[1] |
Visscher P, Brown M, McCarthy M, et al.
Five years of GWAS discovery[J]. Am J Hum Genet, 2012, 90(1): 7–24.
DOI:10.1016/j.ajhg.2011.11.029 |
|
[2] |
Maher B.
The case of the missing heritability[J]. Nature, 2008, 456(7218): 18–21.
DOI:10.1038/456018a |
|
[3] |
Macarthur J, Bowler E, Cerezo M, et al.
The new NHGRI-EBI catalog of published genome-wide association studies (GWAS Catalog)[J]. Nucleic Acids Res, 2016, 45(D1): D896–901.
DOI:10.1093/nar/gkw1133 |
|
[4] |
Raychaudhuri S.
Mapping rare and common causal alleles for complex human diseases[J]. Cell, 2011, 147(1): 57–69.
DOI:10.1016/j.cell.2011.09.011 |
|
[5] |
Nejentsev S, Walker N, Riches D, et al.
Rare variants of IFIH1, a gene implicated in antiviral responses, protect against type 1 diabetes[J]. Science, 2009, 324(5925): 387–389.
DOI:10.1126/science.1167728 |
|
[6] |
Sulem P, Gudbjartsson DF, Walters GB, et al.
Identification of low-frequency variants associated with gout and serum uric acid levels[J]. Nat Genet, 2011, 43(11): 1127–1130.
DOI:10.1038/ng.972 |
|
[7] |
Steinthorsdottir V, Thorleifsson G, Sulem P, et al.
Identification of low-frequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes[J]. Nat Genet, 2014, 46(3): 294.
DOI:10.1038/ng.2882 |
|
[8] |
Do R, Stitziel NO, Won H, et al.
Exome sequencing identifies rare LDLR and APOA5 alleles conferring risk for myocardial infarction[J]. Nature, 2014, 518(7537): 102–106.
DOI:10.1038/nature13917 |
|
[9] |
Cirulli ET, Goldstein DB.
Uncovering the roles of rare variants in common disease through whole-genome sequencing[J]. Nat Rev Genet, 2010, 11(6): 415–425.
DOI:10.1038/nrg2779 |
|
[10] |
Morrison AC, Voorman A, Johnson AD, et al.
Whole-genome sequence-based analysis of high-density lipoprotein cholesterol[J]. Nat Genet, 2013, 45(8): 899–901.
DOI:10.1038/ng.2671 |
|
[11] |
Li Y, Sidore C, Kang HM, et al.
Low-coverage sequencing:implications for design of complex trait association studies[J]. Genome Res, 2011, 21(6): 940–951.
DOI:10.1101/gr.117259.110 |
|
[12] |
Gudmundsson J, Sulem P, Gudbjartsson DF, et al.
A study based on whole-genome sequencing yields a rare variant at 8q24 associated with prostate cancer[J]. Nat Genet, 2012, 44(12): 1326–1329.
DOI:10.1038/ng.2437 |
|
[13] |
Converge Consortium.
Sparse whole-genome sequencing identifies two loci for major depressive disorder[J]. Nature, 2015, 523(7562): 588–591.
DOI:10.1038/nature14659 |
|
[14] |
Wang GT, Li B, Santos-Cortez RPL, et al.
Power analysis and sample size estimation for sequence-based association studies[J]. Bioinformatics, 2014, 30(16): 2377–2378.
DOI:10.1093/bioinformatics/btu296 |
|
[15] |
Bamshad MJ, Ng SB, Bigham AW, et al.
Exome sequencing as a tool for Mendelian disease gene discovery[J]. Nat Rev Genet, 2011, 12(11): 745–755.
DOI:10.1038/nrg3031 |
|
[16] |
Ng SB, Buckingham KJ, Lee C, et al.
Exome sequencing identifies the cause of a mendelian disorder[J]. Nat Genet, 2010, 42(1): 30–35.
DOI:10.1038/ng.499 |
|
[17] |
Ng SB, Bigham AW, Buckingham KJ, et al.
Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome[J]. Nat Genet, 2010, 42(9): 790–793.
DOI:10.1038/ng.646 |
|
[18] |
Shadrina MI, Shulskaya MV, Klyushnikov SA, et al.
ITPR1 gene p. Val1553Met mutation in Russian family with mild Spinocerebellar ataxia[J]. Cerebellum Ataxias, 2016, 3: 2.
DOI:10.1186/s40673-016-0040-8 |
|
[19] |
Cruchaga C, Karch CM, Jin SC, et al.
Rare coding variants in the Phospholipase D3 gene confer risk for Alzheimer's disease[J]. Nature, 2014, 505(7484): 550–554.
DOI:10.1038/nature12825 |
|
[20] |
Tennessen JA, Bigham AW, O'Connor TD, et al.
Evolution and functional impact of rare coding variation from deep sequencing of human exomes[J]. Science, 2012, 337(6090): 64–69.
DOI:10.1126/science.1219240 |
|
[21] |
Fu W, O'Connor TD, Jun G, et al.
Analysis of 6515 exomes reveals the recent origin of most human protein-coding variants[J]. Nature, 2013, 493(7431): 216–220.
DOI:10.1038/nature11690 |
|
[22] |
The UK10K Consortium.
The UK10K project identifies rare variants in health and disease[J]. Nature, 2015, 526(7571): 82–90.
DOI:10.1038/nature14962 |
|
[23] |
Johansen CT, Wang J, Lanktree MB, et al.
Excess of rare variants in genes identified by genome-wide association study of hypertriglyceridemia[J]. Nat Genet, 2010, 42(8): 684–687.
DOI:10.1038/ng.628 |
|
[24] |
Rivas MA, Beaun M, Gardet A, et al.
Deep resequencing of GWAS loci identifies independent rare variants associated with inflammatory bowel disease[J]. Nat Genet, 2011, 43(11): 1066–1073.
DOI:10.1038/ng.952 |
|
[25] |
Voight BF, Kang HM, Ding J, et al.
The metabochip, a custom genotyping array for genetic studies of metabolic, cardiovascular, and anthropometric traits[J]. PLoS Genet, 2012, 8(8): e1002793.
DOI:10.1371/journal.pgen.1002793 |
|
[26] |
Cortes A, Brown MA.
Promise and pitfalls of the Immunochip[J]. Arthritis Res Ther, 2011, 13(1): 101.
DOI:10.1186/ar3204 |
|
[27] |
Permuth JB, Pirie A, Ann Chen Y, et al.
Exome genotyping arrays to identify rare and low frequency variants associated with epithelial ovarian cancer risk[J]. Hum Mol Genet, 2016, 25(16): 3600–3612.
DOI:10.1093/hmg/ddw196 |
|
[28] |
Grove ML, Yu B, Cochran BJ, et al.
Best practices and joint calling of the HumanExome BeadChip:The CHARGE Consortium[J]. PLoS One, 2013, 8(7): e68095.
DOI:10.1371/journal.pone.0068095 |
|
[29] |
Emond MJ, Louie T, Emerson J, et al.
Exome sequencing of phenotypic extremes identifies CAV2 and TMC6 as interacting modifiers of chronic pseudomonas aeruginosa infection in cystic fibrosis[J]. PLoS Genet, 2015, 11(6): e1005424.
DOI:10.1371/journal.pgen.1005424 |
|
[30] |
Lee S, Abecasis GR, Boehnke M, et al.
Rare-variant association analysis:study designs and statistical tests[J]. Am J Hum Genet, 2014, 95(1): 5–23.
DOI:10.1016/j.ajhg.2014.06.009 |
|
[31] |
Morgenthaler S, Thilly WG.
A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases:a cohort allelic sums test (CAST)[J]. Mutat Res, 2007, 615(1-2): 28–56.
DOI:10.1016/j.mrfmmm.2006.09.003 |
|
[32] |
Nicolae DL.
Association tests for rare variants[J]. Annu Rev Genomics Hum Genet, 2016, 17: 117–130.
DOI:10.1146/annurev-genom-083115-022609 |
|
[33] |
Price AL, Kryukov GV, de Bakker PIW, et al.
Pooled association tests for rare variants in exon-resequencing studies[J]. Am J Hum Genet, 2010, 86(6): 832–838.
DOI:10.1016/j.ajhg.2010.04.005 |
|
[34] |
Lange LA, Hu YN, Zhang H, et al.
Whole-exome sequencing identifies rare and low-frequency coding variants associated with LDL cholesterol[J]. Am J Hum Genet, 2014, 94(2): 233–245.
DOI:10.1016/j.ajhg.2014.01.010 |
|
[35] |
Victor RG, Haley RW, Willett DL, et al.
The Dallas heart study:a population-based probability sample for the multidisciplinary study of ethnic differences in cardiovascular health[J]. Am J Cardiol, 2004, 93(12): 1473–1480.
DOI:10.1016/j.amjcard.2004.02.058 |
|
[36] |
Liu DJ, Leal SM.
A novel adaptive method for the analysis of next-generation sequencing data to detect complex trait associations with rare variants due to gene main effects and interactions[J]. PLoS Genet, 2010, 6(10): e1001156.
DOI:10.1371/journal.pgen.1001156 |
|
[37] |
Firmann M, Mayor V, Vidal PM, et al.
The CoLaus study:a population-based study to investigate the epidemiology and genetic determinants of cardiovascular risk factors and metabolic syndrome[J]. BMC Cardiovasc Disord, 2008, 8: 6.
DOI:10.1186/1471-2261-8-6 |
|
[38] |
Lin DY, Tang ZZ.
A general framework for detecting disease associations with rare variants in sequencing studies[J]. Am J Hum Genet, 2011, 89(3): 354–367.
DOI:10.1016/j.ajhg.2011.07.015 |
|
[39] |
Han F, Pan W.
A data-adaptive sum test for disease association with multiple common or rare variants[J]. Hum Hered, 2010, 70(1): 42–54.
DOI:10.1159/000288704 |
|
[40] |
Hoffmann TJ, Marini NJ, Witte JS.
Comprehensive approach to analyzing rare genetic variants[J]. PLoS One, 2010, 5(11): e13584.
DOI:10.1371/journal.pone.0013584 |
|
[41] |
Ionita-Laza I, Buxbaum JD, Laird NM, et al.
A new testing strategy to identify rare variants with either risk or protective effect on disease[J]. PLoS Genet, 2011, 7(2): e1001289.
DOI:10.1371/journal.pgen.1001289 |
|
[42] |
Neale BM, Rivas MA, Voight BF, et al.
Testing for an unusual distribution of rare variants[J]. PLoS Genet, 2011, 7(3): e1001322.
DOI:10.1371/journal.pgen.1001322 |
|
[43] |
Wu MC, Kraft P, Epstein MP, et al.
Powerful SNP-set analysis for case-control genome-wide association studies[J]. Am J Hum Genet, 2010, 86(6): 929–942.
DOI:10.1016/j.ajhg.2010.05.002 |
|
[44] |
Wu MC, Lee S, Cai TX, et al.
Rare-variant association testing for sequencing data with the sequence kernel association test[J]. Am J Hum Genet, 2011, 89(1): 82–93.
DOI:10.1016/j.ajhg.2011.05.029 |
|
[45] |
Pan W.
Asymptotic tests of association with multiple SNPs in linkage disequilibrium[J]. Genet Epidemiol, 2009, 33(6): 497–507.
DOI:10.1002/gepi.20402 |
|
[46] |
Faino A, Powell A, Williams A, et al.
Identifying rare variants associated with hypertension using the C-alpha test[J]. BMC Proc, 2014, 8(S1): S56.
DOI:10.1186/1753-6561-8-S1-S56 |
|
[47] |
Duchesne P, De Micheaux PL.
Computing the distribution of quadratic forms:Further comparisons between the Liu-Tang-Zhang approximation and exact methods[J]. Comput Stat Data an, 2010, 54(4): 858–862.
DOI:10.1016/j.csda.2009.11.025 |
|
[48] |
Hirota K, Akagawa H, Onda H, et al.
Association of Rare Nonsynonymous Variants in PKD1 and PKD2 with Familial Intracranial Aneurysms in a Japanese Population[J]. J Stroke Cerebrovasc Dis, 2016, 25(12): 2900–2906.
DOI:10.1016/j.jstrokecerebrovasdis.2016.08.002 |
|
[49] |
Hasegawa T, Kojima K, Kawai Y, et al.
AP-SKAT:highly-efficient genome-wide rare variant association test[J]. Bmc Genomics, 2016, 17(1): 745.
DOI:10.1186/s12864-016-3094-3 |
|
[50] |
Ll W, Li L, Nelson MR, et al.
Deep resequencing unveils genetic architecture of ADIPOQ and identifies a novel low-frequency variant strongly associated with adiponectin variation[J]. Diabetes, 2012, 61(5): 1297–1301.
DOI:10.2337/db11-0985 |
|
[51] |
Lin XY, Lee S, Wu MC, et al.
Test for Rare Variants by Environment Interactions in Sequencing Association Studies[J]. Biometrics, 2016, 72(1): 156–164.
DOI:10.1111/biom.12368 |
|
[52] |
阮培峰.
家系数据中罕见基因变异与疾病关联分析的统计方法[J]. 复旦学报:医学版, 2016, 43(2): 226–230.
Ruan PF.
A statistical method for rare variants association studies in pedigree data[J]. Fudan Univ J Med Sci, 2016, 43(2): 226–230.
DOI:10.3969/j.issn.1672-8467.2016.02.018 |
|
[53] |
Derkach A, Lawless JF, Sun L.
Robust and powerful tests for rare variants using Fisher's method to combine evidence of association from two or more complementary tests[J]. Genet Epidemiol, 2013, 37(1): 110–121.
DOI:10.1002/gepi.21689 |
|
[54] |
Fisher RA.Statistical methods for research workers[M]. London: Oliver and Boyd, 1925: 66–70.
|
|
[55] |
Lee S, Wu MC, Lin XH, et al.
Optimal tests for rare variant effects in sequencing association studies[J]. Biostatistics, 2012, 13(4): 762–775.
DOI:10.1093/biostatistics/kxs014 |
|
[56] |
Lee S, Emond MJ, Bamshad MJ, et al.
Optimal unified approach for rare-variant association testing with application to small-sample case-control whole-exome sequencing studies[J]. Am J Hum Genet, 2012, 91(2): 224–237.
DOI:10.1016/j.ajhg.2012.06.007 |
|
[57] |
Lin PL, Tsai WY, Chung RH.
A combined association test for rare variants using family and case-control data[J]. BMC Proc, 2016, 10(S7): 215–219.
DOI:10.1186/s12919-016-0033-x |
|
[58] |
Pan W, Kim J, Zhang YW, et al.
A powerful and adaptive association test for rare variants[J]. Genetics, 2014, 197(4): 1081–1095.
DOI:10.1534/genetics.114.165035 |
|
[59] |
Wei P, Cao Y, Zhang YW, et al.
On Robust Association Testing for Quantitative Traits and Rare Variants[J]. G3(Bethesda), 2016, 6(12): 3941–3950.
DOI:10.1534/g3.116.035485 |
|
[60] |
Chen LS, Li H, Gamazon ER, et al.
An exponential combination procedure for set-based association tests in sequencing studies[J]. Am J Hum Genet, 2012, 91(6): 977–986.
DOI:10.1016/j.ajhg.2012.09.017 |
|
[61] |
Lek M, Karczewski KJ, Minikel EV, et al.
Analysis of protein-coding genetic variation in 60706 humans[J]. Nature, 2016, 536(7616): 285–291.
DOI:10.1038/nature19057 |
|