«上一篇
文章快速检索     高级检索
下一篇»
  应用科技  2021, Vol. 48 Issue (6): 58-62, 78  DOI: 10.11991/yykj.201912024
0

引用本文  

任祯琴, 李静, 李德光. 广义离散时间系统的P-D反馈控制器设计[J]. 应用科技, 2021, 48(6): 58-62, 78. DOI: 10.11991/yykj.201912024.
REN Zhenqin, LI Jing, LI Deguang. The design of P-D feedback controller for descriptor discrete time systems[J]. Applied Science and Technology, 2021, 48(6): 58-62, 78. DOI: 10.11991/yykj.201912024.

基金项目

国家自然科学基金青年基金项目(61802162);博士科研启动基金项目(300101/170141051195)

通信作者

任祯琴,E-mail:zqren_1983@163.com

作者简介

任祯琴,女,讲师,博士

文章历史

收稿日期:2019-12-24
网络出版日期:2021-10-08
广义离散时间系统的P-D反馈控制器设计
任祯琴, 李静, 李德光    
洛阳师范学院 信息技术学院,河南 洛阳 471934
摘要:针对广义离散时间系统的比例–微分(P-D)反馈控制器的设计问题,本文提出了一种更为简单的方法,使得广义闭环系统正则化,更具因果性、稳定性和容许性。通过线性变换将原系统转化成为正常系统,采用控制理论和变量替换法将双线性不等式转化为严格的线性矩阵不等式(LMI)。基于这种方法,得到广义闭环系统容许性的LMI条件和P-D反馈控制器,最后通过仿真说明该方法的正确性和有效性。
关键词广义离散时间系统    P-D反馈控制器    容许性    线性矩阵不等式    正则性    因果性    
The design of P-D feedback controller for descriptor discrete time systems
REN Zhenqin, LI Jing, LI Deguang    
School of Information Technology, Luoyang Normal University, Luoyang 471934, China
Abstract: In this paper, the design of the proportional and derivative (P-D) feedback controller for descriptor discrete time systems is studied. A simpler method is proposed to regularize the generalized closed-loop system, which is more causal, stable and admissible. The original system is transformed into a normal system by using the linear transformation, and the bilinear inequality is transformed into a strict linear matrix inequality (LMI) by the control theory and variable substitution method. Based on this method, the LMI conditions and P-D feedback controller of the descriptor closed-loop system admissibility are obtained. The simulation experiment shows that the method is correct and effective.
Keywords: descriptor discrete time systems    P-D feedback controller    admissibility    linear matrix inequality    regularity    causality    

广义系统是比正常系统更一般的动力系统,有着广泛的应用背景。广义系统大量出现在电力系统、能源系统、经济系统、宇航系统和化学过程等描述中[1-4],这是因为实际应用中,广义系统较一般系统可以用来描述系统更多的性能特征。随着科学研究的深入,广义系统被学术界广泛关注,广义离散时间系统理论已有了丰富的研究成果[5-7]

对于正常系统,反馈控制的研究已经趋于完善。但对于广义系统来说,脉冲的存在可能引起系统不能正常运行甚至导致系统的损坏,这就需要所设计的控制器不仅要保证闭环系统是稳定的,而且是要正则化和因果的(连续系统无脉冲),即容许性。而P-D反馈控制在这方面发挥了很大的作用,它是消除脉冲的一个很有效途径,相关研究已取得了一些成果[8-14]。但由于P-D反馈控制器在实际处理时的负面影响,很难使闭环系统达到稳定。然而随着先进的生产设备和计算机的迅速发展,大大降低了这种负面影响,使得P-D反馈具有很高的理论意义和工程实际应用价值。

本文针对广义离散系统设计出一种简单的P-D反馈控制器,突破了文献[13]中输出反馈控制器的局限性,使闭环系统更容易达到稳定,并消除了脉冲。

1 预备知识及问题描述

考虑如下的广义离散时间系统:

$ {\boldsymbol{Ex}}\left( {k + 1} \right) = {\boldsymbol{Ax}}\left( k \right) + {\boldsymbol{Bu}}(k) $ (1)

式中: $ {\boldsymbol{x}}(k) \in {{\boldsymbol{R}}^n} $ 为状态向量; $ {\boldsymbol{u}}(k) \in {{\boldsymbol{R}}^r} $ 为输入向量; $ {\boldsymbol{E}} $ $ {\boldsymbol{A}} $ ${\boldsymbol{B}}$ 为具有适当维数的常数矩阵; $ {\boldsymbol{E }}$ 为奇异矩阵,满足 $ {\text{rank(}}{\boldsymbol{E}}{\text{)}} < n $

定义1[15]  若存在复数 $ {s_0} $ ,使得 $ \det ({s_0}{\boldsymbol{E}} - {\boldsymbol{A}}) \ne 0 $ ,那么称式(1) 广义离散时间系统是正则的。

本文假定广义离散时间系统是正则且能稳定的。

定义2[15]  若对任意复数 $ z $ 满足 $ \deg \det (z{\boldsymbol{E}} - {\boldsymbol{A}}) = $ $ {\text{rank}}({\boldsymbol{E}}) $ ,则称广义离散系统是因果的。

定义3[15]  如果式(1)正则广义离散时间系统是因果且稳定的,则称系统是容许的。

定义4[15]  如果存在P-D反馈,使闭环系统成为正常系统,则称广义离散系统是能正常化的。

下面给出本文需要用到的相关引理。

引理1[15]  式(1)广义离散系统是容许的充要条件为:存在对称矩阵 $ {\boldsymbol{X}} \in {{\boldsymbol{R}}^{n \times n}} $ 满足如下广义Lyapunov不等式:

$ \left\{ \begin{gathered} {{\boldsymbol{E}}^{\text{T}}}{\boldsymbol{XE}} \geqslant 0 \hfill \\ {{\boldsymbol{A}}^{\text{T}}}{\boldsymbol{XA}} - {{\boldsymbol{E}}^{\text{T}}}{\boldsymbol{XE}} < 0 \hfill \\ \end{gathered} \right. $

引理2[16]  对于正常系统 $ {\boldsymbol{x}}(k + 1) = {\boldsymbol{Ax}}(k) + {\boldsymbol{Bu}}(k) $ ,设性能指标函数为

$ {\boldsymbol{J}} = \sum\limits_{k = 0}^\infty {\left[ {{{\boldsymbol{x}}^{\text{T}}}(k){\boldsymbol{Qx}}(k) + {{\boldsymbol{u}}^{\text{T}}}(k){\boldsymbol{Ru}}(k)} \right]} $

式中: $ {\boldsymbol{Q}} $ 为对称半正定矩阵, $ {\boldsymbol{R}} $ 为对称正定矩阵。系统满足 $ \left[ {\begin{array}{*{20}{c}} {\boldsymbol A}&{\boldsymbol B} \end{array}} \right] $ 能稳定, $ \left[ {\begin{array}{*{20}{c}} {\boldsymbol A}&{{{\boldsymbol Q}^{1/2}}} \end{array}} \right] $ 能检测,则最优状态反馈控制器为

$ {\boldsymbol{u}}(k) = - {\left( {{\boldsymbol{R}} + {{\boldsymbol{B}}^{\text{T}}}{\boldsymbol{PB}}} \right)^{ - 1}}{{\boldsymbol{B}}^{\text{T}}}{\boldsymbol{PAx}}(k) $

其中 ${\boldsymbol{ P}} $ 为黎卡提方程

$ {\boldsymbol{P}} = {\boldsymbol{Q}} + {{\boldsymbol{A}}^{\text{T}}}{\boldsymbol{PA}} - {{\boldsymbol{A}}^{\text{T}}}{\boldsymbol{PB}}{\left( {{\boldsymbol{R}} + {{\boldsymbol{B}}^{\text{T}}}{\boldsymbol{PB}}} \right)^{ - 1}}{{\boldsymbol{B}}^{\text{T}}}{\boldsymbol{PA}} $

的对称半正定解.

引理3[15]  式(1)广义离散系统是因果的充要条件为

$ {\text{rank}}\left[ {\begin{array}{*{20}{c}} {\boldsymbol{E}}&0 \\ {\boldsymbol{A}}&{\boldsymbol{E}} \end{array}} \right] = n + {\text{rank}}({\boldsymbol{E}}) $

引理4[15]  式(1)广义离散系统是稳定的充要条件为:它的有限极点集合 $ \sigma \left( {{\boldsymbol{E,A}}} \right) $ 是在复平面的单位圆内(用 $ \Omega \left( {0,1} \right) $ 表示)。

引理5[15]  式(1)广义离散系统能稳定的充要条件为

$ {\text{rank}}\left[ {\begin{array}{*{20}{c}} {s{\boldsymbol{E}} - {\boldsymbol{A}}}&{\boldsymbol{B}} \end{array}} \right] = n,\quad \forall s \in C,\left| s \right| \geqslant 1 $

引理6[15]  P-D反馈保持了广义系统的能稳定性。

为了研究的需要,我们要对系统进行正常化的分解。所谓正常化分解,就是通过线性变换将原系统分解为2个子系统,其中1个子系统是能正常化的,即转化为正常系统,具体过程如下。

考虑式(1)广义离散系统:

1)若系统是正则的,则一定存在非奇异矩阵 $ {{\boldsymbol{Q}}_1} $ $ {{\boldsymbol{P}}_1} $ ,使得

$ \left\{ \begin{gathered} {{\boldsymbol{Q}}_1}{\boldsymbol{E}}{{\boldsymbol{P}}_1} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{I}}_q}}&{} \\ {}&{\boldsymbol{N}} \end{array}} \right] \hfill \\ {{\boldsymbol{Q}}_1}{\boldsymbol{A}}{{\boldsymbol{P}}_1} = \left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{A}}}_1}}&{} \\ {}&{{{\boldsymbol{I}}_{n - q}}} \end{array}} \right] \hfill \\ {{\boldsymbol{Q}}_1}{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{B}}}_1}} \\ {{{\tilde {\boldsymbol{B}}}_2}} \end{array}} \right] \hfill \\ {\boldsymbol{x}}\left( k \right) = {{\boldsymbol{P}}_1}\left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{x}}}_1}(k)} \\ {{{\tilde {\boldsymbol{x}}}_2}(k)} \end{array}} \right] \hfill \\ \end{gathered} \right. $

式中: $ {\boldsymbol{N}} $ 为幂零矩阵, $ {\tilde {\boldsymbol{x}}_1}(k) \in {{\boldsymbol{R}}^q},{\tilde {\boldsymbol{x}}_2}(k) \in {{\boldsymbol{R}}^{n - q}} $ 。那么,式(1)广义离散系统将改写为

$ \left\{ \begin{gathered} {{\tilde {\boldsymbol{x}}}_1}(k + 1) = {{\tilde {\boldsymbol{A}}}_1}{{\tilde {\boldsymbol{x}}}_1}(k) + {{\tilde {\boldsymbol{B}}}_1}{\boldsymbol{u}}(k) \hfill \\ N{{\tilde {\boldsymbol{x}}}_2}(k + 1) = {{\tilde {\boldsymbol{x}}}_2}(k) + {{\tilde {\boldsymbol{B}}}_2}{\boldsymbol{u}}(k) \hfill \\ \end{gathered} \right. $ (2)

2)对式(2)中的 $ {\boldsymbol{N}}{\tilde {\boldsymbol{x}}_2}(k + 1) = {\tilde {\boldsymbol{x}}_2}(k) + {\tilde {\boldsymbol{B}}_2}{\boldsymbol{u}}(k) $ 进行能控性分解,即存在非奇异矩阵T,使得

$ \left\{ \begin{gathered} {\boldsymbol{TN}}{{\boldsymbol{T}}^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{N}}_{11}}}&{{{\boldsymbol{N}}_{12}}} \\ 0&{{{\boldsymbol{N}}_{22}}} \end{array}} \right] \hfill \\ {\boldsymbol{T}}{{\tilde {\boldsymbol{B}}}_2} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_{21}}} \\ 0 \end{array}} \right] \hfill \\ {{\tilde {\boldsymbol{x}}}_2}\left( k \right) = {{\boldsymbol{T}}^{ - 1}}\left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{x}}}_{21}}\left( k \right)} \\ {{{\tilde {\boldsymbol{x}}}_{22}}\left( k \right)} \end{array}} \right] \hfill \\ \end{gathered} \right. $

式中: $ {{\boldsymbol{N}}_{11}} $ $ {{\boldsymbol{B}}_{21}} $ 是能控的; $ {{\boldsymbol{N}}_{11}} $ $ {{\boldsymbol{N}}_{22}} $ 均是幂零矩阵,且 $ {\tilde {\boldsymbol{x}}_{21}}\left( k \right) \in {{\boldsymbol{R}}^{{r_1}}},{\tilde {\boldsymbol{x}}_{22}}\left( k \right) \in {{\boldsymbol{R}}^{{r_2}}},{r_1} + {r_2} = n - q $ ${\tilde {\boldsymbol{x}}_1}(k) \in {{\boldsymbol{R}}^q}, $ $ {\tilde {\boldsymbol{x}}_2}(k) \in {{\boldsymbol{R}}^{n - q}} $

则式(2)改写为

$ \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{N}}_{11}}}&{{{\boldsymbol{N}}_{12}}} \\ 0&{{{\boldsymbol{N}}_{22}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{x}}}_{21}}\left( {k + 1} \right)} \\ {{{\tilde {\boldsymbol{x}}}_{22}}\left( {k + 1} \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{x}}}_{21}}\left( k \right)} \\ {{{\tilde {\boldsymbol{x}}}_{22}}\left( k \right)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_{21}}} \\ 0 \end{array}} \right]{\boldsymbol{u}}\left( k \right) $ (3)

${{\boldsymbol x}_1}\left( k \right) = {\left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol x}}_1}^{\text{T}}\left( k \right)}&{{{\tilde {\boldsymbol x}}_{21}}^{\text{T}}\left( k \right)} \end{array}} \right]^{\text{T}}}$ $ {{\boldsymbol x}_2}\left( k \right) = {\tilde {\boldsymbol x}_{22}}\left( k \right) $ $ {\boldsymbol Q} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol I}_q}}&{} \\ {}&{\boldsymbol T} \end{array}} \right],{\boldsymbol P} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol I}_q}}&{} \\ {}&{{{\boldsymbol T}^{ - 1}}} \end{array}} \right] $ ,则

$ \left\{ \begin{gathered} {\boldsymbol{QEP}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{E}}_{11}}}&{{{\boldsymbol{E}}_{12}}} \\ 0&{{{\boldsymbol{E}}_{22}}} \end{array}} \right] \hfill \\ {\boldsymbol{QAP}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{A}}_1}}&{} \\ {}&{\boldsymbol{I}} \end{array}} \right] \hfill \\ {\boldsymbol{QB}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_1}} \\ 0 \end{array}} \right] \hfill \\ \end{gathered} \right. $

式(2)可改写为

$ \begin{split} \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{E}}_{11}}}&{{{\boldsymbol{E}}_{12}}} \\ 0&{{{\boldsymbol{E}}_{22}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{x}}_1}(k + 1)} \\ {{{\boldsymbol{x}}_2}(k + 1)} \end{array}} \right] =\quad\;\\ \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{A}}_1}}&{} \\ {}&{\boldsymbol{I}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{x}}_1}(k)} \\ {{{\boldsymbol{x}}_2}(k)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_1}} \\ 0 \end{array}} \right]{\boldsymbol{u}}(k) \end{split} $

$ \left\{ \begin{gathered} {{\boldsymbol{E}}_{11}}{{\boldsymbol{x}}_1}(k + 1) + {{\boldsymbol{E}}_{12}}{{\boldsymbol{x}}_2}(k + 1) = {{\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}(k) + {{\boldsymbol{B}}_1}{\boldsymbol{u}}(k) \hfill \\ {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}(k + 1) = {{\boldsymbol{x}}_2}(k) \hfill \\ \end{gathered} \right. $ (4)

式中: ${{\boldsymbol{E}}_{11}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{I}}_q}}&{} \\ {}&{{{\boldsymbol{N}}_{11}}} \end{array}} \right]$ ${{\boldsymbol{E}}_{12}} = \left[ {\begin{array}{*{20}{c}} 0 \\ {{{\boldsymbol{N}}_{12}}} \end{array}} \right]$ ${{\boldsymbol{E}}_{22}} = {{\boldsymbol{N}}_{22}}$ ${{\boldsymbol{A}}_1} = \left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{A}}}_1}}&{} \\ {}&{{{\boldsymbol{I}}_{{r_1}}}} \end{array}} \right]$ ${{\boldsymbol{B}}_1} = \left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{B}}}_1}} \\ {{{\boldsymbol{B}}_{21}}} \end{array}} \right]$

正文中已经得到 $ {x_2}\left( k \right) = 0 $ ,则式(4)可改写为

$ {{\boldsymbol{E}}_{11}}{{\boldsymbol{x}}_1}\left( {k + 1} \right) = {{\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}\left( k \right) + {{\boldsymbol{B}}_1}{\boldsymbol{u}}\left( k \right) $ (5)

下面证明若原式(1)广义离散系统是能稳定的,则式(5)是能稳定的。由引理5,我们只需证明 $\forall s \in C,\left| s \right| \geqslant 1$ $ \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol E}_{11}} - {{\boldsymbol A}_1}}&{{{\boldsymbol B}_1}} \end{array}} \right] $ 行满秩,其中

$ \begin{gathered} \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{E}}_{11}} - {{\boldsymbol{A}}_1}}&{{{\boldsymbol{B}}_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&0&{{{\tilde {\boldsymbol{B}}}_1}} \\ 0&{s{{\boldsymbol{N}}_{11}} - {{\boldsymbol{I}}_{{r_1}}}}&{{{\boldsymbol{B}}_{21}}} \end{array}} \right] = \\ \left[ {\begin{array}{*{20}{c}} 0&{s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&{{{\tilde {\boldsymbol{B}}}_1}} \\ {s{{\boldsymbol{N}}_{11}} - {{\boldsymbol{I}}_{{r_1}}}}&0&{{{\boldsymbol{B}}_{21}}} \end{array}} \right] = \\ \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{N}}_{11}} - {{\boldsymbol{I}}_{{r_1}}}}&0&{{{\boldsymbol{B}}_{21}}} \\ 0&{s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&{{{\tilde {\boldsymbol{B}}}_1}} \end{array}} \right] \\ \end{gathered} $

首先 $ {{\boldsymbol{N}}_{11}} $ 是幂零矩阵,则 $ s{{\boldsymbol{N}}_{11}} - {{\boldsymbol{I}}_{{r_1}}} $ 是行满秩的;原系统是能稳定的,则

$ \begin{gathered} \left[ {\begin{array}{*{20}{c}} {s{\boldsymbol{E}} - {\boldsymbol{A}}}&{\boldsymbol{B}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{Q}}_1}{\boldsymbol{E}}{{\boldsymbol{P}}_1} - {{\boldsymbol{Q}}_1}{\boldsymbol{A}}{{\boldsymbol{P}}_1}}&{{{\boldsymbol{Q}}_1}{\boldsymbol{B}}} \end{array}} \right] = \\ \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&0&{{{\tilde {\boldsymbol{B}}}_1}} \\ 0&{s{\boldsymbol{N}} - {{\boldsymbol{I}}_{n - q}}}&{{{\tilde {\boldsymbol{B}}}_2}} \end{array}} \right] \\ \end{gathered} $

行满秩且有 $ {\boldsymbol{N}} $ 为幂零矩阵,则 $\left[ {\begin{array}{*{20}{c}} {s{\boldsymbol{N}} - {{\boldsymbol{I}}_{n - q}}}&{{{\tilde {\boldsymbol{B}}}_2}} \end{array}} \right]$ 行满秩,所以得到 $\left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&{{{\tilde {\boldsymbol{B}}}_1}} \end{array}} \right]$ 是行满秩的。

综上, $ \forall s \in C,\left| s \right| \geqslant 1 $ $\left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{E}}_{11}} - {{\boldsymbol{A}}_1}}&{{{\boldsymbol{B}}_1}} \end{array}} \right]$ 行满秩,式(5)是能稳定的,得证。

将式(1)广义离散系统进行正常化分解得

$ \left\{ \begin{gathered} {{\boldsymbol{E}}_{11}}{{\boldsymbol{x}}_1}\left( {k + 1} \right) + {{\boldsymbol{E}}_{12}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) = {{\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}\left( k \right) + {{\boldsymbol{B}}_1}{\boldsymbol{u}}\left( k \right) \hfill \\ {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) = {{\boldsymbol{x}}_2}\left( k \right) \hfill \\ \end{gathered} \right. $ (6)

式中: ${\boldsymbol{QEP}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{E}}_{11}}}&{{{\boldsymbol{E}}_{12}}} \\ 0&{{{\boldsymbol{E}}_{22}}} \end{array}} \right]$ ${\boldsymbol{QAP}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{A}}_1}}&0 \\ 0&{\boldsymbol{I}} \end{array}} \right]$ ${\boldsymbol{QB}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_1}} \\ 0 \end{array}} \right]$ ${{\boldsymbol{P}}^{ - 1}}{\boldsymbol{x}}\left( k \right) = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{x}}_1}\left( k \right)} \\ {{{\boldsymbol{x}}_2}\left( k \right)} \end{array}} \right]$ $\left( {{{\boldsymbol{E}}_{11}},{{\boldsymbol{A}}_1},{{\boldsymbol{B}}_1}} \right)$ 是能稳定且能正常化的; $ {{\boldsymbol{E}}_{22}} $ 是幂零矩阵,满足 $ {{\boldsymbol{E}}_{22}}^{h - 1} \ne 0 $ $ {{\boldsymbol{E}}_{22}}^h = 0 $ ,即幂零指数为h;而且 $ {{\boldsymbol{x}}_1}\left( k \right) \in {{\boldsymbol{R}}^{{n_1}}} $ $ {{\boldsymbol{x}}_2}\left( k \right) \in {{\boldsymbol{R}}^{{n_2}}} $ $ {n_1} + {n_2} = n $

由式(6)中 $ {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) = {{\boldsymbol{x}}_2}\left( k \right) $ 得:

$ \left\{ \begin{aligned} & {{\boldsymbol{x}}_2}\left( k \right) = {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) \\ & {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) = {{\boldsymbol{E}}_{22}}^2{{\boldsymbol{x}}_2}\left( {k + 2} \right) \\ & {{\boldsymbol{E}}_{22}}^2{{\boldsymbol{x}}_2}\left( {k + 2} \right) = {{\boldsymbol{E}}_{22}}^3{{\boldsymbol{x}}_2}\left( {k + 3} \right) \\ & \qquad\quad \vdots \\ & {{\boldsymbol{E}}_{22}}^{h - 1}{{\boldsymbol{x}}_2}\left( {k + h - 1} \right) = {{\boldsymbol{E}}_{22}}^h{{\boldsymbol{x}}_2}\left( {k + h} \right) \end{aligned} \right. $ (7)

将式(7)左右分别相加并相消得:

$ {{\boldsymbol{x}}_2}\left( k \right) = {{\boldsymbol{E}}_{22}}^h{{\boldsymbol{x}}_2}\left( {k + h} \right) = 0 $

所以式(6)可改写为

$ {{\boldsymbol{E}}_{11}}{{\boldsymbol{x}}_1}(k + 1) = {{\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}(k) + {{\boldsymbol{B}}_1}{\boldsymbol{u}}(k) $ (8)

由于式(8)是能正常化的,则一定存在P-D反馈:

$ {\boldsymbol{u}}(k) = {{\boldsymbol{K}}_1}{{\boldsymbol{x}}_1}(k) - {{\boldsymbol{K}}_2}{{\boldsymbol{x}}_1}(k + 1) + {\boldsymbol{v}}(k) $ (9)

使得闭环系统

$ \left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right){{\boldsymbol{x}}_1}(k + 1) = \left( {{{\boldsymbol{A}}_1} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1}} \right){{\boldsymbol{x}}_1}(k) + {{\boldsymbol{B}}_1}{\boldsymbol{v}}(k) $ (10)

成为正常系统。

我们选择一个合适的 $ {K_2} $ 使得

$ \det \left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right) \ne 0 $
2 P-D反馈控制器的设计

本文的主要研究工作是设计一个P-D反馈控制器,使得闭环系统是容许的。首先对原系统进行正常化分解,得到的子系统是能正常化的。在此基础上,设计了一个P-D反馈控制器。为了获得控制器存在的充分条件,有如下定理。

定理 1  对于式(8),若存在P-D反馈控制器式(9),使得闭环系统式(10)是容许的,条件是存在一个对称正定矩阵Y,合适维数的矩阵Z满足线性矩阵不等式(11):

$ \left[ {\begin{array}{*{20}{c}} {\boldsymbol{M}}&{{{\boldsymbol{Z}}^{\text{T}}}} \\ {\boldsymbol{Z}}&{ - {\boldsymbol{Y}}} \end{array}} \right] < 0 $ (11)

式中:

$ \begin{array}{*{20}{c}} & {\boldsymbol{M}} = {{\boldsymbol{A}}_1}^T{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^T{\boldsymbol{Z}} + {{\boldsymbol{Z}}^T}{{\boldsymbol{A}}_1} - {{\boldsymbol{E}}_{11}}^T{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - \hfill \\ & {{\boldsymbol{E}}_{11}}^T{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - {{\boldsymbol{K}}_2}^T{{\boldsymbol{B}}_1}^T{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^T{{\boldsymbol{B}}_1}^T{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} \hfill \\ & {\boldsymbol{Z}} = {\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} \end{array} $

证明: 由于 $ \det \left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right) \ne 0 $ ,则 $ {{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} $ 可逆,显然满足引理1中的 $ {{\boldsymbol{E}}^{\text{T}}}{\boldsymbol{XE}} \geqslant 0 $ ,即 $ {\left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right)^{\text{T}}} $ $ {\boldsymbol{Y}}\left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right) \geqslant 0 $ ,又有

$ \begin{array}{c} {\left( {{{\boldsymbol{A}}_1} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1}} \right)^{\text{T}}}{\boldsymbol{Y}}\left( {{{\boldsymbol{A}}_1} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1}} \right) - \\ {\left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right)^{\text{T}}}{\boldsymbol{Y}}\left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right) = \\ {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} + {{\boldsymbol{K}}_1}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + \\ {{\boldsymbol{K}}_1}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - \\ {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} < 0 \end{array} $ (12)

$ {\boldsymbol{Z}} = {\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} $ (13)

式(12)将改写为

$ \begin{array}{c} {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Z}} + {{\boldsymbol{Z}}^{\text{T}}}{{\boldsymbol{A}}_1} + {{\boldsymbol{Z}}^{\text{T}}}{{\boldsymbol{Y}}^{ - 1}}{\boldsymbol{Z}} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - \hfill \\ {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} < 0 \hfill \\ \end{array} $ (14)

利用schur补引理[16],我们可以将式(14)转化为线性矩阵不等式(11),其中:

$ \begin{array}{c} {\boldsymbol{M}} = {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Z}} + {{\boldsymbol{Z}}^{\text{T}}}{{\boldsymbol{A}}_1} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - \hfill \\ {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} \end{array} $

证毕。

通过Matlab求解式(11),可以求得YZ的值[17]

接下来利用式(13)和YZ的值来求得 $ {{\boldsymbol{K}}_1} $ 的值,这就需要利用广义逆的理论[18]

由式(13)可得

$ {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} = {{\boldsymbol{Y}}^{ - 1}}{\boldsymbol{Z}} $ (15)

下面我们利用广义逆的知识来求得 $ {{\boldsymbol{K}}_1} $ 的值,先将 $ {{\boldsymbol{B}}_1} $ 进行满秩分解,记为 $ {{\boldsymbol{B}}_1} = {\boldsymbol{MN}} $ ,其中 $ {\boldsymbol{M}} $ 列满秩, $ {\boldsymbol{N}} $ 行满秩。若式(15)有解,则 ${{\boldsymbol{K}}_1} = {{\boldsymbol{N}}^{\text{T}}}{\left( {{\boldsymbol{N}}{{\boldsymbol{N}}^{\text{T}}}} \right)^{ - 1}} $ $ {\left( {{{\boldsymbol{M}}^{\text{T}}}{\boldsymbol{M}}} \right)^{ - 1}}{{\boldsymbol{M}}^{\text{T}}}{{\boldsymbol{Y}}^{ - 1}}{\boldsymbol{Z}}$ 是式(14)的极小范数解;若式(15)无解,则 ${{\boldsymbol{K}}_1} = {{\boldsymbol{N}}^{\text{T}}}{\left( {{\boldsymbol{N}}{{\boldsymbol{N}}^{\text{T}}}} \right)^{ - 1}}{\left( {{{\boldsymbol{M}}^{\text{T}}}{\boldsymbol{M}}} \right)^{ - 1}}{{\boldsymbol{M}}^{\text{T}}}{{\boldsymbol{Y}}^{ - 1}}{\boldsymbol{Z}}$ 是式(11)的极小范数最小二乘解,也称最佳逼近解,需要进一步验证式(11)。

对于式(10),我们可以将其变形为正常系统:

$ {{\boldsymbol{x}}_1}\left( {k + 1} \right) = {\bar {\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}\left( k \right) + {\bar {\boldsymbol{B}}_1}{\boldsymbol{v}}\left( k \right) $ (16)

式中: $ {\bar {\boldsymbol{A}}_1} = {\left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right)^{ - 1}}\left( {{{\boldsymbol{A}}_1} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1}} \right) $ $ {\bar {\boldsymbol{B}}_1} = ( {{\boldsymbol{E}}_{11}} + $ $ {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} )^{ - 1}{{\boldsymbol{B}}_1} $

对于式(16),定义性能指标函数为

$ {\boldsymbol{J}} = \sum\limits_{k = 0}^\infty {\left[ {{{\boldsymbol{x}}_1}^{\text{T}}\left( k \right){\boldsymbol{F}}{{\boldsymbol{x}}_1}\left( k \right) + {{\boldsymbol{v}}^{\text{T}}}\left( k \right){\boldsymbol{Gv}}\left( k \right)} \right]} $ (17)

式中: $ {\boldsymbol{F}} $ 为对称半正定矩阵; $ {\boldsymbol{G}} $ 为对称正定矩阵,且满足 $ \left[ {\begin{array}{*{20}{c}} {{{\bar {\boldsymbol A}}_1}}&{{{\boldsymbol F}^{1/2}}} \end{array}} \right] $ 能检测。

再由正常化分解的方法以及引理5和引理6,可以得到式(16)是稳定的。运用引理2,就可以得到式(16)的状态反馈控制器为

$ {\boldsymbol{v}}\left( k \right) = - {\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)^{ - 1}}{\bar {\boldsymbol{B}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}\left( k \right) $ (18)

并使得闭环系统是稳定的。其中 ${{\boldsymbol{P}}_1}$ 是代数黎卡提方程的对称半正定解:

$ {{\boldsymbol{P}}_1} = {\boldsymbol{F}} + {\bar {\boldsymbol{A}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{A}}_1} - {\bar {\boldsymbol{A}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{B}}_1}{\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)^{ - 1}}{\bar {\boldsymbol{B}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{A}}_1} $

由此,将式(18)代入P-D反馈控制器式(9),得到原系统式(1)的P-D反馈控制器为

$ \begin{array}{c} {\boldsymbol{u}}\left( k \right) = {{\boldsymbol{K}}_1}{{\boldsymbol{x}}_1}\left( k \right) - {{\boldsymbol{K}}_2}{{\boldsymbol{x}}_1}\left( {k + 1} \right) - \\ {\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)^{ - 1}}{{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{A}}}_1}{{\boldsymbol{x}}_1}\left( k \right) = \\ \left[ {{{\boldsymbol{K}}_1} - {{\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)}^{ - 1}}{{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{A}}}_1}} \right]{{\boldsymbol{x}}_1}\left( k \right) - {{\boldsymbol{K}}_2}{{\boldsymbol{x}}_1}\left( {k + 1} \right) \end{array} $ (19)

若令 $ {\bar {\boldsymbol{K}}_1} = {{\boldsymbol{K}}_1} - {\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)^{ - 1}}{\bar {\boldsymbol{B}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{A}}_1} $ ,则可以将 $ {\boldsymbol{u}}\left( k \right) $ 简写为

$ \begin{array}{c} {\boldsymbol{u}}\left( k \right) = {{\bar {\boldsymbol{K}}}_1}{{\boldsymbol{x}}_1}\left( k \right) - {{\boldsymbol{K}}_2}{{\boldsymbol{x}}_1}\left( {k + 1} \right) = \\ {{\bar {\boldsymbol{K}}}_1}\left[{{{\boldsymbol{I}}_{{n_1}}}}\quad0 \right]{{\boldsymbol{P}}^{ - 1}}x\left( k \right) - {{\boldsymbol{K}}_2}\left[ {{{\boldsymbol{I}}_{{n_1}}}}\quad0 \right]{{\boldsymbol{P}}^{ - 1}}{\boldsymbol{x}}\left( {k + 1} \right) = \\ {{\hat {\boldsymbol{K}}}_1}{\boldsymbol{x}}\left( k \right) - {{\hat {\boldsymbol{K}}}_2}{\boldsymbol{x}}\left( {k + 1} \right)\\ \end{array}$ (20)

式中: ${\hat {\boldsymbol{K}}_1} = {\bar {\boldsymbol{K}}_1}\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{I}}_{{n_1}}}}&0 \end{array}} \right]{{\boldsymbol{P}}^{ - 1}}$ ${\hat {\boldsymbol{K}}_2} = {{\boldsymbol{K}}_2}\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{I}}_{{n_1}}}}& 0 \end{array}} \right]{{\boldsymbol{P}}^{ - 1}}$

将式(20)代入式(1)可得闭环系统为

$ \left( {{\boldsymbol{E}} + {\boldsymbol{B}}{{\hat {\boldsymbol{K}}}_2}} \right){\boldsymbol{x}}\left( {k + 1} \right) = \left( {{\boldsymbol{A}} + {\boldsymbol{B}}{{\hat {\boldsymbol{K}}}_1}} \right){\boldsymbol{x}}\left( k \right) $ (21)

如果令 $ \hat {\boldsymbol{E}} = {\boldsymbol{E}} + {\boldsymbol{B}}{\hat {\boldsymbol{K}}_2} $ , $ \hat {\boldsymbol{A}} = {\boldsymbol{A}} + {\boldsymbol{B}}{\hat {\boldsymbol{K}}_1} $ ,则式(21)可进一步写为

$ \hat {\boldsymbol{Ex}}\left( {k + 1} \right) = \hat {\boldsymbol{Ax}}\left( k \right) $ (22)

本定理得到的是P-D反馈控制器存在的充分条件,而引理1给的是广义离散系统容许的充要条件,这是因为本定理中为了利用Matlab中的LMI工具箱,规定 $ {\boldsymbol{Y}} $ 是对称正定矩阵,而引理1中的X是对称矩阵,这是在以后的研究中需要改进的地方。在定理1的基础上,给出式(1)广义离散系统的P-D反馈控制器设计的定理。

定理2  对于式(1),存在一个对称正定矩阵 $ {\boldsymbol{X}} $ 和合适维数的矩阵 $ {\boldsymbol{Z}} $ 满足下面线性矩阵不等式:

$ \left[ {\begin{array}{*{20}{c}} {\boldsymbol{M}}&{{{\boldsymbol{Z}}^{\text{T}}}} \\ {\boldsymbol{Z}}&{ - {\boldsymbol{X}}} \end{array}} \right] < 0 $

式中:

$ \begin{array}{c} {\boldsymbol{M}} = {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Z}} + {{\boldsymbol{Z}}^{\text{T}}}{{\boldsymbol{A}}_1} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{E}}_{11}} - \\ {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}\\ {\boldsymbol{Z}} = {\boldsymbol{X}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} \end{array}$

则一定存在一个P-D反馈控制器如式(20),使得闭环系统(22)是容许的。

利用定理2时,我们需要先将原系统式(1)进行正常化分解,可以借助计算机。下面利用一个数值算例来说明本文设计方法的正确性和有效性。

3 数值算例

考虑形如式(1)的广义离散系统: $ {\boldsymbol E} = \left[ {\begin{array}{*{20}{c}} 1&0&0&0 \\ 0&0&1&0 \\ 0&0&0&0 \\ 1&0&0&1 \end{array}} \right] $ $ {\boldsymbol A} = \left[ {\begin{array}{*{20}{c}} 0&0&{ - 1}&0 \\ 1&0&2&0 \\ 0&0&0&1 \\ 0&1&0&0 \end{array}} \right] $ B = $ \left[ {\begin{array}{*{20}{c}} 1 \\ { - 2} \\ 0 \\ { - 1} \end{array}} \right] $ $ {\boldsymbol C} = \left[ {\begin{array}{*{20}{c}} 0&0&1&0 \end{array}} \right] $

首先有 $ \det (2{\boldsymbol{E}} - {\boldsymbol{A}}) \ne 0 $ ,说明系统是正则的;又有 $ {\text{rank}}\left[ {\begin{array}{*{20}{c}} {s{\boldsymbol E} - {\boldsymbol A}}&{\boldsymbol B} \end{array}} \right] = 4 $ $ \left| s \right| \geqslant 1 $ 。满足引理5中的条件,所以系统满足能稳定性。

下面通过Matlab将系统进行正常化分解,得到的子系统的各系数矩阵为: $ {{\boldsymbol E}_{11}} = \left[ {\begin{array}{*{20}{c}} 1&0&0 \\ 0&1&0 \\ 0&0&0 \end{array}} \right] $ $ {{\boldsymbol E}_{12}} = \left[ {\begin{array}{*{20}{c}} 0 \\ 0 \\ { - 1} \end{array}} \right] $ $ {{\boldsymbol E}_{22}} = 0 $ $ {{\boldsymbol A}_1} = \left[ {\begin{array}{*{20}{c}} 1&1&0 \\ 0&1&0 \\ 0&0&1 \end{array}} \right] $ $ {{\boldsymbol B}_1} = \left[ {\begin{array}{*{20}{c}} { - 4} \\ { - 1} \\ 1 \end{array}} \right] $ $ {{\boldsymbol C}_1} = [\begin{array}{*{20}{c}} 1&{ - 2}&0 \end{array}] $ $ {{\boldsymbol C}_2} = 0 $

通过计算得式(20)中的增益矩阵为

$ \left\{ \begin{gathered} {{\hat {\boldsymbol{K}}}_1} = \left[ {\begin{array}{*{20}{c}} {1.022\;8}&{ - 0.380\;6}&{1.374\;0}&{ - 0.761\;3} \end{array}} \right] \hfill \\ {{\hat {\boldsymbol{K}}}_2} = \left[ {\begin{array}{*{20}{c}} {1.000\;0}&{ - 0.500\;0}&{1.500\;0}&{ - 1.000\;0} \end{array}} \right] \hfill \\ \end{gathered} \right. $

闭环系统式(17)的系数矩阵为

$ \left\{ \begin{gathered} \hat {\boldsymbol{E}} = \left[ {\begin{array}{*{20}{c}} {2.000\;0}&{{{ - }}0.500\;0}&{1.500\;0}&{{{ - }}1.000\;0} \\ {{{ - }}2.000\;0}&{1.000\;0}&{{{ - }}2.000\;0}&{2.000\;0} \\ {0}&{0}&{0}&{0} \\ {0}&{0.500\;0}&{ - 1.500\;0}&{2.000\;0} \end{array}} \right] \hfill \\ \hat {\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} {1.022\;8}&{ - 0.380\;6}&{0.374\;0}&{ - 0.761\;3} \\ { - 1.044\;5}&{0.761\;3}&{ - 0.748\;1}&{1.522\;5} \\ 0&0&0&{1.000\;0} \\ { - 1.022\;8}&{1.380\;6}&{ - 1.374\;0}&{0.761\;3} \end{array}} \right] \hfill \\ \end{gathered} \right. $

下面通过验证说明在设计的控制器下,所得的闭环广义系统是容许的。

1)存在 $\det (2\hat {\boldsymbol{E}} - \hat {\boldsymbol{A}}) = - 5.020\;2 \ne 0$ ,所以闭环系统是正则的。

2) $ {\text{rank}}(\hat {\boldsymbol{E}}) = 3 $ $ {\text{rank}}\left[ {\begin{array}{*{20}{c}} {\hat {\boldsymbol E}}&0 \\ {\hat {\boldsymbol A}}&{\hat {\boldsymbol E}} \end{array}} \right] = 7 $ ,满足引理3,则闭环系统是因果的。

3) $ \det (s\hat {\boldsymbol{E}} - \hat {\boldsymbol{A}}) = 0 $ 的所有有限极点为0.7242、0.0185+0.0936i、0.0185−0.0936i,都在复平面的单位圆内,满足引理4,所以闭环系统是稳定的。

综上,我们验证了所得的闭环广义系统是容许的。这一结果说明了本文通过对原系统进行正常化分解所得到的P-D反馈控制器是有效的。

图1是输出响应曲线,从图中可以看出利用现代控制理论和变量替换法使得闭环系统是容许的、稳定的。

Download:
图 1 输出响应曲线
4 结论

广义系统存在脉冲行为,会导致系统不能正常运行甚至崩溃。而P-D反馈控制器是消除脉冲的一个很好方法,于是本文通过引入了P-D反馈控制器来消除脉冲,从而使得系统是稳定的、容许的,并给出了闭环系统容许的条件。

1)通过对式(1)系统正常化分解推导出子系统能正常化。

2)给出了P-D反馈控制器存在的条件,使得式(10)系统是容许的,并且得到了相应的LMI条件。为了求解方便,利用Matlab中的LMI工具箱,但是要求里面矩阵是对称矩阵,这是在以后的研究中需要解决的问题。

3)给出了式(1)系统控制器存在的条件。

参考文献
[1] VERGHESE G, LEVY B, KAILATH T. A generalized state-space for singular systems[J]. IEEE transactions on automatic control, 1981, 26(4): 811-831. DOI:10.1109/TAC.1981.1102763 (0)
[2] NEWCOMB R W, DZIURLA B. Some circuits and systems applications of semistate theory[J]. Circuits, systems and signal processing, 1989, 8(3): 235-260. DOI:10.1007/BF01598413 (0)
[3] LUENBERGER D G. Non-linear descriptor systems[J]. Journal of economic dynamics and control, 1979, 1(3): 219-242. DOI:10.1016/S0165-1889(79)80009-3 (0)
[4] FENG Zhanshen, FENG Chaoyi. The invariance principle of singular nonlinear systems and its applications[C]//2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles, USA, 2009: 102–106. (0)
[5] 马树萍, 程兆林. 一类不确定离散奇异系统的鲁棒稳定化[J]. 控制理论与应用, 2004, 21(5): 765-769,775. DOI:10.3969/j.issn.1000-8152.2004.05.019 (0)
[6] 王惠姣, 薛安克, 鲁仁全, 等. 参数不确定离散奇异系统的鲁棒 $ {H_\infty } $ 控制 [J]. 自动化学报, 2007, 33(12): 1300-1305. (0)
[7] FANG Mei. Delay-dependent stability analysis for discrete singular systems with time-varying delays[J]. Acta automatica sinica, 2010, 36(5): 751-755. (0)
[8] REN Junchao, ZHANG Qingling. Robust $ {H_\infty } $ control for uncertain descriptor systems by proportional-derivative state feedback [J]. International journal of control, 2010, 83(1): 89-96. DOI:10.1080/00207170903100222 (0)
[9] CHU D L, CHAN H C, HO D W C. Regularization of singular systems by derivative and proportional output feedback[J]. SIAM journal on matrix analysis and applications, 2006, 19(1): 21-38. (0)
[10] ABDELAZIZ T H S. Pole assignment of multivariable systems using proportional-derivative state feedback[J]. International journal of systems science, 2017, 48(13): 2871-2886. DOI:10.1080/00207721.2017.1359349 (0)
[11] REN Junchao, ZHANG Qingling. Positive real control for descriptor systems with uncertainties in the derivative matrix via a proportional plus derivative feedback[J]. International journal of systems science, 2013, 44(3): 450-460. DOI:10.1080/00207721.2011.602481 (0)
[12] ABDELAZIZ T H S. Stabilization of single-input LTI systems by proportional-derivative feedback[J]. Asian journal of control, 2015, 17(6): 2165-2174. DOI:10.1002/asjc.1130 (0)
[13] 邢双云, 靖新, 孙平. 比例导数输出反馈控制器的设计[J]. 计算技术与自动化, 2009, 28(1): 5-6,18. DOI:10.3969/j.issn.1003-6199.2009.01.002 (0)
[14] YU Haihua. Parametric stabilization for descriptor linear systems via state-proportional and-derivative feedback[J]. Journal of the franklin institute, 2016, 353(5): 992-1004. DOI:10.1016/j.jfranklin.2016.01.003 (0)
[15] DUAN Guangren. 广义线性系统分析与设计[M]. 段广仁, 于海华, 吴爱国, 等, 译. 北京: 科学出版社, 2012: 57-121. (0)
[16] 须田信英, 児玉慎三, 池田雅夫. 自动控制中的矩阵理论[M]. 曹长修, 译. 北京: 科学出版社, 1979: 323-329. (0)
[17] 俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002: 242-267. (0)
[18] 徐仲, 张凯院, 陆全, 等. 矩阵论简明教程[M]. 2版. 北京: 科学出版社, 2005: 145-155. (0)