( {2\omega } \right){z_1}{z_2}
$
|
$
{q^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}{g_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}{\omega _1}}} = \frac{1}{2}{g_1}\left( {2\omega } \right){z_1},
$
|
$
{q^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}{g_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}{\omega _2}}} = \frac{1}{2}{g_1}\left( {2\omega } \right){z_2},
$
|
$
{{\tilde q}^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right),
$
|
$
{{\tilde q}^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}\left( {{\omega _1} + {\omega _2}} \right)}} = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){z_1}{z_2}
$
|
$
{{\tilde q}^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}{\omega _1}}} = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){z_1},
$
|
$
{{\tilde q}^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){{\rm{e}}^{ - {\rm{i}}{\omega _2}}} = \frac{1}{2}{{\tilde g}_1}\left( {2\omega } \right){z_2};
$
|
(2) K=2时
$
\mathit{\boldsymbol{W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}}
0&{ - {g_1}\left( \omega \right)}&{{g_2}\left( \omega \right)}&0\\
{ - {g_1}\left( \omega \right)}&0&0&{{g_2}\left( \omega \right)}\\
{\overline {{{\tilde g}_2}\left( \omega \right)} }&0&0&{\overline {{{\tilde g}_1}\left( \omega \right)} }\\
0&{\overline {{{\tilde g}_2}\left( \omega \right)} }&{\overline {{{\tilde g}_1}\left( \omega \right)} }&0
\end{array}} \right]
$
|
$
\mathit{\boldsymbol{\tilde W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}}
0&{ - {{\tilde g}_1}\left( \omega \right)}&{{{\tilde g}_2}\left( \omega \right)}&0\\
{ - {{\tilde g}_1}\left( \omega \right)}&0&0&{{{\tilde g}_2}\left( \omega \right)}\\
{\overline {{g_2}\left( \omega \right)} }&0&0&{\overline {{g_1}\left( \omega \right)} }\\
0&{\overline {{g_2}\left( \omega \right)} }&{\overline {{g_1}\left( \omega \right)} }&0
\end{array}} \right]
$
|
根据式(8) 和(9)
$
{q^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_1}\left( {2\omega } \right){z_1} + {g_2}\left( {2\omega } \right){z_1}{z_w}} \right],
$
|
$
{q^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_1}\left( {2\omega } \right) + {g_2}\left( {2\omega } \right){z_2}} \right],
$
|
$
{q^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {\overline {{{\tilde g}_2}\left( {2\omega } \right)} + \overline {{{\tilde g}_1}\left( {2\omega } \right)} \;{z_2}} \right],
$
|
$
{q^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {\overline {{{\tilde g}_2}\left( {2\omega } \right)} \;{z_1} + \overline {{{\tilde g}_1}\left( {2\omega } \right)} \;{z_1}{z_2}} \right],
$
|
$
{{\tilde q}^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_1}\left( {2\omega } \right){z_1} + {{\tilde g}_2}\left( {2\omega } \right){z_1}{z_w}} \right],
$
|
$
{{\tilde q}^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_1}\left( {2\omega } \right) + {{\tilde g}_2}\left( {2\omega } \right){z_2}} \right],
$
|
$
{{\tilde q}^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {\overline {{g_2}\left( {2\omega } \right)} + \overline {{g_1}\left( {2\omega } \right)} \;{z_2}} \right],
$
|
$
{{\tilde q}^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {\overline {{g_2}\left( {2\omega } \right)} \;{z_1} + \overline {{g_1}\left( {2\omega } \right)} \;{z_1}{z_2}} \right];
$
|
(3) K=3时
$
\mathit{\boldsymbol{W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}}
0&{{g_1}\left( \omega \right)}&{{g_2}\left( \omega \right)}&{{g_3}\left( \omega \right)}\\
{ - {g_1}\left( \omega \right)}&0&{ - \overline {{{\tilde g}_3}\left( \omega \right)} }&{\overline {{{\tilde g}_2}\left( \omega \right)} }\\
{ - {g_2}\left( \omega \right)}&{\overline {{{\tilde g}_3}\left( \omega \right)} }&0&{ - \overline {{{\tilde g}_1}\left( \omega \right)} }\\
{ - {g_3}\left( \omega \right)}&{ - \overline {{{\tilde g}_2}\left( \omega \right)} }&{\overline {{{\tilde g}_1}\left( \omega \right)} }&0
\end{array}} \right]
$
|
$
\mathit{\boldsymbol{\tilde W}}\left( \omega \right) = \left[ {\begin{array}{*{20}{c}}
0&{{{\tilde g}_1}\left( \omega \right)}&{{{\tilde g}_2}\left( \omega \right)}&{{{\tilde g}_3}\left( \omega \right)}\\
{ - {{\tilde g}_1}\left( \omega \right)}&0&{ - \overline {{g_3}\left( \omega \right)} }&{\overline {{g_2}\left( \omega \right)} }\\
{ - {{\tilde g}_2}\left( \omega \right)}&{\overline {{g_3}\left( \omega \right)} }&0&{ - \overline {{g_1}\left( \omega \right)} }\\
{ - {{\tilde g}_3}\left( \omega \right)}&{ - \overline {{g_2}\left( \omega \right)} }&{\overline {{g_1}\left( \omega \right)} }&0
\end{array}} \right]
$
|
根据式(8) 和(9)
$
{q^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {{g_1}\left( {2\omega } \right) + {g_2}\left( {2\omega } \right){z_1}{z_2} + {g_3}\left( {2\omega } \right){z_2}} \right],
$
|
$
{q^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_1}\left( {2\omega } \right) - \overline {{{\tilde g}_3}\left( {2\omega } \right)} {z_1}{z_2} + \overline {{{\tilde g}_2}\left( {2\omega } \right)} {z_2}} \right],
$
|
$
{q^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_2}\left( {2\omega } \right) + \overline {{{\tilde g}_3}\left( {2\omega } \right)} {z_1} - \overline {{{\tilde g}_1}\left( {2\omega } \right)} {z_2}} \right],
$
|
$
{q^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {g_3}\left( {2\omega } \right) - \overline {{{\tilde g}_2}\left( {2\omega } \right)} {z_1} + \overline {{{\tilde g}_1}\left( {2\omega } \right)} {z_1}{z_2}} \right],
$
|
$
{{\tilde q}^{\left( 4 \right)}}\left( \omega \right) = \frac{1}{2}\left[ {{{\tilde g}_1}\left( {2\omega } \right) + {{\tilde g}_2}\left( {2\omega } \right){z_1}{z_2} + {{\tilde g}_3}\left( {2\omega } \right){z_2}} \right],
$
|
$
{{\tilde q}^{\left( 5 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_1}\left( {2\omega } \right) - \overline {{g_3}\left( {2\omega } \right)} {z_1}{z_2} + \overline {{g_2}\left( {2\omega } \right)} {z_2}} \right],
$
|
$
{{\tilde q}^{\left( 6 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_2}\left( {2\omega } \right) + \overline {{g_3}\left( {2\omega } \right)} {z_1} - \overline {{g_1}\left( {2\omega } \right)} {z_2}} \right],
$
|
$
{{\tilde q}^{\left( 7 \right)}}\left( \omega \right) = \frac{1}{2}\left[ { - {{\tilde g}_3}\left( {2\omega } \right) - \overline {{g_2}\left( {2\omega } \right)} {z_1} + \overline {{g_1}\left( {2\omega } \right)} {z_1}{z_2}} \right]。$
|
3 结束语
本文利用混合酉扩展原理,证明了对给定的一对低通滤波器,生成二元半规范双小波框架所需的高通滤波器对的最小数目为7。由于{q(1), q(2), q(3)}和{$\tilde q$(1),$\tilde q$(2), $\tilde q$(3)}已知,半规范双小波框架滤波器的构造问题就归结为求{q(4),q(5),q(6),q(7)}和{$\tilde q$(4), $\tilde q$(5), $\tilde q$(6), $\tilde q$(7)}。根据滤波器和多相矩阵之间的关系,可构造出所求滤波器的3种具体形式。