广义系统是比正常系统更一般的动力系统,有着广泛的应用背景。广义系统大量出现在电力系统、能源系统、经济系统、宇航系统和化学过程等描述中[1-4],这是因为实际应用中,广义系统较一般系统可以用来描述系统更多的性能特征。随着科学研究的深入,广义系统被学术界广泛关注,广义离散时间系统理论已有了丰富的研究成果[5-7].
对于正常系统,反馈控制的研究已经趋于完善。但对于广义系统来说,脉冲的存在可能引起系统不能正常运行甚至导致系统的损坏,这就需要所设计的控制器不仅要保证闭环系统是稳定的,而且是要正则化和因果的(连续系统无脉冲),即容许性。而P-D反馈控制在这方面发挥了很大的作用,它是消除脉冲的一个很有效途径,相关研究已取得了一些成果[8-14]。但由于P-D反馈控制器在实际处理时的负面影响,很难使闭环系统达到稳定。然而随着先进的生产设备和计算机的迅速发展,大大降低了这种负面影响,使得P-D反馈具有很高的理论意义和工程实际应用价值。
本文针对广义离散系统设计出一种简单的P-D反馈控制器,突破了文献[13]中输出反馈控制器的局限性,使闭环系统更容易达到稳定,并消除了脉冲。
1 预备知识及问题描述考虑如下的广义离散时间系统:
$ {\boldsymbol{Ex}}\left( {k + 1} \right) = {\boldsymbol{Ax}}\left( k \right) + {\boldsymbol{Bu}}(k) $ | (1) |
式中:
定义1[15] 若存在复数
本文假定广义离散时间系统是正则且能稳定的。
定义2[15] 若对任意复数
定义3[15] 如果式(1)正则广义离散时间系统是因果且稳定的,则称系统是容许的。
定义4[15] 如果存在P-D反馈,使闭环系统成为正常系统,则称广义离散系统是能正常化的。
下面给出本文需要用到的相关引理。
引理1[15] 式(1)广义离散系统是容许的充要条件为:存在对称矩阵
$ \left\{ \begin{gathered} {{\boldsymbol{E}}^{\text{T}}}{\boldsymbol{XE}} \geqslant 0 \hfill \\ {{\boldsymbol{A}}^{\text{T}}}{\boldsymbol{XA}} - {{\boldsymbol{E}}^{\text{T}}}{\boldsymbol{XE}} < 0 \hfill \\ \end{gathered} \right. $ |
引理2[16] 对于正常系统
$ {\boldsymbol{J}} = \sum\limits_{k = 0}^\infty {\left[ {{{\boldsymbol{x}}^{\text{T}}}(k){\boldsymbol{Qx}}(k) + {{\boldsymbol{u}}^{\text{T}}}(k){\boldsymbol{Ru}}(k)} \right]} $ |
式中:
$ {\boldsymbol{u}}(k) = - {\left( {{\boldsymbol{R}} + {{\boldsymbol{B}}^{\text{T}}}{\boldsymbol{PB}}} \right)^{ - 1}}{{\boldsymbol{B}}^{\text{T}}}{\boldsymbol{PAx}}(k) $ |
其中
$ {\boldsymbol{P}} = {\boldsymbol{Q}} + {{\boldsymbol{A}}^{\text{T}}}{\boldsymbol{PA}} - {{\boldsymbol{A}}^{\text{T}}}{\boldsymbol{PB}}{\left( {{\boldsymbol{R}} + {{\boldsymbol{B}}^{\text{T}}}{\boldsymbol{PB}}} \right)^{ - 1}}{{\boldsymbol{B}}^{\text{T}}}{\boldsymbol{PA}} $ |
的对称半正定解.
引理3[15] 式(1)广义离散系统是因果的充要条件为
$ {\text{rank}}\left[ {\begin{array}{*{20}{c}} {\boldsymbol{E}}&0 \\ {\boldsymbol{A}}&{\boldsymbol{E}} \end{array}} \right] = n + {\text{rank}}({\boldsymbol{E}}) $ |
引理4[15] 式(1)广义离散系统是稳定的充要条件为:它的有限极点集合
引理5[15] 式(1)广义离散系统能稳定的充要条件为
$ {\text{rank}}\left[ {\begin{array}{*{20}{c}} {s{\boldsymbol{E}} - {\boldsymbol{A}}}&{\boldsymbol{B}} \end{array}} \right] = n,\quad \forall s \in C,\left| s \right| \geqslant 1 $ |
引理6[15] P-D反馈保持了广义系统的能稳定性。
为了研究的需要,我们要对系统进行正常化的分解。所谓正常化分解,就是通过线性变换将原系统分解为2个子系统,其中1个子系统是能正常化的,即转化为正常系统,具体过程如下。
考虑式(1)广义离散系统:
1)若系统是正则的,则一定存在非奇异矩阵
$ \left\{ \begin{gathered} {{\boldsymbol{Q}}_1}{\boldsymbol{E}}{{\boldsymbol{P}}_1} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{I}}_q}}&{} \\ {}&{\boldsymbol{N}} \end{array}} \right] \hfill \\ {{\boldsymbol{Q}}_1}{\boldsymbol{A}}{{\boldsymbol{P}}_1} = \left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{A}}}_1}}&{} \\ {}&{{{\boldsymbol{I}}_{n - q}}} \end{array}} \right] \hfill \\ {{\boldsymbol{Q}}_1}{\boldsymbol{B}} = \left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{B}}}_1}} \\ {{{\tilde {\boldsymbol{B}}}_2}} \end{array}} \right] \hfill \\ {\boldsymbol{x}}\left( k \right) = {{\boldsymbol{P}}_1}\left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{x}}}_1}(k)} \\ {{{\tilde {\boldsymbol{x}}}_2}(k)} \end{array}} \right] \hfill \\ \end{gathered} \right. $ |
式中:
$ \left\{ \begin{gathered} {{\tilde {\boldsymbol{x}}}_1}(k + 1) = {{\tilde {\boldsymbol{A}}}_1}{{\tilde {\boldsymbol{x}}}_1}(k) + {{\tilde {\boldsymbol{B}}}_1}{\boldsymbol{u}}(k) \hfill \\ N{{\tilde {\boldsymbol{x}}}_2}(k + 1) = {{\tilde {\boldsymbol{x}}}_2}(k) + {{\tilde {\boldsymbol{B}}}_2}{\boldsymbol{u}}(k) \hfill \\ \end{gathered} \right. $ | (2) |
2)对式(2)中的
$ \left\{ \begin{gathered} {\boldsymbol{TN}}{{\boldsymbol{T}}^{ - 1}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{N}}_{11}}}&{{{\boldsymbol{N}}_{12}}} \\ 0&{{{\boldsymbol{N}}_{22}}} \end{array}} \right] \hfill \\ {\boldsymbol{T}}{{\tilde {\boldsymbol{B}}}_2} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_{21}}} \\ 0 \end{array}} \right] \hfill \\ {{\tilde {\boldsymbol{x}}}_2}\left( k \right) = {{\boldsymbol{T}}^{ - 1}}\left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{x}}}_{21}}\left( k \right)} \\ {{{\tilde {\boldsymbol{x}}}_{22}}\left( k \right)} \end{array}} \right] \hfill \\ \end{gathered} \right. $ |
式中:
则式(2)改写为
$ \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{N}}_{11}}}&{{{\boldsymbol{N}}_{12}}} \\ 0&{{{\boldsymbol{N}}_{22}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{x}}}_{21}}\left( {k + 1} \right)} \\ {{{\tilde {\boldsymbol{x}}}_{22}}\left( {k + 1} \right)} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {{{\tilde {\boldsymbol{x}}}_{21}}\left( k \right)} \\ {{{\tilde {\boldsymbol{x}}}_{22}}\left( k \right)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_{21}}} \\ 0 \end{array}} \right]{\boldsymbol{u}}\left( k \right) $ | (3) |
令
$ \left\{ \begin{gathered} {\boldsymbol{QEP}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{E}}_{11}}}&{{{\boldsymbol{E}}_{12}}} \\ 0&{{{\boldsymbol{E}}_{22}}} \end{array}} \right] \hfill \\ {\boldsymbol{QAP}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{A}}_1}}&{} \\ {}&{\boldsymbol{I}} \end{array}} \right] \hfill \\ {\boldsymbol{QB}} = \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_1}} \\ 0 \end{array}} \right] \hfill \\ \end{gathered} \right. $ |
式(2)可改写为
$ \begin{split} \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{E}}_{11}}}&{{{\boldsymbol{E}}_{12}}} \\ 0&{{{\boldsymbol{E}}_{22}}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{x}}_1}(k + 1)} \\ {{{\boldsymbol{x}}_2}(k + 1)} \end{array}} \right] =\quad\;\\ \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{A}}_1}}&{} \\ {}&{\boldsymbol{I}} \end{array}} \right]\left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{x}}_1}(k)} \\ {{{\boldsymbol{x}}_2}(k)} \end{array}} \right] + \left[ {\begin{array}{*{20}{c}} {{{\boldsymbol{B}}_1}} \\ 0 \end{array}} \right]{\boldsymbol{u}}(k) \end{split} $ |
即
$ \left\{ \begin{gathered} {{\boldsymbol{E}}_{11}}{{\boldsymbol{x}}_1}(k + 1) + {{\boldsymbol{E}}_{12}}{{\boldsymbol{x}}_2}(k + 1) = {{\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}(k) + {{\boldsymbol{B}}_1}{\boldsymbol{u}}(k) \hfill \\ {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}(k + 1) = {{\boldsymbol{x}}_2}(k) \hfill \\ \end{gathered} \right. $ | (4) |
式中:
正文中已经得到
$ {{\boldsymbol{E}}_{11}}{{\boldsymbol{x}}_1}\left( {k + 1} \right) = {{\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}\left( k \right) + {{\boldsymbol{B}}_1}{\boldsymbol{u}}\left( k \right) $ | (5) |
下面证明若原式(1)广义离散系统是能稳定的,则式(5)是能稳定的。由引理5,我们只需证明
$ \begin{gathered} \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{E}}_{11}} - {{\boldsymbol{A}}_1}}&{{{\boldsymbol{B}}_1}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&0&{{{\tilde {\boldsymbol{B}}}_1}} \\ 0&{s{{\boldsymbol{N}}_{11}} - {{\boldsymbol{I}}_{{r_1}}}}&{{{\boldsymbol{B}}_{21}}} \end{array}} \right] = \\ \left[ {\begin{array}{*{20}{c}} 0&{s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&{{{\tilde {\boldsymbol{B}}}_1}} \\ {s{{\boldsymbol{N}}_{11}} - {{\boldsymbol{I}}_{{r_1}}}}&0&{{{\boldsymbol{B}}_{21}}} \end{array}} \right] = \\ \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{N}}_{11}} - {{\boldsymbol{I}}_{{r_1}}}}&0&{{{\boldsymbol{B}}_{21}}} \\ 0&{s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&{{{\tilde {\boldsymbol{B}}}_1}} \end{array}} \right] \\ \end{gathered} $ |
首先
$ \begin{gathered} \left[ {\begin{array}{*{20}{c}} {s{\boldsymbol{E}} - {\boldsymbol{A}}}&{\boldsymbol{B}} \end{array}} \right] = \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{Q}}_1}{\boldsymbol{E}}{{\boldsymbol{P}}_1} - {{\boldsymbol{Q}}_1}{\boldsymbol{A}}{{\boldsymbol{P}}_1}}&{{{\boldsymbol{Q}}_1}{\boldsymbol{B}}} \end{array}} \right] = \\ \left[ {\begin{array}{*{20}{c}} {s{{\boldsymbol{I}}_q} - {{\tilde {\boldsymbol{A}}}_1}}&0&{{{\tilde {\boldsymbol{B}}}_1}} \\ 0&{s{\boldsymbol{N}} - {{\boldsymbol{I}}_{n - q}}}&{{{\tilde {\boldsymbol{B}}}_2}} \end{array}} \right] \\ \end{gathered} $ |
行满秩且有
综上,
将式(1)广义离散系统进行正常化分解得
$ \left\{ \begin{gathered} {{\boldsymbol{E}}_{11}}{{\boldsymbol{x}}_1}\left( {k + 1} \right) + {{\boldsymbol{E}}_{12}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) = {{\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}\left( k \right) + {{\boldsymbol{B}}_1}{\boldsymbol{u}}\left( k \right) \hfill \\ {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) = {{\boldsymbol{x}}_2}\left( k \right) \hfill \\ \end{gathered} \right. $ | (6) |
式中:
由式(6)中
$ \left\{ \begin{aligned} & {{\boldsymbol{x}}_2}\left( k \right) = {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) \\ & {{\boldsymbol{E}}_{22}}{{\boldsymbol{x}}_2}\left( {k + 1} \right) = {{\boldsymbol{E}}_{22}}^2{{\boldsymbol{x}}_2}\left( {k + 2} \right) \\ & {{\boldsymbol{E}}_{22}}^2{{\boldsymbol{x}}_2}\left( {k + 2} \right) = {{\boldsymbol{E}}_{22}}^3{{\boldsymbol{x}}_2}\left( {k + 3} \right) \\ & \qquad\quad \vdots \\ & {{\boldsymbol{E}}_{22}}^{h - 1}{{\boldsymbol{x}}_2}\left( {k + h - 1} \right) = {{\boldsymbol{E}}_{22}}^h{{\boldsymbol{x}}_2}\left( {k + h} \right) \end{aligned} \right. $ | (7) |
将式(7)左右分别相加并相消得:
$ {{\boldsymbol{x}}_2}\left( k \right) = {{\boldsymbol{E}}_{22}}^h{{\boldsymbol{x}}_2}\left( {k + h} \right) = 0 $ |
所以式(6)可改写为
$ {{\boldsymbol{E}}_{11}}{{\boldsymbol{x}}_1}(k + 1) = {{\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}(k) + {{\boldsymbol{B}}_1}{\boldsymbol{u}}(k) $ | (8) |
由于式(8)是能正常化的,则一定存在P-D反馈:
$ {\boldsymbol{u}}(k) = {{\boldsymbol{K}}_1}{{\boldsymbol{x}}_1}(k) - {{\boldsymbol{K}}_2}{{\boldsymbol{x}}_1}(k + 1) + {\boldsymbol{v}}(k) $ | (9) |
使得闭环系统
$ \left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right){{\boldsymbol{x}}_1}(k + 1) = \left( {{{\boldsymbol{A}}_1} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1}} \right){{\boldsymbol{x}}_1}(k) + {{\boldsymbol{B}}_1}{\boldsymbol{v}}(k) $ | (10) |
成为正常系统。
我们选择一个合适的
$ \det \left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right) \ne 0 $ |
本文的主要研究工作是设计一个P-D反馈控制器,使得闭环系统是容许的。首先对原系统进行正常化分解,得到的子系统是能正常化的。在此基础上,设计了一个P-D反馈控制器。为了获得控制器存在的充分条件,有如下定理。
定理 1 对于式(8),若存在P-D反馈控制器式(9),使得闭环系统式(10)是容许的,条件是存在一个对称正定矩阵Y,合适维数的矩阵Z满足线性矩阵不等式(11):
$ \left[ {\begin{array}{*{20}{c}} {\boldsymbol{M}}&{{{\boldsymbol{Z}}^{\text{T}}}} \\ {\boldsymbol{Z}}&{ - {\boldsymbol{Y}}} \end{array}} \right] < 0 $ | (11) |
式中:
$ \begin{array}{*{20}{c}} & {\boldsymbol{M}} = {{\boldsymbol{A}}_1}^T{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^T{\boldsymbol{Z}} + {{\boldsymbol{Z}}^T}{{\boldsymbol{A}}_1} - {{\boldsymbol{E}}_{11}}^T{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - \hfill \\ & {{\boldsymbol{E}}_{11}}^T{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - {{\boldsymbol{K}}_2}^T{{\boldsymbol{B}}_1}^T{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^T{{\boldsymbol{B}}_1}^T{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} \hfill \\ & {\boldsymbol{Z}} = {\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} \end{array} $ |
证明: 由于
$ \begin{array}{c} {\left( {{{\boldsymbol{A}}_1} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1}} \right)^{\text{T}}}{\boldsymbol{Y}}\left( {{{\boldsymbol{A}}_1} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1}} \right) - \\ {\left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right)^{\text{T}}}{\boldsymbol{Y}}\left( {{{\boldsymbol{E}}_{11}} + {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}} \right) = \\ {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} + {{\boldsymbol{K}}_1}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + \\ {{\boldsymbol{K}}_1}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - \\ {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} < 0 \end{array} $ | (12) |
令
$ {\boldsymbol{Z}} = {\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} $ | (13) |
式(12)将改写为
$ \begin{array}{c} {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Z}} + {{\boldsymbol{Z}}^{\text{T}}}{{\boldsymbol{A}}_1} + {{\boldsymbol{Z}}^{\text{T}}}{{\boldsymbol{Y}}^{ - 1}}{\boldsymbol{Z}} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - \hfill \\ {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} < 0 \hfill \\ \end{array} $ | (14) |
利用schur补引理[16],我们可以将式(14)转化为线性矩阵不等式(11),其中:
$ \begin{array}{c} {\boldsymbol{M}} = {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Z}} + {{\boldsymbol{Z}}^{\text{T}}}{{\boldsymbol{A}}_1} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - \hfill \\ {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{Y}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} \end{array} $ |
证毕。
通过Matlab求解式(11),可以求得Y、Z的值[17]。
接下来利用式(13)和Y、Z的值来求得
由式(13)可得
$ {{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} = {{\boldsymbol{Y}}^{ - 1}}{\boldsymbol{Z}} $ | (15) |
下面我们利用广义逆的知识来求得
对于式(10),我们可以将其变形为正常系统:
$ {{\boldsymbol{x}}_1}\left( {k + 1} \right) = {\bar {\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}\left( k \right) + {\bar {\boldsymbol{B}}_1}{\boldsymbol{v}}\left( k \right) $ | (16) |
式中:
对于式(16),定义性能指标函数为
$ {\boldsymbol{J}} = \sum\limits_{k = 0}^\infty {\left[ {{{\boldsymbol{x}}_1}^{\text{T}}\left( k \right){\boldsymbol{F}}{{\boldsymbol{x}}_1}\left( k \right) + {{\boldsymbol{v}}^{\text{T}}}\left( k \right){\boldsymbol{Gv}}\left( k \right)} \right]} $ | (17) |
式中:
再由正常化分解的方法以及引理5和引理6,可以得到式(16)是稳定的。运用引理2,就可以得到式(16)的状态反馈控制器为
$ {\boldsymbol{v}}\left( k \right) = - {\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)^{ - 1}}{\bar {\boldsymbol{B}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{A}}_1}{{\boldsymbol{x}}_1}\left( k \right) $ | (18) |
并使得闭环系统是稳定的。其中
$ {{\boldsymbol{P}}_1} = {\boldsymbol{F}} + {\bar {\boldsymbol{A}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{A}}_1} - {\bar {\boldsymbol{A}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{B}}_1}{\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)^{ - 1}}{\bar {\boldsymbol{B}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{\bar {\boldsymbol{A}}_1} $ |
由此,将式(18)代入P-D反馈控制器式(9),得到原系统式(1)的P-D反馈控制器为
$ \begin{array}{c} {\boldsymbol{u}}\left( k \right) = {{\boldsymbol{K}}_1}{{\boldsymbol{x}}_1}\left( k \right) - {{\boldsymbol{K}}_2}{{\boldsymbol{x}}_1}\left( {k + 1} \right) - \\ {\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)^{ - 1}}{{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{A}}}_1}{{\boldsymbol{x}}_1}\left( k \right) = \\ \left[ {{{\boldsymbol{K}}_1} - {{\left( {{\boldsymbol{G}} + {{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{B}}}_1}} \right)}^{ - 1}}{{\bar {\boldsymbol{B}}}_1}^{\text{T}}{{\boldsymbol{P}}_1}{{\bar {\boldsymbol{A}}}_1}} \right]{{\boldsymbol{x}}_1}\left( k \right) - {{\boldsymbol{K}}_2}{{\boldsymbol{x}}_1}\left( {k + 1} \right) \end{array} $ | (19) |
若令
$ \begin{array}{c} {\boldsymbol{u}}\left( k \right) = {{\bar {\boldsymbol{K}}}_1}{{\boldsymbol{x}}_1}\left( k \right) - {{\boldsymbol{K}}_2}{{\boldsymbol{x}}_1}\left( {k + 1} \right) = \\ {{\bar {\boldsymbol{K}}}_1}\left[{{{\boldsymbol{I}}_{{n_1}}}}\quad0 \right]{{\boldsymbol{P}}^{ - 1}}x\left( k \right) - {{\boldsymbol{K}}_2}\left[ {{{\boldsymbol{I}}_{{n_1}}}}\quad0 \right]{{\boldsymbol{P}}^{ - 1}}{\boldsymbol{x}}\left( {k + 1} \right) = \\ {{\hat {\boldsymbol{K}}}_1}{\boldsymbol{x}}\left( k \right) - {{\hat {\boldsymbol{K}}}_2}{\boldsymbol{x}}\left( {k + 1} \right)\\ \end{array}$ | (20) |
式中:
将式(20)代入式(1)可得闭环系统为
$ \left( {{\boldsymbol{E}} + {\boldsymbol{B}}{{\hat {\boldsymbol{K}}}_2}} \right){\boldsymbol{x}}\left( {k + 1} \right) = \left( {{\boldsymbol{A}} + {\boldsymbol{B}}{{\hat {\boldsymbol{K}}}_1}} \right){\boldsymbol{x}}\left( k \right) $ | (21) |
如果令
$ \hat {\boldsymbol{Ex}}\left( {k + 1} \right) = \hat {\boldsymbol{Ax}}\left( k \right) $ | (22) |
本定理得到的是P-D反馈控制器存在的充分条件,而引理1给的是广义离散系统容许的充要条件,这是因为本定理中为了利用Matlab中的LMI工具箱,规定
定理2 对于式(1),存在一个对称正定矩阵
$ \left[ {\begin{array}{*{20}{c}} {\boldsymbol{M}}&{{{\boldsymbol{Z}}^{\text{T}}}} \\ {\boldsymbol{Z}}&{ - {\boldsymbol{X}}} \end{array}} \right] < 0 $ |
式中:
$ \begin{array}{c} {\boldsymbol{M}} = {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{A}}_1} + {{\boldsymbol{A}}_1}^{\text{T}}{\boldsymbol{Z}} + {{\boldsymbol{Z}}^{\text{T}}}{{\boldsymbol{A}}_1} - {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{E}}_{11}} - \\ {{\boldsymbol{E}}_{11}}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{E}}_{11}} - {{\boldsymbol{K}}_2}^{\text{T}}{{\boldsymbol{B}}_1}^{\text{T}}{\boldsymbol{X}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_2}\\ {\boldsymbol{Z}} = {\boldsymbol{X}}{{\boldsymbol{B}}_1}{{\boldsymbol{K}}_1} \end{array}$ |
则一定存在一个P-D反馈控制器如式(20),使得闭环系统(22)是容许的。
利用定理2时,我们需要先将原系统式(1)进行正常化分解,可以借助计算机。下面利用一个数值算例来说明本文设计方法的正确性和有效性。
3 数值算例考虑形如式(1)的广义离散系统:
首先有
下面通过Matlab将系统进行正常化分解,得到的子系统的各系数矩阵为:
通过计算得式(20)中的增益矩阵为
$ \left\{ \begin{gathered} {{\hat {\boldsymbol{K}}}_1} = \left[ {\begin{array}{*{20}{c}} {1.022\;8}&{ - 0.380\;6}&{1.374\;0}&{ - 0.761\;3} \end{array}} \right] \hfill \\ {{\hat {\boldsymbol{K}}}_2} = \left[ {\begin{array}{*{20}{c}} {1.000\;0}&{ - 0.500\;0}&{1.500\;0}&{ - 1.000\;0} \end{array}} \right] \hfill \\ \end{gathered} \right. $ |
闭环系统式(17)的系数矩阵为
$ \left\{ \begin{gathered} \hat {\boldsymbol{E}} = \left[ {\begin{array}{*{20}{c}} {2.000\;0}&{{{ - }}0.500\;0}&{1.500\;0}&{{{ - }}1.000\;0} \\ {{{ - }}2.000\;0}&{1.000\;0}&{{{ - }}2.000\;0}&{2.000\;0} \\ {0}&{0}&{0}&{0} \\ {0}&{0.500\;0}&{ - 1.500\;0}&{2.000\;0} \end{array}} \right] \hfill \\ \hat {\boldsymbol{A}} = \left[ {\begin{array}{*{20}{c}} {1.022\;8}&{ - 0.380\;6}&{0.374\;0}&{ - 0.761\;3} \\ { - 1.044\;5}&{0.761\;3}&{ - 0.748\;1}&{1.522\;5} \\ 0&0&0&{1.000\;0} \\ { - 1.022\;8}&{1.380\;6}&{ - 1.374\;0}&{0.761\;3} \end{array}} \right] \hfill \\ \end{gathered} \right. $ |
下面通过验证说明在设计的控制器下,所得的闭环广义系统是容许的。
1)存在
2)
3)
综上,我们验证了所得的闭环广义系统是容许的。这一结果说明了本文通过对原系统进行正常化分解所得到的P-D反馈控制器是有效的。
图1是输出响应曲线,从图中可以看出利用现代控制理论和变量替换法使得闭环系统是容许的、稳定的。
![]() |
Download:
|
图 1 输出响应曲线 |
广义系统存在脉冲行为,会导致系统不能正常运行甚至崩溃。而P-D反馈控制器是消除脉冲的一个很好方法,于是本文通过引入了P-D反馈控制器来消除脉冲,从而使得系统是稳定的、容许的,并给出了闭环系统容许的条件。
1)通过对式(1)系统正常化分解推导出子系统能正常化。
2)给出了P-D反馈控制器存在的条件,使得式(10)系统是容许的,并且得到了相应的LMI条件。为了求解方便,利用Matlab中的LMI工具箱,但是要求里面矩阵是对称矩阵,这是在以后的研究中需要解决的问题。
3)给出了式(1)系统控制器存在的条件。
[1] |
VERGHESE G, LEVY B, KAILATH T. A generalized state-space for singular systems[J]. IEEE transactions on automatic control, 1981, 26(4): 811-831. DOI:10.1109/TAC.1981.1102763 (![]() |
[2] |
NEWCOMB R W, DZIURLA B. Some circuits and systems applications of semistate theory[J]. Circuits, systems and signal processing, 1989, 8(3): 235-260. DOI:10.1007/BF01598413 (![]() |
[3] |
LUENBERGER D G. Non-linear descriptor systems[J]. Journal of economic dynamics and control, 1979, 1(3): 219-242. DOI:10.1016/S0165-1889(79)80009-3 (![]() |
[4] |
FENG Zhanshen, FENG Chaoyi. The invariance principle of singular nonlinear systems and its applications[C]//2009 WRI World Congress on Computer Science and Information Engineering. Los Angeles, USA, 2009: 102–106.
(![]() |
[5] |
马树萍, 程兆林. 一类不确定离散奇异系统的鲁棒稳定化[J]. 控制理论与应用, 2004, 21(5): 765-769,775. DOI:10.3969/j.issn.1000-8152.2004.05.019 (![]() |
[6] |
王惠姣, 薛安克, 鲁仁全, 等. 参数不确定离散奇异系统的鲁棒
![]() |
[7] |
FANG Mei. Delay-dependent stability analysis for discrete singular systems with time-varying delays[J]. Acta automatica sinica, 2010, 36(5): 751-755. (![]() |
[8] |
REN Junchao, ZHANG Qingling. Robust
![]() |
[9] |
CHU D L, CHAN H C, HO D W C. Regularization of singular systems by derivative and proportional output feedback[J]. SIAM journal on matrix analysis and applications, 2006, 19(1): 21-38. (![]() |
[10] |
ABDELAZIZ T H S. Pole assignment of multivariable systems using proportional-derivative state feedback[J]. International journal of systems science, 2017, 48(13): 2871-2886. DOI:10.1080/00207721.2017.1359349 (![]() |
[11] |
REN Junchao, ZHANG Qingling. Positive real control for descriptor systems with uncertainties in the derivative matrix via a proportional plus derivative feedback[J]. International journal of systems science, 2013, 44(3): 450-460. DOI:10.1080/00207721.2011.602481 (![]() |
[12] |
ABDELAZIZ T H S. Stabilization of single-input LTI systems by proportional-derivative feedback[J]. Asian journal of control, 2015, 17(6): 2165-2174. DOI:10.1002/asjc.1130 (![]() |
[13] |
邢双云, 靖新, 孙平. 比例导数输出反馈控制器的设计[J]. 计算技术与自动化, 2009, 28(1): 5-6,18. DOI:10.3969/j.issn.1003-6199.2009.01.002 (![]() |
[14] |
YU Haihua. Parametric stabilization for descriptor linear systems via state-proportional and-derivative feedback[J]. Journal of the franklin institute, 2016, 353(5): 992-1004. DOI:10.1016/j.jfranklin.2016.01.003 (![]() |
[15] |
DUAN Guangren. 广义线性系统分析与设计[M]. 段广仁, 于海华, 吴爱国, 等, 译. 北京: 科学出版社, 2012: 57-121.
(![]() |
[16] |
须田信英, 児玉慎三, 池田雅夫. 自动控制中的矩阵理论[M]. 曹长修, 译. 北京: 科学出版社, 1979: 323-329.
(![]() |
[17] |
俞立. 鲁棒控制: 线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002: 242-267.
(![]() |
[18] |
徐仲, 张凯院, 陆全, 等. 矩阵论简明教程[M]. 2版. 北京: 科学出版社, 2005: 145-155.
(![]() |