中华流行病学杂志  2020, Vol. 41 Issue (6): 902-907   PDF    
http://dx.doi.org/10.3760/cma.j.cn112338-20200224-00163
中华医学会主办。
0

文章信息

武佳欣, 杨志清, 张睿君, 李雁笛, 赵甜静, 扆琳珠, 冯永亮, 丰淑英, 汪波, 王素萍.
Wu Jiaxin, Yang Zhiqing, Zhang Ruijun, Li Yandi, Zhao Tianjing, Yi Linzhu, Feng Yongliang, Feng Shuying, Wang Bo, Wang Suping
HBsAg阳性母亲HBV核心启动子突变与宫内传播的关系
Relationship between mutations of HBV basal core promoter region in HBsAg-positive mothers and intrauterine transmission
中华流行病学杂志, 2020, 41(6): 902-907
Chinese Journal of Epidemiology, 2020, 41(6): 902-907
http://dx.doi.org/10.3760/cma.j.cn112338-20200224-00163

文章历史

收稿日期: 2020-02-24
HBsAg阳性母亲HBV核心启动子突变与宫内传播的关系
武佳欣1 , 杨志清1 , 张睿君1 , 李雁笛1 , 赵甜静1 , 扆琳珠1 , 冯永亮1 , 丰淑英2 , 汪波2 , 王素萍1     
1. 山西医科大学流行病学教研室, 太原 030001;
2. 山西省太原市第三人民医院妇产科 030001
摘要: 目的 分析HBV为C基因型的HBsAg阳性母亲核心启动子(BCP)区突变与宫内传播的关系。方法 2011年6月至2013年7月太原市第三人民医院妇产科HBsAg阳性母亲及新生儿399对。收集一般人口学资料,采用荧光定量PCR和电化学发光法分别检测母婴血清HBV DNA及HBV血清学标志物。选择HBV DNA载量≥106 IU/ml的113例母亲为研究对象,其新生儿发生宫内传播的22例为宫内传播组,随机选取其中22例未发生宫内传播者作为对照组,母亲HBV DNA经提取、扩增、克隆、测序和序列编辑及剪接后与从NCBI下载的标准序列比对进行基因分型,最终选择C基因型的39例母亲进行突变分析。结果 HBV为C基因型(88.63%)的母亲共39例,其中宫内传播组19例,对照组20例。母亲A1762T/G1764A双突变率在两组差异显著(7.53% vs.27.72%,P < 0.001)。非条件logistic回归分析显示A1762T/G1764A双突变可能是宫内传播的保护因素(aOR=0.065,95% CI:0.006~0.746,P=0.028)。母亲A1762T/G1764A双突变可能与新生儿HBeAg水平有关(P=0.050)。结论 HBV C基因型的HBsAg阳性母亲HBV DNA BCP区A1762T/G1764A双突变可能降低HBV宫内传播的风险。
关键词: 乙型肝炎病毒宫内传播    核心启动子    HBs抗原    HBe抗原    A1762T/G1764A    
Relationship between mutations of HBV basal core promoter region in HBsAg-positive mothers and intrauterine transmission
Wu Jiaxin1 , Yang Zhiqing1 , Zhang Ruijun1 , Li Yandi1 , Zhao Tianjing1 , Yi Linzhu1 , Feng Yongliang1 , Feng Shuying2 , Wang Bo2 , Wang Suping1     
1. Department of Epidemiology, Shanxi Medical University, Taiyuan 030001, China;
2. Department of Obstetrics and Gynaecology, the Third People Hospital of Taiyuan City, Taiyuan 030001, China
Abstract: Objective To analyze the relationship between maternal mutations in basal core promoter region of hepatitis B virus (HBV) genotype C and intrauterine transmission. Methods We collected information on general demographic characteristics and process of delivery among 399 pairs of consecutive HBsAg-positive mothers and their neonates, from the Third People's Hospital of Taiyuan in Shanxi province, China. Fluorescence quantitative polymerase chain reaction (FQ-PCR) and Electro-chemiluminescence immuno-assay (ECLIA) kits were used to detect both maternal and neonatal HBV DNA and serological markers in the peripheral blood. From 113 mothers with HBV DNA load ≥106 IU/ml, we selected 22 mothers whose neonates were with intrauterine transmission and randomly selected the same number of mothers whose neonates were without intrauterine transmission, as controls. The whole-length HBV DNA were extracted, amplified, cloned, sequenced and genotyped. Finally, a total of 39 mothers with genotype C of HBV were selected for mutation analysis. Results Thirty-nine cases of genotype C (88.63%) were finally included in the study, with 19 cases in the intrauterine transmission group and 20 cases as controls. Rates of A1762T/G1764A double mutations were significantly different between the intrauterine transmission group and the control group (7.53% vs. 27.72%, P < 0.001). Results from the multivariate analysis showed that the A1762T/G1764A double mutations had reduced the risk of intrauterine transmission (aOR=0.065, 95%CI: 0.006-0.746, P=0.028). Maternal A1762T/G1764A double mutations appeared to be possibly associated with neonatal HBeAg (P=0.050). Conclusion A1762T/G1764A double mutations of HBV DNA from the genotype C of those HBsAg-positive mothers could reduced the risk of HBV intrauterine transmission during pregnancy.
Key words: Intrauterine transmission    Basal core promoter    HBsAg    HBeAg    A1762T/G1764A    

HBV属于部分双链环状DNA病毒,全长约3.2 kb[1]。由于前基因组RNA(Pre-genomic RNA,pg RNA)在反转录过程中缺乏校对功能而使HBV具有高变异率[2-3]。HBV有4个开放阅读框(ORF),分别为S基因、C基因、P基因及X基因。其中C基因包括前C(pre-core,Pre-C)区和C(core,C)区,分别编码HBcAg和HBeAg。位于X基因的BCP区编码X蛋白(HBxAg)及调控HBeAg的表达[1, 4-7]。在影响HBeAg表达的基因区中,BCP区与Pre-C区的突变最常见[8]。HBV DNA载量高的孕妇即使采取免疫预防措施,HBV DNA、HBeAg等血清学标志物及亚病毒颗粒等仍可能通过胎盘进入胎儿体内,发生HBV宫内传播[9-10]。HBV宫内传播是母婴传播方式之一,是我国慢性乙型肝炎(CHB)的主要原因[11-13]。目前约90%慢性HBV感染的成年人在婴儿期甚至更早的阶段便已感染HBV[14-16],而孕期胎儿体内HBV水平和特征可能影响这一过程。HBsAg阳性的育龄期妇女是宫内传播的高危人群。故了解HBsAg阳性母亲HBV DNA的变异特征,将有助于解释HBeAg对宫内传播发生的影响。

HBV DNA突变因基因型不同而异。B基因型与C基因型在中国最常见,主要以垂直传播方式为主[17]。B基因型主要分布于中国中南部,C基因型主要分布于中国北方[18]。C基因型的Pre-C区、C区及BCP区的突变率高于B基因型[8, 19-20]。故本研究拟从C基因型的HBsAg阳性母亲入手,分析母亲HBV DNA变异情况及在宫内传播的作用,以期为降低我国由HBV母婴传播所致HBV感染率提供依据。

资料与方法

1.资料及标本收集:共收集399对2011年6月至2013年7月在太原市第三人民医院妇产科分娩的HBsAg阳性母亲及新生儿。初选标准为HBsAg阳性和单胎妊娠。本研究经山西医科大学伦理委员会批准,所有研究对象均签署知情同意书。由经过培训的调查员对入选母亲进行问卷调查及翻阅电子病历获取母儿基本情况,采集母亲分娩前24 h内肘静脉血及新生儿出生后24 h内,主/被动免疫前股静脉血各3 ml,及时分装血清后于-80 ℃冰箱保存。

2.血清HBV DNA及HBV血清学标志物检测:采用荧光定量聚合酶链式反应(FQ-PCR,试剂盒购自湖南圣湘生物科技有限公司)定量检测母儿血清HBV DNA,HBV DNA≥200 IU/ml为阳性[21-22]。采用电化学发光法(ECLIA)检测母儿HBV血清学标志物(试剂盒购自德国罗氏诊断有限公司),HBsAg≥1.00 COI,HBeAg≥1.00 COI为阳性。所有操作严格按照说明书进行。

HBV宫内传播判定标准:新生儿出生24 h内且主/被动免疫前,股静脉血HBsAg阳性和/或HBV DNA阳性者判定为HBV宫内传播[2, 23-24]

3.母亲HBV DNA提取及扩增:由于HBV DNA扩增及后续的基因测序过程要求高载量的HBV DNA,故选择HBV DNA载量≥106 IU/ml的母儿共113对作为研究对象,其中新生儿发生宫内传播的22对母儿作为宫内传播组,采用单纯随机化的方法使用随机种子程序随机选取相同特征且未发生宫内传播的22对母儿作为对照组。HBV DNA的提取严格按照QIAamp DNA提取试剂盒说明书进行(德国QIAGEN公司)。按单、双链分别扩增,PCR反应体系:3 μl HBV DNA模板,10μl 5×TransStart® FastPfu Buffer,4 μl dNTPs,1 μl TransStart® FastPfu DNA聚合酶(试剂购自北京TransGen生物技术有限公司),30 μl超纯水及1 μl引物(引物由上海生物工程股份有限公司设计)。单链引物DF:5′-GTCTGCGGCGTTTTATC-3′/DR:5′-AAGTTG CATGGTGCTGGTGA-3′;双链引物SF:5′-TCACC TCTGCCTAATCATCTCATG-3′/SR:5′-GCAAAGC CCAAAAGACCCACAAT-3′。PCR反应条件:94 ℃ 5 min;94 ℃ 30 s;55 ℃ 30 s;68 ℃单链80 s/双链110 s(2~4步循环35次);68 ℃ 10 min。

4.母亲HBV DNA测序及基因型确定:PCR产物经回收纯化后连接pEASY-Blunt Zero Cloning载体,转入Trans1-T1噬菌体抗性化学感受态细胞(北京TransGen生物技术有限公司)进行细菌培养,菌液送上海生物工程股份有限公司测序。由于基因组的异质性,故根据菌落培养结果,获取单双链各3~7条克隆株不等。所得HBV序列经编辑(DNAStar软件包),拼接(SeqMan软件),位置调整(Mega 6.0软件包)后采用邻接(Neighbor-joining)法构建系统进化树(Kimura双参数模型,1 000次验证)。通过与NCBI数据库下载的标准序列比对进行基因分型。根据基因分型结果选择HBV基因型为C基因型的39例母亲进行突变分析(HBV基因型标准序列编号:Genotype A:AF090842,X02763,X51970;Genotype B:D00329,AB073846,AB602818;Genotype C:AB014381,M12906,X04615;Genotype D:M32138,X65259,X85254;Genotype E:X75657,AB032431;Genotype F:AB036910,AF223965,X69798;Genotype G:AF405706,AB064310,AF160501;Genotype H:AY090454,AY090457,AY090460)。

5. HBV序列突变分析:从NCBI下载HBV野生型参考序列并校正(ClustalX 2.1程序,MegAlign软件)。与参考序列相比,样本序列中核苷酸(位点)改变即为点突变。突变率为位点发生突变的克隆条数/总克隆条数,超过10%的位点突变率即为突变热点。

6.统计学分析:使用EpiData 3.1软件进行数据库建立及数据录入,采用SAS 9.4软件进行数据分析。定量资料的统计描述用中位数和四分位数间距MQR)表示,组间比较用Wilcoxon符号秩检验。定性资料的分析采用χ2检验或Fisher’s确切概率法。采用非条件logistic回归模型进行多因素分析。P<0.05为差异有统计学意义。

结果

1.确定HBV C基因型的母亲:在血清HBV DNA载量≥106 IU/ml的113例HBsAg阳性母亲中,22例新生儿发生宫内传播(宫内传播组),宫内传播率为19.47%(22/113)。从未发生宫内传播的91对母儿随机选取22对作为对照组。基因型分析结果显示44例母亲中C基因型有39例(88.63%),B基因型有2例(4.55%),B/C混合型有3例(6.82%)。选择C基因型的39例HBsAg阳性母亲进一步进行基因变异分析。经HBV DNA扩增测序后共得到388条克隆序列,克隆株(9.9±1.3)条。其中HBV宫内传播组19例样本共186条,克隆株为(9.8±1.8)条;对照组20例样本共202条,克隆株为(10.1±0.4)条,尚未发现两组HBV DNA的克隆条数差异有统计学意义[(9.8±1.8)条vs.(10.1±0.4)条,P=0.447]。

2. HBsAg阳性母亲及新生儿一般情况比较:比较宫内传播组及对照组母儿一般人口学特征,尚未发现母亲年龄及孕周、新生儿性别、出生体重及出生身长等方面在两组间差异有统计学意义(P>0.05)。见表 1

表 1 HBV C基因型的39对母儿人口统计学特征

3. HBsAg阳性母亲及新生儿HBV复制情况比较:通过比较宫内传播组及对照组母亲HBV DNA载量和HBeAg水平,结果显示母亲的血清HBV DNA和HBeAg水平在两组间差异无统计学意义(P=0.747,P=0.565)。通过比较宫内传播组及对照组新生儿HBeAg水平,未发现两组间差异有统计学意义(P=0.725)。见表 2

表 2 HBV C基因型的39对母儿HBV复制情况

4.影响HBeAg表达的基因区位点突变分析:在C基因区发现的8个碱基突变热点编码的氨基酸未发生改变,即均为同义突变。在BCP区中发现A1762T/G1764A双突变热点能引起相应编码氨基酸的改变(K130M/V131I)。A1762T/G1764A双突变率为18.04%(70/388),且发生在对照组的A1762T/G1764A双突变率显著高于宫内传播组(27.72% vs. 7.53%,P<0.001)。Pre-C基因区未发现碱基突变热点。见表 3

表 3 Pre-C/C/BCP区碱基突变热点与HBV宫内传播的关系

5. HBV宫内传播多因素logistic回归分析:本次研究中39例母亲均无先兆流产、腹部受压、先兆早产、先兆子痫及羊膜穿刺等HBV宫内传播的危险史。经调整母亲血清HBeAg水平后结果显示,A1762T/G1764A双突变可能与HBV宫内传播的发生有关。A1762T/G1764A双突变的发生可能导致HBV宫内传播的风险降低(aOR=0.065,95%CI:0.006~0.746,P=0.028)。见表 4

表 4 HBV宫内传播多因素分析

6. HBsAg阳性母亲A1762T/G1764A双突变与母亲血清HBV DNA载量及母儿HBeAg水平的关系分析:发生A1762T/G1764A双突变的母亲血清HBV DNA(×108)浓度低于未发生突变的HBV DNA浓度(4.94 IU/ml vs. 6.64 IU/ml,P=0.321)。发生A1762T/G1764A双突变的母亲血清HBeAg水平与未发生突变的HBeAg水平相比尚未发现差异有统计学意义(957.4 COI vs. 1 024.0 COI,P=0.311)。母亲发生A1762T/G1764A双突变的新生儿血清HBeAg水平低于母亲未发生A1762T/G1764A双突变的新生儿HBeAg水平,差异有统计学意义(49.54 COI vs. 86.53 COI,P=0.050)。见图 1

图 1 HBsAg阳性母亲及新生儿血清HBeAg水平比较
讨论

我国HBV宫内传播率为5.00%~43.33%[25-26]。阻断HBV宫内传播将在很大程度上控制我国慢性HBV感染,目前HBV宫内传播尚缺乏有效的阻断途径,因此了解HBV的病毒学特征是阐明HBV宫内传播机制及采取有效措施阻断宫内传播的关键。

HBV在复制过程中不断进化并出现不可预测的变异,这种长期变异最终导致HBV不同基因型的出现。HBV基因型的分布某种程度上反映HBV基因型的地域优势,并可能与出现的HBV变异株在病毒发病机制中起关键作用[27]。HBV C基因型的BCP区(nt 1 742~1 849)突变率较高。由于在nt 1 858位为胞嘧啶(C)的可能性很高,故很大程度上抑制了Pre-C基因区突变的发生,使Pre-C基因区在突变发生中相对保守[28]。有研究认为HBV C基因型在HBeAg阳性患者发生BCP区突变率较HBeAg阴性者更高[29]。本次研究的39例HBV为C基因型的HBsAg阳性母亲HBeAg检测均为阳性,BCP区A1762T/G1764A双突变率为18.04%,未发现位于Pre-C基因区的突变热点。基因突变分析过程中发现位于nt 1 858位为胸腺嘧啶(T),推测抑制Pre-C基因区突变的发生可能是由于嘧啶类核苷酸的影响。

有文献报道BCP区位点发生突变可能引起HBeAg表达的降低[30]。BCP区与Pre-C基因区的某些位点发生突变可能引起病毒动力学的改变,如HBeAg合成减少。其中,A1762T/G1764A双突变由于在HBV感染者中具有较高的突变率而备受学者关注[31],该双突变的发生可能通过影响mRNA的转录效率进而降低HBeAg的表达[32]。本次研究在母亲BCP区仅观察到A1762T/G1764A双突变热点,A1762T/G1764A双突变可能与新生儿HBV宫内传播的发生有关,且对照组突变率显著高于宫内传播组,与Cheng等[2]的研究结果一致。多因素分析结果显示A1762T/G1764A双突变可能是宫内传播的保护因素。提示位于BCP区的A1762T/G1764A双突变发生可能抑制HBV DNA的复制,影响其下游HBeAg的表达,进而使母体内的HBeAg量减少。为更直观地解释该双突变的发生对生物学表达的影响,故本次研究比较A1762T/G1764A双突变发生与否与母亲HBV DNA载量的关系,结果显示发生A1762T/G1764A双突变的母亲HBV DNA载量较低。进一步比较A1762T/G1764A双突变发生与否与母儿HBeAg水平的关系,发现A1762T/G1764A双突变与新生儿HBeAg水平有关。A1762T/G1764A双突变可能与HBeAg的血清学转化有关[33],由于位点发生突变,聚合酶不能正常结合而使HBV DNA的复制与翻译过程出现错误,影响其正常表达HBeAg的功能而编码为错误的氨基酸,减少HBeAg的正常合成与分泌[32-33]。同时,HBV DNA的A1762T/G1764A双突变病毒株可能感染力降低[31],相对HBV野生型病毒株不易进入胎儿,从而减少了孕期胎儿暴露HBV的机会。可能由于样本量的限制,尚未发现A1762T/G1764A双突变引起母亲HBV DNA载量和HBeAg水平的统计学改变,但发现母亲HBV DNA的复制和HBeAg的表达在一定程度上相较于未发生A1762T/G1764A双突变时减少,且A1762T/G1764A双突变降低了新生儿HBeAg的水平仍为本次研究结论提供一定的线索。

综上所述,高病毒载量的HBV C基因型的HBsAg阳性母亲感染A1762T/G1764A双突变病毒株可能降低新生儿HBV宫内传播的发生。母亲A1762T/G1764A双突变可能通过抑制HBV DNA的复制与HBeAg的正常表达,降低母亲体内HBeAg的水平,进而可能减少HBV宫内传播的发生。今后将进一步扩大样本量,选择具有相同特征的HBeAg阴性母亲进行BCP区位点突变分析,与其余基因区突变位点结合分析以研究HBV全基因组变异影响宫内传播的机制,并在技术发展条件允许的情况下,研究HBV DNA载量<106 IU/ml的基因序列,为降低HBV宫内传播率提供更为全面的依据。

利益冲突  所有作者均声明不存在利益冲突

参考文献
[1]
Tiollais P, Pourcel C, Dejean A. The hepatitis B virus[J]. Nature, 1985, 317(6037): 489-495. DOI:10.1038/317489a0
[2]
Cheng H, Su HX, Wang SP, et al. Association between genomic heterogeneity of hepatitis B virus and intrauterine infection[J]. Virology, 2009, 387(1): 168-175. DOI:10.1016/j.virol.2009.02.015
[3]
Hunt CM, McGill JM, Allen MI, et al. Clinical relevance of hepatitis B viral mutations[J]. Hepatology, 2000, 31(5): 1037-1044. DOI:10.1053/he.2000.6709
[4]
Okamoto H, Tsuda F, Sakugawa H, et al. Typing hepatitis B virus by homology in nucleotide sequence:comparison of surface antigen subtypes[J]. J Gen Virol, 1988, 69(10): 2575-2583. DOI:10.1099/0022-1317-69-10-2575
[5]
Norder H, Courouce AM, Magnius LO. Complete genomes, phylogenetic relatedness, and structural proteins of six strains of the hepatitis B virus, four of which represent two new genotypes[J]. Virology, 1994, 198(2): 489-503. DOI:10.1006/viro.1994.1060
[6]
Ding H, Liu BM, Zhao CY, et al. Amino acid similarities and divergences in the small surface proteins of genotype C hepatitis B viruses between nucleos(t)ide analogue-naive and lamivudine-treated patients with chronic hepatitis B[J]. Antivir Res, 2014, 102: 29-34. DOI:10.1016/j.antiviral.2013.11.015
[7]
Lau JYN, Wright TL. Molecular virology and pathogenesis of hepatitis B[J]. Lancet, 1993, 342(8883): 1335-1340. DOI:10.1016/0140-6736(93)92249-S
[8]
Du H, Li T, Zhang HY, et al. Correlation of hepatitis B virus (HBV) genotypes and mutations in basal core promoter/precore with clinical features of chronic HBV infection[J]. Liver Int, 2007, 27(2): 240-246. DOI:10.1111/j.1478-3231.2006.01400.x
[9]
Stevens CE, Neurath RA, Beasley RP, et al. HBeAg and anti-HBe detection by radioimmunoassay:correlation with vertical transmission of hepatitis B virus in Taiwan[J]. J Med Virol, 1979, 3(3): 237-241. DOI:10.1002/jmv.1890030310
[10]
Singh AE, Plitt SS, Osiowy C, et al. Factors associated with vaccine failure and vertical transmission of hepatitis B among a cohort of Canadian mothers and infants[J]. J Viral Hepat, 2011, 18(7): 468-473. DOI:10.1111/j.1365-2893.2010.01333.x
[11]
Liaw YF, Chu CM. Hepatitis B virus infection[J]. Lancet, 2009, 373(9663): 582-592. DOI:10.1016/S0140-6736(09)60207-5
[12]
Pan CQ, Duan ZP, Bhamidimarri KR, et al. An algorithm for risk assessment and intervention of mother to child transmission of hepatitis B virus[J]. Clin Gastroenterol Hepatol, 2012, 10(5): 452-459. DOI:10.1016/j.cgh.2011.10.041
[13]
Lavanchy D. Hepatitis B virus epidemiology, disease burden, treatment, and current and emerging prevention and control measures[J]. J Viral Hepat, 2004, 11(2): 97-107. DOI:10.1046/j.1365-2893.2003.00487.x
[14]
Wen WH, Chang MH, Zhao LL, et al. Mother-to-infant transmission of hepatitis B virus infection:significance of maternal viral load and strategies for intervention[J]. J Hepatol, 2013, 59(1): 24-30. DOI:10.1016/j.jhep.2013.02.015
[15]
Peng SX, Wan ZH, Liu TT, et al. Cesarean section reduces the risk of early mother-to-child transmission of hepatitis B virus[J]. Dig Liver Dis, 2018, 50(10): 1076-1080. DOI:10.1016/j.dld.2018.05.004
[16]
Jonas MM, Block JM, Haber BA, et al. Treatment of children with chronic hepatitis B virus infection in the United States:patient selection and therapeutic options[J]. Hepatology, 2010, 52(6): 2192-2205. DOI:10.1002/hep.23934
[17]
Zeng G, Wang Z, Wen S, et al. Geographic distribution, virologic and clinical characteristics of hepatitis B virus genotypes in China[J]. J Viral Hepat, 2005, 12(6): 609-617. DOI:10.1111/j.1365-2893.2005.00657.x
[18]
Sugauchi F, Orito E, Ichida T, et al. Epidemiologic and virologic characteristics of hepatitis B virus genotype B having the recombination with genotype C[J]. Gastroenterology, 2003, 124(4): 925-932. DOI:10.1053/gast.2003.50140
[19]
Chen QY, Harrison TJ, Sabin CA, et al. The effect of HBV Genotype C on the development of HCC differs between wild-type viruses and those with BCP double mutations (T1762A1764)[J]. Hepat Mon, 2014, 14(2): e16214. DOI:10.5812/hepatmon.16214
[20]
Yuen MF, Sablon E, Tanaka Y, et al. Epidemiological study of hepatitis B virus genotypes, core promoter and precore mutations of chronic hepatitis B infection in Hong Kong[J]. J Hepatol, 2004, 41(1): 119-125. DOI:10.1016/j.jhep.2004.03.004
[21]
Zeng DW, Liu YR, Dong J, et al. Serum HBsAg and HBeAg levels are associated with liver pathological stages in the immune clearance phase of hepatitis B virus chronic infection[J]. Mol Med Rep, 2015, 11(5): 3465-3472. DOI:10.3892/mmr.2015.3207
[22]
Ko SC, Schillie SF, Walker T, et al. Hepatitis B vaccine response among infants born to hepatitis B surface antigen-positive women[J]. Vaccine, 2014, 32(18): 2127-2133. DOI:10.1016/j.vaccine.2014.01.099
[23]
Zou H, Chen Y, Duan Z, et al. Virologic factors associated with failure to passive-active immunoprophylaxis in infants born to HBsAg-positive mothers[J]. J Viral Hepat, 2012, 19(2): e18-25. DOI:10.1111/j.1365-2893.2011.01492.x
[24]
Guo Z, Shi XH, Feng YL, et al. Risk factors of HBV intrauterine transmission among HBsAg-positive pregnant women[J]. J Viral Hepat, 2013, 20(5): 317-321. DOI:10.1111/jvh.12032
[25]
Zhu YY, Mao YZ, Wu WL, et al. Does hepatitis B virus prenatal transmission result in postnatal immunoprophylaxis failure?[J]. Clin Vaccine Immunol, 2010, 17(12): 1836-1841. DOI:10.1128/CVI.00168-10
[26]
Shao QL, Zhao XX, Li MDY. Role of peripheral blood mononuclear cell transportation from mother to baby in HBV intrauterine infection[J]. Arch Gynecol Obstet, 2013, 288(6): 1257-1261. DOI:10.1007/s00404-013-2893-x
[27]
Wang ZH, Huang YH, Wen SJ, et al. Hepatitis B virus genotypes and subgenotypes in China[J]. Hepatol Res, 2007, 37 Suppl 1: S36-41. DOI:10.1111/j.1872-034X.2007.00102.x
[28]
Chan HLY, Hussain M, Lok ASF. Different hepatitis B virus genotypes are associated with different mutations in the core promoter and precore regions during hepatitis B e-antigen seroconversion[J]. Hepatology, 1999, 29(3): 976-984. DOI:10.1002/hep.510290352
[29]
Yang HC, Chen CL, Shen YC, et al. Distinct evolution and predictive value of hepatitis B virus precore and basal core promoter mutations in interferon-induced hepatitis B e-antigen seroconversion[J]. Hepatology, 2013, 57(3): 934-943. DOI:10.1002/hep.26121
[30]
Fang ZL, Sabin CA, Dong BQ, et al. The association of HBV core promoter double mutations (A1762T and G1764A) with viral load differs between HBeAg positive and anti-HBe positive individuals:a longitudinal analysis[J]. J Hepatol, 2009, 50(2): 273-280. DOI:10.1016/j.jhep.2008.09.014
[31]
Günther S, Piwon N, Will H. Wild-type levels of pregenomic RNA and replication but reduced pre-C RNA and e-antigen synthesis of hepatitis B virus with C(1653)——> T, A(1762)——> T and G(1764)——> A mutations in the core promoter[J]. J Gen Virol, 1998, 79(2): 375-380. DOI:10.1099/0022-1317-79-2-375
[32]
Chen LB, Gu L, Gu YR, et al. HBV core promoter mutations and AKT upregulate S-phase kinase-associated protein 2 to promote postoperative hepatocellular carcinoma progression[J]. Sci Rep, 2016, 6: 35917. DOI:10.1038/srep35917
[33]
Parekh S, Zoulim F, Ahn SH, et al. Genome replication, virion secretion, and e-antigen expression of naturally occurring hepatitis B virus core promoter mutants[J]. J Virol, 2003, 77(12): 6601-6612. DOI:10.1128/JVI.77.12.6601-6612.2003