﻿ 飞机变频恒压加油控制系统设计
«上一篇
 文章快速检索 高级检索

 应用科技  2018, Vol. 45 Issue (2): 60-64  DOI: 10.11991/yykj.201703003 0

### 引用本文

ZHOU Haili, ZHU Dashu, LIU Chong. Design on the variable-frequency constant-pressure refueling control system of aircraft[J]. Applied Science and Technology, 2018, 45(2), 60-64. DOI: 10.11991/yykj.201703003.

### 文章历史

Design on the variable-frequency constant-pressure refueling control system of aircraft
ZHOU Haili, ZHU Dashu, LIU Chong
System Engineering Research Institute of China State Shipbuilding Corporation, Beijing 100094, China
Abstract: In order to solve the problems existing in the traditional refueling way of aircraft, including inaccurate pressure control, large waste of energy and low efficiency, avariable-frequency speed-governing constant-pressure oil supply means was proposed. This paper designed a constant-pressure refueling system based on programmable logic controller (PLC) and Windows control center(WINCC) for airport aircraft, according to the performance indices (such as pressure, flow) of the refueling system, the pump-pipe system was also designed. According to the constant-pressure refueling control principle, an approximate mathematical model of the system was established and an adaptive fuzzy PID variable-frequency constant-pressure refueling control algorithm was designed. The simulation experiments show that, the system kept under the optimal state all along in the operation process and it has an excellent guidance sense for the design of the variable-frequency refueling control system of aircraft.
Key words: Aircraft, variable-frequency    constant pressure    refueling    control algorism    PLC    WinCC    adaptive fuzzy control    PID control    system simulation

1 变频恒压加油系统的构成

2 模糊自适应PID控制器的设计 2.1 模糊控制系统结构

2.2 P1D控制器参数自整定原则

PID控制器是一种线性控制器，它根据给定值r(t)与实际输出值y(t)的偏差作为其输入，即

 $e\left( t \right) = r(t) - c(t)$

 $P(t) = {K_{\text{P}}}[e(t) + \frac{1}{{{T_{\text{I}}}}}\int_0^{\text{t}} {e(t){\text{d}}t + \frac{{{T_{\text{D}}}{\text{d}}e(t)}}{{{\text{d}}t}}} ]$

 \begin{aligned} P(k) = & {K_{\text{P}}}e(k) + \\ & {K_{\text{P}}}\frac{T}{{{T_{\text{I}}}}}\sum\limits_{j = 0}^k {e(j) + {K_{\text{P}}}\frac{{{T_{\text{D}}}}}{T}[e(k) - e(k - 1)} ] \end{aligned}

PID参数自整定的实现思想是先找出PID3个参数与偏差e和偏差变化率ec的模糊关系，从而在运行中再根据模糊控制原理来对3个参数进行在线修改。从系统的稳定性、响应速度、超调量和稳态精度等各方面来考虑。

2.3 各变量隶属度函数的确定

2.4 建立模糊控制规则表

1) 如果(e为NB)且(ec为NB), 则(ΔKP为PB) (ΔKI为NB) (ΔKD为PS)；

2) 如果(e为NB)且(ec为NM), 则(ΔKP为PB) (ΔKI为NB) (ΔKD为NS)；

……

49) 如果(e为PB)且(ec为PB), 则(ΔKP为NB) (ΔKI为PB) (ΔKD为PB)。

 ${K_{\text{P}}}{\text{ = }}{K_{\text{P}}}^\prime {\text{ + }}\Delta {K_{\text{P}}}{\text{ = }}{K_{\text{P}}}^\prime + {\{ {e_{\text{I}}},e{c_{\text{I}}}\} _{\text{P}}}$
 ${K_{\text{I}}}{\text{ = }}{K_{\text{I}}}^\prime {\text{ + }}\Delta {K_{\text{I}}}{\text{ = }}{K_{\text{I}}}^\prime + {\{ {e_{\text{I}}},e{c_{\text{I}}}\} _{\text{I}}}$
 ${K_{\text{D}}}{\text{ = }}{K_{\text{D}}}^\prime {\text{ + }}\Delta {K_{\text{D}}}{\text{ = }}{K_{\text{D}}}^\prime + {\{ {e_{\text{I}}},e{c_{\text{I}}}\} _{\text{D}}}$

3 系统仿真及分析 3.1 系统近似模型

 ${{G}}\left( S \right) = \frac{K}{{\left( {{T_1}S + 1} \right)\left( {{T_2}S + 1} \right)}}{e^{ - \tau s}}$

 ${{G}}\left( S \right) = \frac{{0.8}}{{\left( {12S + 1} \right)\left( {100S + 1} \right)}}{e^{ - 6s}}$
3.2 仿真及分析

 ${{G}}\left( S \right) = \frac{{0.96}}{{\left( {15S + 1} \right)\left( {100S + 1} \right)}}{e^{ - 6s}}$

4 结论

1）提出了变频恒压模糊控制策略，针对加油管路系统参数时变、分线性的问题，将模糊控制理论应用于采用变频调速技术恒压加油系统之中。

2）设计出了参数自适应模糊PID控制器，该控制器可以很好地恒压控制那些存在复杂多变、控制参数测定不精确等特征的加油系统，弥补了传统的PID控制的不足，是对传统恒压加油方式的一种创新。

3）提出了基于PLC的多泵并联加油控制系统，设计了变频泵、工频泵混合并切换逻辑算法和系统，实现了负荷高效、可靠切换的设计目标。

4）所设计的系统实现了多泵组加油的循环软起动，具有变频器单泵压力补偿调节、先启先停、周期定时切换运行、自动巡检等功能。具有良好的经济效益和社会效益。

 [1] 耿光辉, 王文娟. 用PLC与变频实现飞机恒压加油[J]. 机械与电子, 2011(35): 201, 204. (0) [2] 陈瑞, 周征. 在线自校正模糊PID控制器的研究[J]. 自动化技术与应用, 2008, 27(12): 49-52. DOI:10.3969/j.issn.1003-7241.2008.12.014 (0) [3] 冯仰新, 冯仰敏, 李志鸿. 基于PLC的Fuzzy-PID控制恒压供水系统[J]. 电机与控制应用, 2009, 36(2): 36-40. (0) [4] 沈晖, 刘大铭. 参数自适应模糊PID在恒压供水中的应用[J]. 中国农村水利水电, 2007(9): 63-66. (0) [5] GAO Daoxiang, SUN Zengqi. Fuzzy tracking control design for hypersonic vehicles via T-S mode[J]. Science China information sciences, 2011, 54(3): 521-528. DOI:10.1007/s11432-011-4190-2 (0) [6] LU Hongli, JIA Lei, KONG Shulan, et al. Predictive functional control based on fuzzy T-S model for HVAC systems temperature control[J]. Journal of control theory and applications, 2007, 5(1): 94-98. DOI:10.1007/s11768-005-5301-7 (0) [7] 苏新兵, 王建平, 李小刚. 某型飞机地面压力加油控制系统设计[J]. 现代制造工程, 2006(11): 115-118. DOI:10.3969/j.issn.1671-3133.2006.11.038 (0) [8] 刘金琨. 智能控制[M]. 2版. 北京: 电子工业出版社, 2009. (0) [9] 丁周伟. 泵站恒压供水系统的设计与实现[D]. 哈尔滨: 哈尔滨工业大学, 2006. http://www.wanfangdata.com.cn/details/detail.do?_type=degree&id=D252096 (0) [10] 刘金琨. 先进PID控制MATLAB仿真[M]. 3版. 北京: 电子工业出版社, 2011. (0)