[1] |
Pellegriti G, Frasca F, Regalbuto C, et al.
Worldwide increasing incidence of thyroid cancer:update on epidemiology and risk factors[J]. J Cancer Epidemiol, 2013, 2013: 965212.
DOI:10.1155/2013/965212 |
|
[2] |
Stewart BW, Wild CP.World cancer report 2014[M]. Lyon: IARC Press, 2014: 738–750.
|
|
[3] |
Pinchot SN, Sippel RS, Chen H.
Multi-targeted approach in the treatment of thyroid cancer[J]. Ther Clin Risk Manag, 2008, 4(5): 935–947.
|
|
[4] |
Galuppini F, Pennelli G, Vianello F, et al.
BRAF analysis before surgery for papillary thyroid carcinoma:correlation with clinicopathological features and prognosis in a single-institution prospective experience[J]. Clin Chem Lab Med, 2016, 54(9): 1531–1539.
DOI:10.1515/cclm-2015-0218 |
|
[5] |
Xing MZ, Alzahrani AS, Carson KA, et al.
Association between BRAF V600E mutation and recurrence of papillary thyroid cancer[J]. J Clin Oncol, 2015, 33(1): 42–50.
DOI:10.1200/JCO.2014.56.8253 |
|
[6] |
刘超, 戴璇璇, 周毅力, 等.
甲状腺乳头状癌mir-221表达与BRAF突变的相关性研究[J]. 中国肿瘤, 2012, 21(4): 298–302.
Liu C, Dai XX, Zhou YL, et al.
Correlation between mir-221 expression and BRAF mutation in papillary thyroid cancer[J]. China Cancer, 2012, 21(4): 298–302.
|
|
[7] |
金纯, 邹章勇, 程溥, 等.
甲状腺癌复发与BRAF基因突变的关系探讨[J]. 山东医药, 2013, 53(34): 16–17.
Jin C, Zou ZY, Cheng F, et al.
Relationship between the BRAF mutation and thyroid carcinoma recurrence[J]. Shandong Med J, 2013, 53(34): 16–17.
DOI:10.3969/j.issn.1002-266X.2013.34.006 |
|
[8] |
黄美玲, 李永平, 凌瑞.
BRAF V600E基因突变与乳头状甲状腺癌淋巴结转移相关性的Meta分析[J]. 中国肿瘤, 2017, 26(2): 145–151.
Huang ML, Li YP, Ling R.
A Meta-analysis on the correlation between BRAF V600E gene mutation and lymph nodes metastasis in papillary thyroid carcinoma[J]. China Cancer, 2017, 26(2): 145–151.
DOI:10.11735/j.issn.1004-0242.2017.02.A014 |
|
[9] |
茹晓婷, 刘勤江, 周海红, 等.
分化型甲状腺癌BRAF V600E和TERT启动子突变及其临床意义[J]. 肿瘤, 2016, 36(12): 1362–1368.
Ru XT, Liu QJ, Zhou HH, et al.
BRAF V600E and TERT promoter mutation in differentiated thyroid carcinoma and its clinical significance[J]. Tumor, 2016, 36(12): 1362–1368.
DOI:10.3781/j.issn.1000-7431.2016.33.574 |
|
[10] |
Xing MZ, Alzahrani AS, Carson KA, et al.
Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer[J]. JAMA, 2013, 309(14): 1493–1501.
DOI:10.1001/jama.2013.3190 |
|
[11] |
Li F, Chen GQ, Sheng CJ, et al.
BRAF V600E mutation in papillary thyroid microcarcinoma:a Meta-analysis[J]. Endocr Relat Cancer, 2015, 22(2): 159–168.
DOI:10.1530/ERC-14-0531 |
|
[12] |
Hedayati M, Yeganeh MZ, Sheikholeslami S, et al.
Diversity of mutations in the RET proto-oncogene and its oncogenic mechanism in medullary thyroid cancer[J]. Crit Rev Clin Lab Sci, 2016, 53(4): 217–227.
DOI:10.3109/10408363.2015.1129529 |
|
[13] |
Jargin SV.
RET/PTC3 Rearrangement in papillary thyroid carcinoma:possible marker of tumor progression[J]. Ann Surg, 2016.
DOI:10.1097/SLA.0000000000002031 |
|
[14] |
Martins-Costa MC, Cunha LL, Lindsey SC, et al.
M918V RET mutation causes familial medullary thyroid carcinoma:study of 8 affected kindreds[J]. Endocr Relat Cancer, 2016, 23(12): 909–920.
DOI:10.1530/ERC-16-0141 |
|
[15] |
Xu JY, Grubbs EG, Waguespack SG, et al.
Medullary thyroid carcinoma associated with germline RETK666N mutation[J]. Thyroid, 2016, 26(12): 1744–1751.
DOI:10.1089/thy.2016.0374 |
|
[16] |
Thomas GA, Bunnell H, Cook HA, et al.
High prevalence of RET/PTC rearrangements in Ukrainian and Belarussian post-chernobyl thyroid papillary carcinomas:a strong correlation between RET/PTC3 and the solid-follicular variant[J]. J Clin Endocrinol Metab, 1999, 84(11): 4232–4238.
DOI:10.1210/jcem.84.11.6129 |
|
[17] |
Kjellman P, Learoyd DL, Messina M, et al.
Expression of the RET proto-oncogene in papillary thyroid carcinoma and its correlation with clinical outcome[J]. Br J Surg, 2001, 88(4): 557–563.
DOI:10.1046/j.1365-2168.2001.01734.x |
|
[18] |
周睿, 王伟斌, 王海勇, 等.
RET/PTC、p53及BRAF在甲状腺乳头状癌中的表达及意义[J]. 浙江医学, 2010, 32(6): 942–944.
Zhou R, Wang WB, Wang HY, et al.
Expression and significance of RET/PTC, p53 and BRAF in papillary thyroid carcinoma[J]. Zhejiang Med J, 2010, 32(6): 942–944.
DOI:10.3969/j.issn.1006-2785.2010.06.069 |
|
[19] |
吴远昊, 张守鹏.
RAS基因突变在甲状腺癌中的研究进展[J]. 中国医学工程, 2012, 20(8): 185–186.
Wu YH, Zhang SP.
Research progress of RAS gene mutation in thyroid carcinoma[J]. China Med Eng, 2012, 20(8): 185–186.
|
|
[20] |
Kakarmath S, Heller HT, Alexander CA, et al.
Clinical, sonographic, and pathologic characteristics of RAS-positive versus BRAF-positive thyroid carcinoma[J]. J Clin Endocrinol Metabol, 2016, 101(12): 4938–4944.
DOI:10.1210/jc.2016-2620 |
|
[21] |
Zou MJ, Baitei EY, Alzahrani AS, et al.
Concomitant RAS, RET/PTC, or BRAF mutations in advanced stage of papillary thyroid carcinoma[J]. Thyroid, 2014, 24(8): 1256–1266.
DOI:10.1089/thy.2013.0610 |
|
[22] |
Liu DX, Yang CF, Bojdani E, et al.
Identification of RASAL1 as a major tumor suppressor gene in thyroid cancer[J]. J Natl Cancer Inst, 2013, 105(21): 1617–1627.
DOI:10.1093/jnci/djt249 |
|
[23] |
Goutas N, Vlachodimitropoulos D, Bouka M, et al.
BRAF and K-RAS mutation in a Greek papillary and medullary thyroid carcinoma cohort[J]. Anticancer Res, 2008, 28(1A): 305–308.
|
|
[24] |
周睿瑜, 罗以.
BRAF V600E和RAS基因突变与甲状腺癌远处转移及预后关系的研究进展[J]. 肿瘤药学, 2016, 6(3): 178–181.
Zhou RY, Luo Y.
Research progress on the relationships of BRAF V600E and RAS gene mutation with distant metastasis and prognosis of thyroid carcinoma[J]. Anti-Tumor Pharm, 2016, 6(3): 178–181.
DOI:10.3969/j.issn.2095-1264.2016.03.04 |
|
[25] |
Li LC, Wang Y, Carr R, et al.
IG20/MADD plays a critical role in glucose-induced insulin secretion[J]. Diabetes, 2014, 63(5): 1612–1623.
DOI:10.2337/db13-0707 |
|
[26] |
Li LC, Jayarama S, Pilli T, et al.
Down-modulation of expression, or dephosphorylation, of IG20/MADD in tumor necrosis factor-related apoptosis-inducing ligand-resistant thyroid cancer cells makes them susceptible to treatment with this ligand[J]. Thyroid, 2013, 23(1): 70–78.
DOI:10.1089/thy.2012.0155 |
|
[27] |
Shin MK, Kim JW, Min SK, et al.
Associations of the BRAF (V600E) mutation and p53 protein expression with clinicopathological features of papillary thyroid carcinomas patients[J]. Oncol Lett, 2015, 10(3): 1882–1888.
DOI:10.3892/ol.2015.3401 |
|
[28] |
Pita JM, Figueiredo IF, Moura MM, et al.
Cell cycle deregulation and TP53 and RAS mutations are major events in poorly differentiated and undifferentiated thyroid carcinomas[J]. J Clin Endocrinol Metab, 2014, 99(3): E497–507.
DOI:10.1210/jc.2013-1512 |
|
[29] |
Akeno N, Miller AL, Ma X, et al.
p53 suppresses carcinoma progression by inhibiting mTOR pathway activation[J]. Oncogen, 2015, 34(5): 589–599.
DOI:10.1038/onc.2013.589 |
|
[30] |
Morita N, Ikeda Y, Takami H.
Clinical significance of p53 protein expression in papillary thyroid carcinoma[J]. World J Surg, 2008, 32(12): 2617–2622.
DOI:10.1007/s00268-008-9756-9 |
|
[31] |
尹凤媛, 焦淑贤, 迟晓云.
甲状腺乳头状癌患者血液p53基因表达及与淋巴结转移、临床分期的关系[J]. 山东医药, 2011, 51(27): 25–26.
Yin FY, Jiao SX, Chi XY.
Expression of serum p53 gene and its correlation with lymphatic metastasis and clinical stages in patients with thyroid papillary carcinoma[J]. Shandong Med J, 2011, 51(27): 25–26.
DOI:10.3969/j.issn.1002-266X.2011.27.014 |
|
[32] |
Kechagioglou P, Papi RM, Provatopoulou X, et al.
Tumor suppressor PTEN in breast cancer:heterozygosity, mutations and protein expression[J]. Anticancer Res, 2014, 34(3): 1387–1400.
|
|
[33] |
Champa D, Cristofano AD.
Modeling anaplastic thyroid carcinoma in the mouse[J]. Horm Cancer, 2015, 6(1): 37–44.
DOI:10.1007/s12672-014-0208-8 |
|
[34] |
Shon W, Wolz M, Sukov WR, et al.
Phosphatase and tensin homologue status in sporadic and Cowden syndrome-associated trichilemmomas:evaluation of immunohistochemistry and fluorescence in situ hybridization[J]. Br J Dermatol, 2014, 170(5): 1201–1204.
DOI:10.1111/bjd.12827 |
|
[35] |
李仕亮, 孙纷纷, 邵国安, 等.
甲状腺癌中PTEN蛋白表达与BRAFV600E突变的相关性研究[J]. 现代肿瘤医学, 2017, 25(6): 871–875.
Li SL, Sun FF, Shao GA, et al.
Correlation between PTEN protein expression and BRAFV600E mutations in thyroid carcinoma[J]. Mod Oncol, 2017, 25(6): 871–875.
DOI:10.3969/j.issn.1672-4992.2017.06.009 |
|
[36] |
刘志春, 赵亮.
PTEN和Ki-67在甲状腺癌组织中的表达及其临床意义[J]. 中国普外基础与临床杂志, 2016(11): 1348–1352.
Liu ZC, Zhao L.
Expressions of PTEN and Ki-67 in primary thyroid cancer tissues and its clinical significances[J]. Chin J Bases Clin Gen Surg, 2016(11): 1348–1352.
DOI:10.7507/1007-9424.20160345 |
|
[37] |
Nagy R, Ganapathi S, Comeras I, et al.
Frequency of germline PTEN mutations in differentiated thyroid cancer[J]. Thyroid, 2011, 21(5): 505–510.
DOI:10.1089/thy.2010.0365 |
|
[38] |
Beg S, Siraj AK, Jehan Z, et al.
PTEN loss is associated with follicular variant of middle eastern papillary thyroid carcinoma[J]. Br J Cancerc, 2015, 112(12): 1938–1943.
DOI:10.1038/bjc.2015.169 |
|
[39] |
Mohammadi-asl J, Larijani B, Khorgami Z, et al.
Qualitative and quantitative promoter hypermethylation patterns of the p16, TSHR, RASSF1A and RARβ2 genes in papillary thyroid carcinoma[J]. Med Oncol, 2011, 28(4): 1123–1128.
DOI:10.1007/s12032-010-9587-z |
|
[40] |
Wang P, Pei RG, Lu ZM, et al.
Methylation of p16 CpG islands correlated with metastasis and aggressiveness in papillary thyroid carcinoma[J]. J Chin Med Assoc, 2013, 76(3): 135–139.
DOI:10.1016/j.jcma.2012.11.007 |
|
[41] |
Sun RM, Wang JD, Li XJ, et al.
Effect of iodine intake on p14ARF and p16INK4a expression in thyroid papillary carcinoma in rats[J]. Med Sci Monit, 2015, 21: 2288–2293.
DOI:10.12659/MSM.893486 |
|
[42] |
Temiz P, Akkaş G, Neşe N, et al.
Determination-of apoptosis and cell cycle modulators (p16, p21, p27, p53, BCL-2, Bax, BCL-xL, and cyclin D1) in thyroid follicular carcinoma, follicular adenoma, and adenomatous nodules via a tissue microarray method[J]. Turkish J Med Sci, 2015, 45(4): 865–871.
DOI:10.3906/sag-1406-48 |
|
[43] |
Fourati A, El Amine O, Ben Ayoub W, et al.
Expression profile of biomarkers altered in papillary and anaplastic thyroid carcinoma:contribution of Tunisian patients[J]. Bull Cancer, 2017, 104: 433–441.
DOI:10.1016/j.bulcan.2016.12.001 |
|
[44] |
Zhou Y, Zhao CH, Gery S, et al.
Off-target effects of c-MET inhibitors on thyroid cancer cells[J]. Mol Cancer Therap, 2014, 13(1): 134–143.
DOI:10.1158/1535-7163.MCT-13-0187 |
|
[45] |
Berardi R, Morgese F, Onofri A, et al.
Role of maspin in cancer[J]. Clin Translat Med, 2013, 2: 8.
DOI:10.1186/2001-1326-2-8 |
|
[46] |
Lewy GD, Ryan GA, Read ML, et al.
Regulation of pituitary tumor transforming gene (PTTG) expression and phosphorylation in thyroid cells[J]. Endocrinology, 2013, 154(11): 4408–4422.
DOI:10.1210/en.2012-2156 |
|
[47] |
Kunstman JW, Korah R, Healy JM, et al.
Quantitative assessment of RASSF1A methylation as a putative molecular marker in papillary thyroid carcinoma[J]. Surgeryc, 2013, 154(6): 1255–1262.
DOI:10.1016/j.surg.2013.06.025 |
|
[48] |
Shou FY, Xu F, Li G, et al.
RASSF1A promoter methylation is associated with increased risk of thyroid cancer:a Meta-analysis[J]. Onco Targets Ther, 2017, 10: 247–257.
DOI:10.2147/OTT.S124417 |
|
[49] |
Do SI, Kim DH, Yang JH, et al.
Decreased expression of p27 is associated with malignant transformation and extrathyroidal extension in papillary thyroid carcinoma[J]. Tumor Biol, 2016, 37(3): 3359–3364.
DOI:10.1007/s13277-015-4163-y |
|
[50] |
Tang T, Zhang DL.
Study on extracellular matrix metalloproteinase inducer and human epidermal growth factor receptor-2 protein expression in papillary thyroid carcinoma using a quantum dot-based immunofluorescence technique[J]. Exp Therap Med, 2015, 9(4): 1331–1335.
DOI:10.3892/etm.2015.2287 |
|