期刊检索:
  药物分析杂志   2019, Vol. 39 Issue (4): 565-579.  DOI: 10.16155/j.0254-1793.2019.04.01
0

综述专论

引用本文 [复制中英文]

吴海龙, 肖蓉, 胡勇, 俞汝勤. 化学多维校正方法在药物分析中的应用[J]. 药物分析杂志, 2019, 39(4): 565-579. DOI: 10.16155/j.0254-1793.2019.04.01.
[复制中文]
WU Hai-long, XIAO Rong, HU Yong, YU Ru-qin. Applications of chemical multi-way calibration methodologies in pharmaceutical analysis[J]. Chinese Journal of Pharmaceutical Analysis, 2019, 39(4): 565-579. DOI: 10.16155/j.0254-1793.2019.04.01.
[复制英文]

基金项目

国家自然科学基金(No.21775039和No.21575039);国家自然科学基金委创新群体项目(No.21521063)

第一作者

吴海龙, Tel:13808423842;E-mail:hlwu@hnu.edu.cn

文章历史

收稿日期:2018-03-12
化学多维校正方法在药物分析中的应用
吴海龙 , 肖蓉 , 胡勇 , 俞汝勤     
湖南大学化学化工学院化学生物传感与计量学国家重点实验室, 长沙 410082
摘要:药物研发以及药物临床试验正在不断推进,同时,药物分析基质也呈现出多样化的趋势,对不同基质中的药物进行快速和精准的定量分析具有非常重要的意义。化学多维校正方法采用"数学分离"替代或者增强传统的物理和化学分离手段,作为一种绿色的分析方法,其凭借"二阶优势",可以实现复杂体系中多组分的快速、同时、实时和原位定量分析,具有非常广阔的应用前景。本文主要综述了采用化学多维校正方法结合多种高阶分析仪器,对不同背景基质中的多组分药物进行精准定量分析的相关工作。主要包括生物基质中各类药物的含量测定,部分药物的药代动力学过程以及药物与生物大分子的相互作用过程定量监控研究,中药活性成分的含量测定以及食品和环境中的药物残留的检测等。
关键词化学多维校正方法    二阶优势    药物分析    应用研究    化学计量学    
Applications of chemical multi-way calibration methodologies in pharmaceutical analysis
WU Hai-long, XIAO Rong, HU Yong, YU Ru-qin    
State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
Abstract: With the fast development of drug researches and drug clinical trials, as well as the diversification of analysis matrix, rapid and accurate quantitative analysis of drugs in different substrates is of great significance. By utilizing the smart "mathematical separation" to replace or enhance conventional physical and chemical separation means, multi-way calibration method is a green strategy with the well-known "second-order advantage".Therefore, it has a very broad prospect of applications for the fast, simultaneous, real-time and in-situ quantitative analysis of multi-components in complex systems. In this paper, related works of pharmaceutical quantitative analysis in different background matrices with multi-way calibration method coupled with high-order analytical instruments were summarized, including the determination of various drugs in biological matrices, the content of active components in traditional Chinese medicine, drug residues in food and environmental samples, and the monitoring of the pharmacokinetic process of some drugs, as well as drug-biomacromolecule interaction studies.
Keywords: multi-way calibration methodologies    second-order advantage    pharmaceutical analysis    application researches    chemometrics    

药物及其代谢产物的定性、定量分析和药代动力学研究对药物的研发和监管有着十分重要的意义。药物临床试验监测通常需要大量的分析样本,对分析速度及准确度提出了新的要求。血浆、尿液和组织等分析背景成分复杂,随人群的性别、年龄和生理期等状态而改变。药物的分析基质也不再仅限于生物样本和中药材,食品和环境中的药物检测也是研究的热点,这也对分析方法的抗干扰能力、抗背景基质变化能力以及通用性提出了新的挑战。

化学计量学是运用数学、统计学、计算机科学和其他学科的相关理论,设计以及优化化学量测过程,并通过数据分析手段最大限度地从量测信息中获取有用化学信息的一门学科[1-3]。其中,化学多维校正方法采用双线性和三线性等多线性成分模型,通过“数学分离”替代或者增强传统的物理和化学分离手段,简化了烦琐、费时的样本预处理过程,即使在多个未知干扰和变化背景共存的情况下仍然能够实现复杂体系中多组分的快速、同时、实时及原位定量分析,即“二阶优势(second-order advantage)”[4]。结合能产生高阶张量数据的先进分析仪器,如三维荧光光谱仪(excitation-emission matrix fluorescence spectrometer,EEM)[5]、高效液相色谱-二极管阵列检测器(high performance liquid chromatography-diode array detector,HPLC-DAD)和液相色谱-质谱联用仪(liquid chromatography-mass spectrometry,LC-MS)等,化学多维校正方法已在生命科学、食品、环境、化妆品等领域得到了广泛的应用,国内外的很多文献对药物分析的研究进展进行了综述[6-22]。本小组也对复杂体系化学多维校正方法的基础理论与应用进行了较深入的研究,在相关领域取得了一系列先进乃至领先的成果,起着引领作用,部分成果详见相关综述与著作[23-28]。关于化学多维校正的理论与方法参见相关文献[22-25]。本文主要综述了本课题组采用化学多维校正方法对不同背景基质中的药物进行定量分析以及其动态过程研究的这一专题的相关工作。图 1为化学多维校正方法结合高阶分析仪器用于药物分析的流程图。

图 1 化学多维校正方法结合高阶分析仪器用于药物分析的流程图 Fig.1 The schematic illustration of chemical multi-way calibration methodologies combined with high-order analytical instruments for pharmaceutical analysis
1 药物临床研究中的精准定量

药物临床研究中分析基质通常为生物基质,如血浆、血清、尿液和细胞培养基等,其成分较为复杂,且易发生基质效应,故对生物基质中的药物及其代谢产物进行精准、快速的定量分析对疾病的发现和诊断、药代动力学研究、临床用药监测、药物质量的监管以及仿制药的一致性评价研究等有着非常重要的意义。本文根据药物类别进行初步分类,将化学多维校正方法结合高阶分析仪器在药物临床研究中的定量分析应用汇总于表 1,并重点介绍了其在抗肿瘤类、作用于心血管系统类以及抗感染类药物分析中的相关研究。

表 1 化学多维校正方法在药物临床研究中的定量分析应用 Tab.1 Applications of chemical multi-way calibration methodologies in quantitative analysis of clinical drug researches
1.1 抗肿瘤药物

癌症是影响人类健康的重大疾病,目前,抗肿瘤药物位于治疗领域的药物研发第1位,是国内外研究的热点。抗肿瘤药物的种类多,研发速度增长迅速,且大部分为首创药,定量分析检测难度大[29]。Sanchez等[30]采用三维荧光与二阶校正方法相结合,在液液萃取预处理步骤后,对人尿液中的伊立替康和沙利度胺进行了同时定量分析,并比较了平行因子分析(parallel factor analysis,PARAFAC)[31]、拓展的偏最小二乘结合残差双线性(unfolded partial least-squares/residual bilinearization,U-PLS/RBL)[32]和多维偏最小二乘结合残差双线性(N-way partial least-squares/residual bilinearization,N-PLS/RBL)[32]3种算法的预测能力。Schenone等[33]首次将全同步荧光光谱建模数据分别与一阶以及二阶算法相结合,在核黄素共存的情况下,2种方法均成功实现了人血浆中阿霉素的定量检测。此外,Xia等[34]开发了一种新的交替拟合残差(alternating fitting residue,AFR)算法,将其结合三维荧光光谱对人血浆和尿液中的柔红霉素含量进行定量分析,并与PARAFAC算法进行对比研究,AFR算法在分辨与校正方面表现出了良好的性能,取得了更好的定量结果。Fu等[35]提出了一种基于交替归一加权残差(alternating normalization-weighted error,ANWE)[36]和PARAFAC算法的二阶校正方法结合三维荧光光谱的新策略,对人血浆和尿液样本中的伊立替康进行了精确检测。随后,Yin等[37]又测定了人血浆和尿液样本中伊立替康及其代谢产物7-乙基-10-羟基喜树碱含量,为后续的伊立替康的药代动力学过程研究奠定了基础。Wang等[38]则利用类似的策略,成功地实现了人血浆样本中的姜黄素、阿霉素和白藜芦醇3种抗癌药物的直接、快速和同时定量分析,这种策略利用二阶校正方法的“数学分离”功能,提高了荧光方法的选择性,在荧光光谱重叠及未知干扰共存情况下依然获得了准确的定量结果,为三维荧光方法用于复杂基质中多种目标物的同时定量分析开辟了新局面。

Xiang等[39]采用基于交替三线性分解(alternating trilinear decomposition,ATLD)[40]算法的二阶校正方法结合HPLC-DAD,对7个不同人血浆样本中的凡德他尼、帕唑帕尼、阿法替尼和达沙替尼4个酪氨酸酶抑制剂进行了同时、快速的定量分析。同样地,Liu等[41]利用ATLD结合HPLC-DAD方法测定了中药长春花和人血清样本中的5个长春花生物碱的含量,2个实验均只采用了简单的等梯度洗脱色谱条件,在分析物色谱峰重叠以及多种分析背景干扰共存的情况下,该方法均取得了令人满意的定量结果,表现出了良好的通用性,有望发展成为一种快速、通用的临床抗癌药物检测的新方法。

1.2 作用于心血管系统药物

心血管药物研发任务艰巨且成本极高,需要进行大量的临床试验[42]。三维荧光结合二阶校正方法的策略用于定量分析人体液样本中的心血管药物的应用十分广泛。Zhang等[43]利用这种策略快速测定人血浆中美托洛尔的含量,在此基础上,Gu等[44]采用PARAFAC和满秩平行因子分析(full-rank parallel factor analysis,FRA-PARAFAC)[45]算法对人血浆中的美托洛尔及其代谢产物α-羟基美托洛尔进行同时定量分析,虽然美托洛尔及其代谢产物的荧光光谱几乎完全重叠,但2种算法仍给出了较好的结果。此外,Han等[46-47]采用自加权交替三线性分解(self-weighted alternating trilinear decomposition,SWATLD)[48]和ATLD算法,对人尿液样本中的利血平含量进行检测。Zhao等[49]开发了一种新技术用于定量分析人血浆样本中的川穹嗪和替米沙坦含量,并成功地将这种方法应用于替米沙坦片中替米沙坦的含量测定。Xiao等[50]采用三维荧光结合ATLD方法同时定量分析人血浆和尿液样本中的华法林和阿司匹林含量,无需烦琐、费时的样本预处理过程,借助荧光方法的高灵敏特性,该方法所获得的检测下限(LOD)和定量下限(LOQ)能够满足临床研究的定量分析要求。Damiani等[51]采用U-PLS/RBL方法结合三维荧光对人尿液样本中的阿替洛尔含量进行分析,尽管存在背景交互作用和荧光内滤效应,所获得的结果仍与HPLC方法的相一致。然而,采用荧光方法对复杂基质进行检测时易发生基质效应,对此,Zou等[52]采用二阶标准加入法(second-order standard addition method,SOSAM)[53]结合交替惩罚三线性分解(alternating penalty trilinear decomposition,APTLD)[54]和PARAFAC算法的策略,测定人血浆样本和片剂中的盐酸特拉唑嗪含量,克服了因基质效应而造成的分析物荧光增强的问题。Valderrama等[55]将二阶标准加入法与PARAFAC方法相结合,测定血浆和尿液样本中的普萘洛尔异构体,尽管因淬灭机制而发生了基质效应,但该方法依然获得了血浆和尿液中(R)-普萘洛尔的摩尔分率。这一策略为易发生基质效应的复杂体系的检测分析提供了新思路。

Li等[56]开发了一种二阶校正结合HPLC-DAD的新方法用于人血浆样本中左旋多巴、卡比多巴和甲基多巴的含量测定,由于3种分析物的紫外光谱极为相似,作者将所得数据根据色谱保留时间分为3个区域分别解析,实现了各组分的单独分析,巧妙地克服了分析物之间的严重共线性及基质干扰问题。随后,Zhao等[57]采用这种方法定量分析人血浆、保健品以及中成药中的11种降压药,使用简单的等梯度洗脱条件和样本预处理步骤,尽管存在色谱峰包埋现象和复杂的基体未知干扰,依然成功实现了不同复杂基质中的11种分析物的同时定量分析,为保健品和中成药的非法添加的检测提供了新方法。

Gu等[58]开发了一种全新的基于ATLD算法的二阶校正方法辅助液相色谱全扫描单极质谱的定量分析策略,利用化学多维校正方法的“数学分离”功能替代三重四极杆质谱的第2级质谱,并成功地将其用于人血浆和尿液样本中的10种β-阻滞剂的同时、精准定量分析,与经典的多重反应监测(MRM)方法结果相比,该方法取得了几乎相同甚至更优的分析结果。这种新策略可以省去破碎电压、碰撞能量和母子离子对等参数的优化过程,克服了因离子传输效率低而导致的定量结果不准确的问题,有望拓展成为复杂体系中感兴趣物质的快速、同时和无干扰定量分析新方法。

1.3 抗感染类药物

抗感染药物为一类临床上的常用药物,患者在用药后容易发生不同程度的不良反应,且抗感染药物种类繁多,快速、实时监测其血药浓度能够为临床合理使用抗感染药物提供指导依据[59]。Ortiz等[60]利用三维荧光和PARAFAC方法对多种尿液中的环丙沙星进行准确的测定,Fang等[61]采用三维荧光结合ATLD和PARAFAC方法成功实现了人血浆样本中3种氟喹诺酮类抗生素的快速定量分析,并通过对比,验证了ATLD算法对预估组分数不敏感的特性。随后,Pagani等[62]在三维荧光的基础上,通过流动注射系统引入新的pH维度,构建了激发波长×发射波长×pH×样本数(Ex-Em-pH-Sample)的四维数阵,使用四维平行因子分析(four-way parallel factor analysis,Four-way PARAFAC)[63]方法对未知干扰共存的尿液样本中的3种氟喹诺酮类药物进行同时定量分析,并指出,数据维数的增加能够更好地解决基质效应和实验条件改变的问题,提高了分析方法的预测能力。Song等[64]利用三维荧光和基于PARAFAC算法的二阶校正方法对人血浆样本中泛昔洛韦及其活性代谢物喷昔洛韦进行同时定量分析,并使用核一致诊断法(CORCONDIA)[65]来确定复杂体系里的实际组分数,为该药物的药代动力学研究奠定了基础。

Canada等[66]将二阶校正方法成功地应用于高效液相色谱联用快速扫描荧光检测器(HPLC-FSLD),分别采用PARAFAC、N-PLS和多元曲线分辨-交替最小二乘(multivariate curve resolution-alternating least-squares,MCR-ALS)[67]方法,对人尿液样本中的4种喹诺酮类药物进行同时定量分析;Ouyang等[68]采用HPLC-DAD和二阶校正相结合的方法,定量检测人血浆样本中的甲硝唑和替硝唑含量。以上2个研究都只采用了简单的等梯度洗脱条件,依然获得了很好的回收率和品质因子结果。

2 中药活性成分的含量测定

中药活性成分的测定对中药的提取与炮制技术的优化、药材质量的监测、有害成分的监控、药效机制的阐释、药物的筛选和新药的合成等具有重要的意义。中药材本身成分十分复杂,共流出现象严重,通常采用色谱技术对其进行分析,但还是要借助分离或者提取等手段,并且需要很长的色谱分离时间。基于“二阶优势”,化学多维校正方法结合三维荧光或者HPLC-DAD十分适用于中药有效成分的含量测定,无需烦琐费时的预处理,节省了大量的分析时间和有机溶剂,是一种绿色的中药分析手段。本文将化学多维校正方法在中药活性成分测定中的应用总结于表 2,并重点介绍其中有代表性的工作。

表 2 化学多维校正方法在中药活性成分测定中的应用 Tab.2 Applications of chemical multi-way calibration methodologies for the quantitative analysis of active components in traditional Chinese medicine

Zhang等[69-70]采用三维荧光光谱结合二阶校正方法测定人体液和细胞培养基中五味子甲素的含量,在此基础上,又对血浆基质中的五味子醇甲和五味子乙素进行了同时定量分析。由于这2种分析物的荧光光谱几乎完全重叠,因此,定量分析难度大,但结合二阶校正方法依然给出了准确的定量结果。随后,Zhang等在三维数阵的基础上引入了溶剂维度,构建了激发波长×发射波长×溶剂×样本数(Ex-Em-Solvent-Sample)的四维数阵,使用四维自加权交替归一残差拟合(four-way self-weighted alternating normalized residue fitting,Four-way SWANRF)[71]和Four-way PARAFAC方法对四维数阵进行解析,由于分析体系存在严重的背景干扰和共线性问题,三维校正方法无法给出令人满意的预测结果,而该四维分析策略依然可以实现细胞培养基中五味子醇甲和五味子醇乙的同时和精准定量分析。Wang等[72]利用三维荧光结合二阶校正的方法对中药独活与藏药绵头雪莲中的伞形花内酯与东莨菪亭的含量进行了快速、同时的定量分析,采用了简单的超声提取与离心分离的预处理方法,并使用HPLC-DAD对实际中药样本中的2种目标分析物进行了测定,t检验显示2种方法的结果无显著性差异。Hu等[73]基于化学衍生反应将无荧光响应的马兜铃酸Ⅰ(aristolochic acid Ⅰ,AA-Ⅰ)转化为具有强荧光响应的马兜铃内酰胺Ⅰ(aristololactam Ⅰ,AL-Ⅰ),再结合二阶校正方法实现了5种中药中AA-Ⅰ和AL-Ⅰ含量的精准测定,并使用LC-MS/MS方法验证了该方法的准确性,可作为中药中无荧光成分含量测定的新策略。

Ouyang等[74]采用HPLC-DAD结合二阶校正方法的分析策略,对人血浆和中药仙灵骨葆样本中的补骨脂素和异补骨脂素进行同时定量分析,这2个目标分析物为同分体异构体,紫外光谱几乎完全一致,色谱峰也重叠严重,但凭借二阶校正方法的“数学分离”功能,在较短的色谱洗脱时间和复杂未知干扰共存的情况下,依然可以分辨出准确的光谱轮廓。同时HPLC-MS方法也进一步验证了该方法的定量准确性。基于类似的策略,Liu等[75]成功测定了人血浆和中成药样本中的木香烯内酯和去氢木香内酯含量,简化了色谱洗脱条件,缩短了分析时间,可作为中药活性成分检测的新方法。

3 食品和环境中的药物残留检测

大量抗生素的滥用,对食品安全和环境污染也造成了一定的影响。化学多维校正方法结合高阶分析仪器,采用“数学分离”替代烦琐的食品或者环境样本的预处理分离过程,缩短了分析时间,可广泛用于食品和环境样本中残留药物的原位、快速和实时检测,对食品质量安全的监管和环境保护的监测具有重要的意义。Mahedero等[76]采用PARAFAC和SWATLD方法对光诱导激发发射荧光数据进行建模,并准确定量了蜂蜜样本中的磺胺噻唑,并将结果与N-PLS等方法进行了比较。随后,Yu等[77]提出了一种HPLC-DAD结合二阶校正方法的策略用于定量分析蜂蜜样本中的12种喹诺酮类抗生素;实验采用简单的等梯度洗脱色谱条件,在目标分析物色谱峰重叠严重,未知干扰峰共流出和基线背景漂移等情况下,仍实现了目标分析物的同时、快速定量分析。此外,Ni等[78]将无荧光的硝基呋喃类药物转化为具有强荧光的碱性水解产物,基于此动力学过程分别构建了二维、三维和四维数阵,成功实现了鱼肉样本中硝基呋喃类药物的同时定量分析,并将检测结果与HPLC方法的进行了比较。Yu等[79]提出了基于正交光谱投影的色谱背景漂移校正方法结合PARAFAC算法的策略用于解决三维色谱数据的共流出问题,并将这种策略结合HPLC-DAD,对自来水样本中的11种抗生素进行了同时定量分析,不同于传统PARAFAC方法通过多取组分数来消除背景漂移的影响,该方法获得了更好的定量结果,为抗生素滥用的监测提供了新的策略。

4 复杂药物体系中的动态过程监测研究

复杂体系的动态过程监测研究对分析方法的速度、准确度及抗干扰能力的要求更高,荧光方法具有灵敏度高,检测速度快,重现性好和操作简单等优点,将化学多维校正方法与三维荧光相结合,可以提高荧光方法的选择性,在复杂动态体系中的快速、实时、无损和原位分析方面具有独特的优势。其应用主要包括3个方面:基于动态化学反应的定量分析研究、动力学过程研究以及药物与生物大分子的相互作用研究。

4.1 基于动态化学反应的定量分析研究

通过氧化衍生等化学反应过程可以增强无荧光响应或者弱荧光物质的荧光,通过引入的动力学新维度可以在一定程度上克服某些分析体系的共线性问题,提高分析方法的灵敏度和选择性,为复杂动态体系中感兴趣物质定量分析方法提供了新思路。Olivieri和Arancibia等[80-81]利用高锰酸钾将甲氨蝶呤和亚叶酸转化为强荧光组分,并采用快速扫描分光光度计记录分析物在不同时刻的光谱数据,通过PARAFAC、U-PLS/RBL和三线性最小二乘结合残差双线性(trilinear least-squares/residual trilinearization,TLLS/RTL)等算法来解析所构建的激发波长×发射波长×时间点数×样本数的四维数阵,实现了未知干扰共存下人尿液体系中甲氨蝶呤和亚叶酸的同时定量分析。Li等[82-83]基于化学反应将弱荧光的肾上腺素和去甲肾上腺素氧化为强荧光的中间产物(三羟基吲哚衍生物),再进一步氧化为无荧光的最终产物,通过测量中间产物的荧光光谱,构建了发射波长×时间点数×样本数的三维数阵,使用二阶校正算法对所得三维数阵进行分解,同时利用中间产物的浓度与目标分析物初始浓度呈线性的性质,成功地完成了人血浆体系中肾上腺素或去甲肾上腺素的定量分析和动态变化过程的监测。此外,Li等[84]又采用类似的氧化衍生增强荧光原理,构建激发波长×发射波长×样本数的三维数阵,在另一种抗精神病药氯普噻吨共存的情况下,间接测定尿液中的盐酸氟奋乃静。Xie等[85]基于酶诱导反应,构建激发波长×发射波长×时间点数×样本数的四维数阵,使用基于交替四线性分解(alternating quadrilinear decomposition,AQLD)[86]算法的四维校正方法,对人血浆体系中的酪氨酸和左旋多巴含量进行同时定量分析,2种分析物在动力学维度的差异减弱了分析体系的严重共线性,解决了三维校正方法无法处理的难题,突出了四维校正方法更强的分辨能力和“三阶优势”。

4.2 动力学过程研究

研究药物和生物分子的动力学过程对药物的研发和生物体的新陈代谢的监测具有重要的意义。Luca等[87]开发了一种杂交硬-软多元曲线分辨(hybrid hard-soft multivariate curve resolution,HS-MCR)的新方法来解析紫外光谱数据,并将其用于呋喃西林光降解作用的动力学过程研究,分析出了它的降解速率常数、动力学模型和降解产物,并探讨了反应物的初始浓度和光照强度对速率常数的影响。Yin等[88-89]将三维荧光分别结合二阶或者三阶校正方法用于建立静态或者动态校正模型,实时监测人血浆和PBS缓冲液中伊立替康由内酯形式水解为羧酸形式的动力学过程,无需色谱分离过程,尽管动态体系中存在多种未知干扰,仍能通过计算得到分析物的实时浓度,进而获得伊立替康在水解反应中的动力学方程、半衰期和反应速率常数。Kang等[90]采用内源荧光分别结合三维或者四维校正方法对人血浆中还原型辅酶Ⅰ(reduced nicotinamide adenine dinucleotide,NADH)和黄素腺嘌呤二核苷酸(flavin adenine dinucleotide,FAD)进行同时定量分析,分别构建激发波长×发射波长×样本数 & 时间点数的三维数阵和激发波长×发射波长×样本数×时间点数的四维数阵,基于实时浓度数据拟合NADH的降解反应和FAD的生成反应的速率方程。以上工作也比较了三维校正和四维校正方法在动力学过程研究中的优缺点,三维校正方法更为灵活,四维校正方法更适用于严重共线性的体系。静态和动态校正模型都有望发展成为复杂体系中多目标分析物的多重反应动力学过程的同时、实时、原位和无损定量分析的新工具,用于解决干扰共存或新物质不时产生下多目标物定量分析问题。

4.3 药物与生物大分子的相互作用研究

研究药物与DNA或蛋白质的相互作用机制对药物的作用机理和新药的设计具有重要的作用。Xia等[91]将三维荧光与基于APTLD算法的二阶校正方法相结合,研究并比较人血浆中小檗碱和柔红霉素与DNA的相互作用机制,通过APTLD方法获得的各物质的激发、发射荧光光谱和相对浓度信息,解释了小檗碱和柔红霉素与DNA的竞争作用机制。Zou等[92]采用溴化乙锭(ethidium bromide,EB)作为荧光探针,分别使用二维和三维荧光方法研究吡柔比星(pirarubicin,THP)与DNA的相互作用,由于EB、THP和EB-DNA的荧光光谱严重重叠,二维荧光方法无法提取出有用的信息,而三维荧光结合二阶校正方法依然可以分辨出动力学平衡体系中各物质的光谱和相对浓度信息,验证了THP是以嵌入模式与DNA相互作用的预想机制。Wang等[93]基于荧光和紫外光谱技术,再结合MCR-ALS和PARAFAC方法,研究抗癌药苯达莫司汀(bendamustine,BDM)和地塞米松(dexamethasone,DXM)与牛血清白蛋白(BSA)之间的相互作用,获得了相应的结合位点和结合常数等信息,并推导出BDM和DXM对BSA的竞争作用机制。Zhai等[94]采用三维荧光结合PARAFAC算法研究了表儿茶素和BSA的相互作用,表儿茶素与BSA的荧光光谱严重重叠,借助“二阶优势”,依然获得了动态变化作用过程中表儿茶素和BSA的准确浓度信息,并且计算得到了结合常数,推导出了静态淬灭的作用机制。Xie等[95]采用三维荧光结合化学多维校正方法对动态变化体系中游离的人血清白蛋白(HSA)进行准确的定量分析,尽管分析物之间的荧光光谱重叠,分辨得到的HSA的光谱与其真实光谱吻合良好,根据得到的相对浓度信息计算普鲁卡因和HSA相互作用过程中的相关结合常数,并对激发波长×发射波长×温度值×样本数的四维数阵进行分辨,探究了温度对相互作用过程的影响。

5 结论

化学多维校正方法结合高阶分析仪器是一种强有力的分析策略,它使用“数学分离”替代或者增强传统的物理和化学分离手段,具有很好的抗干扰能力、抗基质变化能力和通用性,尤其对复杂动态体系的研究表现出了独特的优势。相关的应用实例表明,化学多维校正方法可以实现不同基质中多目标分析药物的快速、同时、实时、无损和原位定量分析以及相关的动态过程研究,具有“二阶及高阶优势”。随着化学多维校正方法与理论研究的进一步深入以及现代高阶仪器的飞速发展及不断涌现,这种能获得极大分离能力的分析策略在药物分析领域还会得到更进一步的应用,具有很好的发展前景。

参考文献
[1]
俞汝勤. 化学计量学导论[M]. 长沙: 湖南教育出版社, 1991.
YU RQ. An Introduction to Chemometrics[M]. Changsha: Hunan Education Publishing House, 1991.
[2]
梁逸曾, 俞汝勤.化学计量学[M]//分析化学手册.第十分册.第2版.北京: 化学工业出版社, 2000
LIANG YZ, YU RQ.Chemometrics[M]//Handbook of Analytical Chemistry.Vol 10.2nd Ed.Beijing: Chemical Industry Press, 2000
[3]
梁逸曾, 俞汝勤. 化学计量学[M]. 北京: 高等教育出版社, 2003.
LIANG YZ, YU RQ. Chemometrics[M]. Beijing: Higher Education Press, 2003.
[4]
BOOKSH KS, KOWALSKI BR. Theory of analytical chemistry[J]. Anal Chem, 1994, 66(15): 782A. DOI:10.1021/ac00087a718
[5]
WARNER IM, CHRISTIAN GD, DAVIDSON ER, et al. Analysis of multicomponent fluorescence data[J]. Anal Chem, 1977, 49(4): 564. DOI:10.1021/ac50012a016
[6]
HUANG Y, WU Z, SU R, et al. Current application of chemometrics in traditional Chinese herbal medicine research[J]. J Chromatogr B, 2016, 1026: 27. DOI:10.1016/j.jchromb.2015.12.050
[7]
杨婷婷, 袁峰泉, 金荣庆, 等. 绿色分析技术及其在药物分析中的应用研究进展[J]. 药物分析杂志, 2015, 35(12): 2070.
YANG TT, YUAN FQ, JIN RQ, et al. Advances in green analytical techniques and their applications in pharmaceutical analysis[J]. Chin J Pharm Anal, 2015, 35(12): 2070.
[8]
金力超, 范玉明, 侯晓蓉, 等. 色谱联用技术在药物分析中的应用特点和新趋势[J]. 药物分析杂志, 2015, 35(9): 1520.
JIN LC, FAN YM, HOU XR, et al. Application and tendency of chromatographic hyphenated techniques in pharmaceutical analysis[J]. Chin J Pharm Anal, 2015, 35(9): 1520.
[9]
魏学敏, 吴倩, 刘强, 等. 化学计量学-光谱法在药物分析中的应用进展[J]. 药物分析杂志, 2013, 33(8): 1447.
WEI XM, WU Q, LIU Q, et al. Progress on application of chemometrics-spectrometry in pharmaceutical analysis[J]. Chin J Pharm Anal, 2013, 33(8): 1447.
[10]
魏文峰, 王昶, 张树明, 等. 基于化学计量学与代谢组学方法的中药分析研究进展[J]. 中国中医药信息杂志, 2013, 20(10): 108.
WEI WF, WANG C, ZHANG SM, et al. Research progress of traditional Chinese medicine based on chemometrics and metabolomics methods[J]. Chin J Inf TCM, 2013, 20(10): 108. DOI:10.3969/j.issn.1005-5304.2013.10.049
[11]
宋清, 陆峰. 独立组分分析的十种算法综述及其在药物分析中的应用[J]. 药学实践杂志, 2013, 31(1): 1.
SONG Q, LU F. Application of ten independent component analysis methods in pharmaceutical analysis[J]. J Pharm Pract, 2013, 31(1): 1. DOI:10.3969/j.issn.1006-0111.2013.01.001
[12]
李晓冰, 石富国, 宋沁馨, 等. 药物分析研究进展[J]. 药学进展, 2013, 37(8): 360.
LI XB, SHI FG, SONG QX, et al. Progress in pharmaceutical analysis[J]. Prog Pharm Sci, 2013, 37(8): 360.
[13]
ROGGO Y, CHALUS P, MAURER L, et al. A review of near infrared spectroscopy and chemometrics in pharmaceutical technologies[J]. J Pharm Biomed Anal, 2007, 44(3): 683. DOI:10.1016/j.jpba.2007.03.023
[14]
GABRIELSSON J, LINDBERG NO, LUNDSTEDT T. Multivariate methods in pharmaceutical applications[J]. J Chemom, 2002, 16(3): 141. DOI:10.1002/(ISSN)1099-128X
[15]
MONAKHOVA YB, HOLZGRABE U, DIEHL BWK. Current role and future perspectives of multivariate(chemometric)methods in NMR spectroscopic analysis of pharmaceutical products[J]. J Pharm Biomed Anal, 2018, 147: 580. DOI:10.1016/j.jpba.2017.05.034
[16]
RAJALAHTI T, KVALHEIM OM. Multivariate data analysis in pharmaceutics:a tutorial review[J]. Int J Pharm, 2011, 417(1-2): 280. DOI:10.1016/j.ijpharm.2011.02.019
[17]
GINDY AEL, HADAD GM. Chemometrics in pharmaceutical analysis:an introduction, review, and future perspectives[J]. J AOAC Int, 2012, 95(3): 609. DOI:10.5740/jaoacint.SGE_El-Gindy
[18]
CALVO NL, MAGGIO RM, KAUFMAN TS. Characterization of pharmaceutically relevant materials at the solid state employing chemometrics methods[J]. J Pharm Biomed Anal, 2018, 147: 538. DOI:10.1016/j.jpba.2017.06.017
[19]
GOICOECHEA HC, CULZONI MJ, GARCIA MD, et al. Chemometric strategies for enhancing the chromatographic methodologies with second-order data analysis of compounds when peaks are overlapped[J]. Talanta, 2011, 83(4): 1098. DOI:10.1016/j.talanta.2010.07.057
[20]
AZZOUZ T, TAULER R. Application of multivariate curve resolution alternating least squares(MCR-ALS)to the quantitative analysis of pharmaceutical and agricultural samples[J]. Talanta, 2008, 74(5): 1201. DOI:10.1016/j.talanta.2007.08.024
[21]
GÓMEZ V, CALLAO MP. Analytical applications of second-order calibration methods[J]. Anal Chim Acta, 2008, 627(2): 169. DOI:10.1016/j.aca.2008.07.054
[22]
ESCANDAR GM, DAMIANI PC, GOICOECHEA HC, et al. A review of multivariate calibration methods applied to biomedical analysis[J]. Microchem J, 2006, 82(1): 29. DOI:10.1016/j.microc.2005.07.001
[23]
LIANG YZ, WU HL, SHEN GL, et al. Aspects of recent developments in analytical chemometrics[J]. Sci China Ser B, 2006, 49(3): 193. DOI:10.1007/s11426-006-0193-z
[24]
WU HL, NIE JF, YU YJ, et al. Multi-way chemometric methodologies and applications:a central summary of our research work[J]. Anal Chim Acta, 2009, 650(1): 131. DOI:10.1016/j.aca.2009.05.041
[25]
WU HL, LI Y, YU RQ. Recent developments of chemical multiway calibration methodologies with second-order or higher-order advantages[J]. J Chemom, 2014, 28(5): 476. DOI:10.1002/cem.v28.5
[26]
吴海龙, 李勇, 康超, 等. 三维荧光化学多维校正方法研究新进展[J]. 分析化学, 2015, 43(11): 1629.
WU HL, LI Y, KANG C, et al. Research progress of three-dimensional fluorescence coupled with chemical multiway calibration[J]. Chin J Anal Chem, 2015, 43(11): 1629. DOI:10.11895/j.issn.0253-3820.150550
[27]
WU HL, YIN XL, GU HW, et al.Chemometrics in Bioanalytical Chemistry[M]// Encyclopedia of Analytical Chemistry, 2016
[28]
梁逸曾, 吴海龙, 俞汝勤.化学计量学[M]//分析化学手册.第十分册.第3版.北京: 化学工业出版社, 2016
LIANG YZ, WU HL, YU RQ.Chemometrics[M]//Handbook of Analytical Chemistry.Vol 10.3rd Ed.Beijing: Chemical Industry Press, 2016
[29]
袁丽.抗肿瘤药研发线与趋势[N].医药经济报, 2016-08-24(4)
YUAN L.R & D lines and trends of antitumor drugs[N].Medicine Economic Reporter, 2016-08-24(4
[30]
HURTADO-SANCHEZ MC, DURAN-MERAS I, RODRIGUEZ-CACERES MI, et al. Comparison of the predictive ability of several second-order multivariate methods in the simultaneous determination of two therapeutic drugs in human urine[J]. Talanta, 2012, 88(1): 609.
[31]
BRO R. PARAFAC.Tutorial and applications[J]. Chemom Intell Lab Syst, 1997, 38(2): 149. DOI:10.1016/S0169-7439(97)00032-4
[32]
OLIVIERI AC. On a versatile second-order multivariate calibration method based on partial least-squares and residual bilinearization:second-order advantage and precision properties[J]. J Chemom, 2005, 19(4): 253. DOI:10.1002/(ISSN)1099-128X
[33]
SCHENONE AV, CULZONI MJ, CAMPIGLIA AD, et al. Total synchronous fluorescence spectroscopic data modeled with first- and second-order algorithms for the determination of doxorubicin in human plasma[J]. Anal Bioanal Chem, 2013, 405(26): 8515. DOI:10.1007/s00216-013-7261-y
[34]
XIA AL, WU HL, FANG DM, et al. Determination of daunomycin in human plasma and urine by using an interference-free analysis of excitation-emission matrix fluorescence data with second-order calibration[J]. Anal Sci, 2006, 22(9): 1189. DOI:10.2116/analsci.22.1189
[35]
FU HY, WU HL, NIE JF, et al. Highly sensitive fluorescence quantification of irinotecan in biological fluids with the aid of second-order advantage[J]. Chin Chem Lett, 2010, 21(12): 1482. DOI:10.1016/j.cclet.2010.06.040
[36]
XIA AL, WU HL, ZHU SH, et al. Determination of psoralen in human plasma using excitation-emission matrix fluorescence coupled to second-order calibration[J]. Anal Sci, 2008, 24(9): 1171. DOI:10.2116/analsci.24.1171
[37]
尹小丽, 吴海龙, 张晓华, 等. 三维荧光二阶校正同时测定人体液中伊立替康及其代谢物7-乙基-10-羟基喜树碱的含量[J]. 化学学报, 2013, 71(4): 560.
YIN XL, WU HL, ZHANG XH, et al. Simultaneous determination of irinotecan and its metabolite 7-ethyl-10-hydroxycamptothecin in biological fluids using excitation-emission matrix fluorescence coupled with second-order calibration method[J]. Acta Chim Sin, 2013, 71(4): 560.
[38]
王予, 吴海龙, 于永杰, 等. 三维荧光光谱结合交替三线性分解二阶校正法同时测定血浆样中三种抗癌药物含量[J]. 中国科学:化学, 2012, 42(8): 1226.
WANG Y, WU HL, YU YJ, et al. Simultaneous determination of three anticancerogens in plasma samples using second-order calibration method based on alternating trilinear decomposition coupled with fluorescence spectroscopy[J]. Sci Sin Chim, 2012, 42(8): 1226.
[39]
XIANG SX, WU HL, KANG C, et al. Fast quantitative analysis of four tyrosine kinase inhibitors in different human plasma samples using three-way calibration-assisted liquid chromatography with diode array detection[J]. J Sep Sci, 2015, 38(16): 2781. DOI:10.1002/jssc.v38.16
[40]
WU HL, SHIBUKAWA M, OGUMA K. An alternating trilinear decomposition algorithm with application to calibration of HPLC-DAD for simultaneous determination of overlapped chlorinated aromatic hydrocarbons[J]. J Chemom, 1998, 12(1): 1. DOI:10.1002/(ISSN)1099-128X
[41]
LIU Z, WU HL, LI Y, et al. Rapid and simultaneous determination of five vinca alkaloids in Catharanthus roseus and human serum using trilinear component modeling of liquid chromatography-diode array detection data[J]. J Chromatogr B, 2016, 1026: 114. DOI:10.1016/j.jchromb.2015.08.008
[42]
吴颖仪.全球心血管药物Top10[N].医药经济报, 2017-10-30(F 04)
WU YY.Global cardiovascular drug Top10[N].Medicine Economic Reporter, 2017-10-30(F 04
[43]
ZHANG Y, WU HL, XIA AL, et al. Fluorescence determination of metoprolol in human plasma by trilinear decomposition-based calibration techniques[J]. Anal Bioanal Chem, 2006, 386(6): 1741. DOI:10.1007/s00216-006-0732-7
[44]
GU HW, WU HL, LIU YJ, et al. Simultaneous determination of metoprolol and α-hydroxymetoprolol in human plasma using excitation-emission matrix fluorescence coupled with second-order calibration methods[J]. Bioanalysis, 2012, 4(23): 2781. DOI:10.4155/bio.12.265
[45]
XIE HP, CHU X, JIANG JH, et al. Competitive interactions of adriamycin and ethidium bromide with DNA as studied by full rank parallel factor analysis of fluorescence three-way array data[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2003, 59(4): 743. DOI:10.1016/S1386-1425(02)00224-X
[46]
韩清娟, 吴海龙, 聂瑾芳, 等. 三维荧光校正法直接测定尿液中的利血平[J]. 高等学校化学学报, 2007, 28(5): 827.
HAN QJ, WU HL, NIE JF, et al. Direct determination of reserpine in urine using excitation-emission fluorescence combined with three-dimensional chemometric calibration methodologies[J]. Chem J Chin Univ, 2007, 28(5): 827. DOI:10.3321/j.issn:0251-0790.2007.05.005
[47]
HAN QJ, WU HL, NIE JF, et al. Direct determination of reserpine in urine using excitation-emission fluorescence combined with three-way chemometric calibration methodologies[J]. Front Chem China, 2008, 3(2): 224. DOI:10.1007/s11458-008-0043-y
[48]
CHEN ZP, WU HL, JIANG JH, et al. A novel trilinear decomposition algorithm for second-order linear calibration[J]. Chemom Intell Lab Syst, 2000, 52(1): 75. DOI:10.1016/S0169-7439(00)00081-2
[49]
赵娟, 吴海龙, 于丽丽, 等. 三维荧光二阶校正法用于复杂基体样中川芎嗪和替米沙坦的快速定量分析[J]. 分析科学学报, 2011, 27(3): 273.
ZHAO J, WU HL, YU LL, et al. Rapid quantitative analysis of ligustrazine and telmisartan in complex samples using excitation-emission matrix fluorescence coupled with second-order calibration method[J]. J Anal Sci, 2011, 27(3): 273.
[50]
XIAO R, WU HL, HU Y, et al. Simultaneous determination of warfarin and aspirin contents in biological fluids using excitation-emission matrix fluorescence coupled with a second-order calibration method[J]. Anal Sci, 2017, 33(1): 29. DOI:10.2116/analsci.33.29
[51]
DAMIANI PC. Determination of atenolol in human urine by emission-excitation fluorescence matrices and unfolded partial least-squares with residual bilinearization[J]. Talanta, 2011, 85(3): 1526. DOI:10.1016/j.talanta.2011.06.043
[52]
ZOU HY, WU HL, OUYANG LQ, et al. Fluorescent quantification of terazosin hydrochloride content in human plasma and tablets using second-order calibration based on both parallel factor analysis and alternating penalty trilinear decomposition[J]. Anal Chim Acta, 2009, 650(1): 143. DOI:10.1016/j.aca.2009.07.022
[53]
BOOKSH K, HENSHAW JM, BURGESS LW, et al. A second-order standard addition method with application to calibration of a kinetics-spectroscopic sensor for quantitation of trichloroethylene[J]. J Chemom, 1995, 9(4): 263. DOI:10.1002/(ISSN)1099-128X
[54]
XIA AL, WU HL, FANG DM, et al. Alternating penalty trilinear decomposition algorithm for second-order calibration with application to interference-free analysis of excitation-emission matrix fluorescence data[J]. J Chemom, 2005, 19(2): 65. DOI:10.1002/(ISSN)1099-128X
[55]
VALDERRAMA P, POPPI RJ. Determination of propranolol enantiomers in plasma and urine by spectrofluorimetry and second-order standard addition method[J]. Anal Chim Acta, 2009, 651(1): 31. DOI:10.1016/j.aca.2009.08.003
[56]
LI SF, WU HL, YU YJ, et al. Quantitative analysis of levodopa, carbidopa and methyldopa in human plasma samples using HPLC-DAD combined with second-order calibration based on alternating trilinear decomposition algorithm[J]. Talanta, 2010, 81(3): 805. DOI:10.1016/j.talanta.2010.01.019
[57]
ZHAO J, WU HL, NIU JF, et al. Chemometric resolution of coeluting peaks of eleven antihypertensives from multiple classes in high performance liquid chromatography:a comprehensive research in human serum, health product and Chinese patent medicine samples[J]. J Chromatogr B, 2012, 902: 96. DOI:10.1016/j.jchromb.2012.06.032
[58]
GU HW, WU HL, YIN XL, et al. Multi-targeted interference-free determination of ten beta-blockers in human urine and plasma samples by alternating trilinear decomposition algorithm-assisted liquid chromatography-mass spectrometry in full scan mode:comparison with multiple reaction monitoring[J]. Anal Chim Acta, 2014, 848: 10. DOI:10.1016/j.aca.2014.08.052
[59]
王燕芳. 浅析抗感染药引起不良反应的条件及特点[J]. 求医问药, 2013, 11(4): 295.
WANG YF. Analysis of the conditions and characteristics of adverse drug reactions by anti-infectives[J]. Seek Med Ask Med, 2013, 11(4): 295.
[60]
ORTIZ MC, SARABIA LA, SANCHEZ MS, et al. Identification and quantification of ciprofloxacin in urine through excitation-emission fluorescence and three-way PARAFAC calibration[J]. Anal Chim Acta, 2009, 642(1-2): 193. DOI:10.1016/j.aca.2009.01.040
[61]
FANG DM, WU HL, DING YJ, et al. Interference-free determination of fluoroquinolone antibiotics in plasma by using excitation-emission matrix fluorescence coupled with second-order calibration algorithms[J]. Talanta, 2006, 70(1): 58. DOI:10.1016/j.talanta.2006.01.014
[62]
PAGANI AP, IBAEZ GA. Four-way calibration applied to the processing of pH-modulated fluorescence excitation-emission matrices.Analysis of fluoroquinolones in the presence of significant spectral overlapping[J]. Microchem J, 2017, 132: 211. DOI:10.1016/j.microc.2017.01.028
[63]
OLIVIERI AC, ARANCIBIA JA, PENA AM, et al. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares.Determination of methotrexate and leucovorin in human urine[J]. Anal Chem, 2004, 76(19): 5657. DOI:10.1021/ac0493065
[64]
宋晶晶, 吴海龙, 于永杰, 等. 三维荧光光谱二阶校正方法测定血浆样中喷昔洛韦及泛昔洛韦含量[J]. 中国科学:化学, 2010, 40(8): 1136.
SONG JJ, WU HL, YU YJ, et al. Determination of famciclovir and penciclovir in human plasma samples by using excitation-emission matrix fluorescent spectracoupled with second-order calibration[J]. Sci Sin Chim, 2010, 40(8): 1136.
[65]
BRO R, KIERS HAL. A new efficient method for determining the number of components in PARAFAC models[J]. J Chemom, 2003, 17(5): 274. DOI:10.1002/(ISSN)1099-128X
[66]
CANADA-CANADA F, ARANCIBIA JA, ESCANDAR GM, et al. Second-order multivariate calibration procedures applied to high-performance liquid chromatography coupled to fast-scanning fluorescence detection for the determination of fluoroquinolones[J]. J Chromatogr A, 2009, 1216(24): 4868. DOI:10.1016/j.chroma.2009.04.033
[67]
TAULER R. Multivariate curve resolution applied to second order data[J]. Chemom Intell Lab Syst, 1995, 30(1): 133. DOI:10.1016/0169-7439(95)00047-X
[68]
OUYANG LQ, WU HL, LIU YJ, et al. Simultaneous determination of metronidazole and tinidazole in plasma by using HPLC-DAD coupled with second-order calibration[J]. Chin Chem Lett, 2010, 21(10): 1223. DOI:10.1016/j.cclet.2010.04.016
[69]
ZHANG XH, WU HL, WANG JY, et al. Second-order calibration applied to quantification of two active components of Schisandra chinensis in complex matrix[J]. J Pharm Anal, 2012, 2(4): 241. DOI:10.1016/j.jpha.2012.04.002
[70]
张晓华, 吴海龙, 王建瑶, 等. 三维荧光二阶校正方法用于体液和细胞培养基中五味子甲素含量的快速测定[J]. 高等学校化学学报, 2011, 32(8): 1720.
ZHANG XH, WU HL, WANG JY, et al. Determination of schizandrin A in body fluids and cell culture media by excitation-emission matrix fluorescence coupled with second-order calibration[J]. Chem J Chin Univ, 2011, 32(8): 1720.
[71]
LIU YJ, WU HL, KANG C, et al. Four-way self-weighted alternating normalized residue fitting algorithm with application for the analysis of serotonin in human plasma[J]. Anal Sci, 2012, 28(11): 1097. DOI:10.2116/analsci.28.1097
[72]
WANG L, WU HL, YIN XL, et al. Simultaneous determination of umbelliferone and scopoletin in Tibetan medicine Saussurea laniceps and traditional Chinese medicine Radix Angelicae Pubescentis using excitation-emission matrix fluorescence coupled with second-order calibration method[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2017, 170: 104. DOI:10.1016/j.saa.2016.07.018
[73]
HU Y, WU HL, YIN XL, et al. Interference-free spectrofluorometric quantification of aristolochic acid Ⅰ and aristololactam Ⅰ in five Chinese herbal medicines using chemical derivatization enhancement and second-order calibration methods[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2017, 175: 229. DOI:10.1016/j.saa.2016.12.030
[74]
OUYANG LQ, WU HL, NIE JF, et al. Simultaneous determination of psoralen and isopsoralen in plasma and Chinese medicine Xian Ling Gu Bao capsule by using HPLC-DAD coupled with alternating trilinear decomposition algorithm[J]. Anal Chim Acta, 2009, 650(2): 160. DOI:10.1016/j.aca.2009.07.024
[75]
LIU Y, WU H, ZHU S, et al. Rapid determination of costunolide and dehydrocostuslactone in human plasma sample and Chinese patent medicine Xiang Sha Yang Wei capsule using HPLC-DAD coupled with second-order calibration[J]. Chin J Chem, 2012, 30(5): 1137. DOI:10.1002/cjoc.201100677
[76]
MAHEDERO MC, DIAZ NM, PENA AM, et al. Strategies for solving matrix effects in the analysis of sulfathiazole in honey samples using three-way photochemically induced fluorescence data[J]. Talanta, 2005, 65(3): 806. DOI:10.1016/j.talanta.2004.08.055
[77]
YU YJ, WU HL, SHAO SZ, et al. Using second-order calibration method based on trilinear decomposition algorithms coupled with high performance liquid chromatography with diode array detector for determination of quinolones in honey samples[J]. Talanta, 2011, 85(3): 1549. DOI:10.1016/j.talanta.2011.06.044
[78]
NI YN, GU Y, KOKOT S. Multiway calibrations based on spectrofluorimetric data derived from kinetic analysis of the hydrolysis reaction of nitrofurans—A comparison of prediction performance[J]. Chemom Intell Lab Syst, 2012, 112: 55. DOI:10.1016/j.chemolab.2012.01.001
[79]
YU YJ, WU HL, FU HY, et al. Chromatographic background drift correction coupled with parallel factor analysis to resolve coelution problems in three-dimensional chromatographic data:quantification of eleven antibiotics in tap water samples by high-performance liquid chromatography coupled with a diode array detector[J]. J Chromatogr A, 2013, 1302: 72. DOI:10.1016/j.chroma.2013.06.009
[80]
OLIVIERI AC, ARANCIBIA JA, PENA AM, et al. Second-order advantage achieved with four-way fluorescence excitation-emission-kinetic data processed by parallel factor analysis and trilinear least-squares.Determination of methotrexate and leucovorin in human urine[J]. Anal Chem, 2004, 76(19): 5657. DOI:10.1021/ac0493065
[81]
ARANCIBIA JA, OLIVIERI AC, GIL DB, et al. Trilinear least-squares and unfolded-PLS coupled to residual trilinearization:new chemometric tools for the analysis of four-way instrumental data[J]. Chemom Intell Lab Syst, 2006, 80(1): 77. DOI:10.1016/j.chemolab.2005.08.002
[82]
李淑芳, 吴海龙, 夏阿林, 等. 荧光动力学二阶校正法定量分析人血浆样中去甲肾上腺素[J]. 化学学报, 2008, 66(8): 947.
LI SF, WU HL, XIA AL, et al. Quantitative analysis of noradrenaline in human plasma samples using kinetic fluorometric methods coupled with second-order calibration[J]. Acta Chim Sin, 2008, 66(8): 947. DOI:10.3321/j.issn:0567-7351.2008.08.019
[83]
LI SF, WU HL, XIA AL, et al. Quantitative analysis of epinephrine in human plasma samples using kinetic fluorometric method combined with second-order calibration[J]. Anal Sci, 2009, 25(10): 1231. DOI:10.2116/analsci.25.1231
[84]
LI SF, WU HL, HUANG L, et al. Quantitative analysis of fluphenazine hydrochloride in human urine using excitation-emission matrix fluorescence based on oxidation derivatization and combined with second-order calibration methods[J]. Anal Methods, 2010, 2(8): 1069. DOI:10.1039/b9ay00299e
[85]
XIE LX, WU HL, FANG Y, et al. Simultaneous determination of tyrosine and levodopa in human plasma using enzyme-induced excitation-emission-kinetic third-order calibration method[J]. Chemom Intell Lab Syst, 2015, 148: 9. DOI:10.1016/j.chemolab.2015.08.023
[86]
QING XD, WU HL, YAN XF, et al. Development of a novel alternating quadrilinear decomposition algorithm for the kinetic analysis of four-way room-temperature phosphorescence data[J]. Chemom Intell Lab Syst, 2014, 132(3): 8.
[87]
LUCA MD, MAS S, IOELE G, et al. Kinetic studies of nitrofurazone photodegradation by multivariate curve resolution applied to UV-spectral data[J]. Int J Pharm, 2010, 386(1-2): 99. DOI:10.1016/j.ijpharm.2009.11.003
[88]
YIN XL, WU HL, GU HW, et al. Second-order calibration method applied to process three-way excitation-emission-kinetic fluorescence data:a novel tool for real-time quantitative analysis of the lactone hydrolysis of irinotecan in human plasma[J]. Chemom Intell Lab Syst, 2015, 146: 447. DOI:10.1016/j.chemolab.2015.06.018
[89]
YIN XL, GU HW, LIU XL, et al. Comparison of three-way and four-way calibration for the real-time quantitative analysis of drug hydrolysis in complex dynamic samples by excitation-emission matrix fluorescence[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2018, 192(Supplement C): 437.
[90]
KANG C, WU HL, ZHOU C, et al. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage[J]. Anal Chim Acta, 2016, 910: 36. DOI:10.1016/j.aca.2015.12.047
[91]
XIA AL, WU HL, LI SF, et al. Study of the interactions of berberine and daunorubicin with DNA using alternating penalty trilinear decomposition algorithm combined with excitation-emission matrix fluorescence data[J]. Talanta, 2007, 73(4): 606. DOI:10.1016/j.talanta.2007.04.020
[92]
ZOU HY, WU HL, ZHANG Y, et al. Studying the interaction of pirarubicin with DNA and determining pirarubicin in human urine samples:combining excitation-emission fluorescence matrices with second-order calibration methods[J]. J Fluoresc, 2009, 19(6): 955. DOI:10.1007/s10895-009-0495-6
[93]
WANG Y, ZHU R, NI Y, et al. Competitive interactions of anti-carcinogens with serum albumin:a spectroscopic study of bendamustine and dexamethasone with the aid of chemometrics[J]. Spectrochim Acta Part A Mol Biomol Spectrosc, 2014, 123: 241. DOI:10.1016/j.saa.2013.12.063
[94]
ZHAI M, WU H, ZHANG S, et al. Interaction of epicatechin with bovine serum albumin using fluorescence quenching combined with chemometrics[J]. Sci China Chem, 2013, 57(5): 748.
[95]
XIE LX, WU HL, KANG C, et al. Quantitative investigation of the dynamic interaction of human serum albumin with procaine using a multi-way calibration method coupled with three-dimensional fluorescence spectroscopy[J]. Anal Methods, 2015, 7(16): 6552. DOI:10.1039/C5AY00790A
[96]
吴海龙, 莫翠云, 曹玉珍, 等. 交替三线性分解校正法与荧光分析法相结合同时测定阿米洛利、心得安和潘生丁[J]. 计算机与应用化学, 2002, 19(1): 15.
WU HL, MO CY, CAO YZ, et al. Simultaneous spectrofluorimetric determination of amiloride propranolol and dipyridamole using alternating trilinear decomposition alorithm[J]. Comput Appl Chem, 2002, 19(1): 15. DOI:10.3969/j.issn.1001-4160.2002.01.005
[97]
NIE JF, WU HL, XIA AL, et al. Determination of sulpiride in human urine using excitation-emission matrix fluorescence coupled with second-order calibration[J]. Anal Sci, 2007, 23(12): 1377. DOI:10.2116/analsci.23.1377
[98]
张喜华, 吴海龙, 康超, 等. 化学计量学二阶校正法结合三维荧光光谱技术同时快速测定人血清样中西酞普兰、氟西汀和帕罗西汀含量[J]. 精细化工中间体, 2013, 43(1): 63.
ZHANG XH, WU HL, KANG C, et al. Simultaneous and rapid determination of citalopram, fluoxetine and paroxetine contents in human serum samples using three-dimensional fluorescence technique coupled with chemometric secondorder calibration[J]. Fine Chem Intermed, 2013, 43(1): 63.
[99]
邵圣枝, 吴海龙, 李淑芳, 等. 三维荧光二阶校正法用于尿液样和血浆样中左旋多巴的定量测定[J]. 分析科学学报, 2010, 26(4): 373.
SHAO SZ, WU HL, LI SF, et al. Determination of levodopa in both human urine and plasma samples using excitation-emission matrix fluorescence coupled with second-order calibration[J]. J Anal Sci, 2010, 26(4): 373.
[100]
LI SS, WU HL, LIU YJ, et al. Simultaneous determination of tyrosine and dopamine in urine samples using excitation-emission matrix fluorescence coupled with second-order calibration[J]. Chin Chem Lett, 2013, 24(3): 239. DOI:10.1016/j.cclet.2013.01.044
[101]
ZOU HY, WU HL, LI YN, et al. Simultaneous determination of dextromethorphan and quinidine contents in biological fluid samples using excitation-emission matrix fluorescence coupled with second-order calibration methods[J]. Anal Lett, 2010, 43(17): 2739. DOI:10.1080/00032711003763541
[102]
LIU YJ, WU HL, NIE JF, et al. Simultaneous determination of dextromethorphan and its metabolite dextrorphan in plasma samples using second-order calibration coupled with excitation-emission matrix fluorescence[J]. Anal Sci, 2011, 27(6): 663. DOI:10.2116/analsci.27.663
[103]
曹莹, 吴海龙, 朱绍华, 等. 三维荧光二阶校正法用于尿液样中氢化可的松的定量测定[J]. 分析科学学报, 2008, 24(6): 621.
CAO Y, WU HL, ZHU SH, et al. Quantitative analysis of hydrocortisone in urine sample using three-dimensional fluorescence spectrum analysis coupled with second-order calibration[J]. J Anal Sci, 2008, 24(6): 621.
[104]
ZHANG Y, WU HL, DING YJ, et al. Simultaneous determination of cortisol and prednisolone in body fluids by using HPLC-DAD coupled with second-order calibration based on alternating trilinear decomposition[J]. J Chromatogr B, 2006, 840(2): 116. DOI:10.1016/j.jchromb.2006.04.043
[105]
GU HW, WU HL, LI SS, et al. Chemometrics-enhanced full scan mode of liquid chromatography-mass spectrometry for the simultaneous determination of six co-eluted sulfonylurea-type oral antidiabetic agents in complex samples[J]. Chemom Intell Lab Syst, 2016, 155: 62. DOI:10.1016/j.chemolab.2016.04.001
[106]
YU YJ, WU HL, KANG C, et al. Algorithm combination strategy to obtain the second-order advantage:simultaneous determination of target analytes in plasma using three-dimensional fluorescence spectroscopy[J]. J Chemom, 2012, 26(5): 197. DOI:10.1002/cem.v26.5
[107]
HU Y, WU HL, YIN XL, et al. Chemometrics-assisted determination of amiloride and triamterene in biological fluids with overlapped peaks and unknown interferences[J]. Bioanalysis, 2015, 7(13): 1685. DOI:10.4155/bio.15.88
[108]
于丽丽, 吴海龙, 付海燕, 等. 三维荧光二阶校正法快速测定人尿样中奥沙普秦含量[J]. 分析化学, 2011, 39(1): 27.
YU LL, WU HL, FU HY, et al. Rapid determination of oxaprozin contents in urine and combined pharmacotherapy samples using three-dimensional fluorescence coupled with second-order calibration methods[J]. Chin J Anal Chem, 2011, 39(1): 27.
[109]
王童, 吴海龙, 谢丽霞, 等. 三维荧光二阶校正法同时快速测定人体液中两种非甾体抗炎药萘普生和二氟尼柳[J]. 精细化工中间体, 2017, 47(5): 79.
WANG T, WU HL, XIE LX, et al. Fast and simultaneous determination of naproxen and diflunisal in biological fluids using excitation-emission matrix fluorescence coupled with second-order calibration method[J]. Fine Chem Intermed, 2017, 47(5): 79.
[110]
WANG T, WU HL, XIE LX, et al. Simultaneous and interference-free determination of eleven non-steroidal anti-inflammatory drugs illegally added into Chinese patent drugs using chemometrics-assisted HPLC-DAD strategy[J]. Sci China Chem, 2018, 61(6): 739. DOI:10.1007/s11426-017-9210-8
[111]
CHEN Y, WU HL, WANG J, et al. Chemometrics-assisted excitation-emission fluorescence spectroscopy for simultaneous determination of ethoxyquin and tert-butylhydroquinone in biological fluid samples[J]. Sci China Chem, 2012, 56(5): 664.
[112]
KANG C, WU HL, XIANG SX, et al. Simultaneous determination of aromatic amino acids in different systems using three-way calibration based on the PARAFAC-ALS algorithm coupled with EEM fluorescence:exploration of second-order advantages[J]. Anal Methods, 2014, 6(16): 6358. DOI:10.1039/C4AY00943F
[113]
KANG C, WU HL, XIE LX, et al. Direct quantitative analysis of aromatic amino acids in human plasma by four-way calibration using intrinsic fluorescence:exploration of third-order advantages[J]. Talanta, 2014, 122: 293. DOI:10.1016/j.talanta.2014.01.036
[114]
XIA H, WU HL, GU HW, et al. Simultaneous determination of naphazoline and pyridoxine in eye drops using excitation-emission matrix fluorescence coupled with second-order calibration method based on alternating trilinear decomposition algorithm[J]. Chin Chem Let, 2015, 26(12): 1446. DOI:10.1016/j.cclet.2015.07.015
[115]
张燕, 吴海龙, 欧阳立群, 等. 激发-发射矩阵荧光结合二阶校正法测定人体血浆样和牛蒡子药材中的牛蒡苷含量[J]. 计算机与应用化学, 2009, 26(6): 697.
ZHANG Y, WU HL, OUYANG LQ, et al. Determination of arctiin in plasma samples and Arctium lappa L.by using excitation-emission matrix fluoresence and second-order calibration based on parallel factor analysis/ alternating normalization-weighted error algorithms[J]. Comput Appl Chem, 2009, 26(6): 697. DOI:10.3969/j.issn.1001-4160.2009.06.002
[116]
吴海龙, 张娟, 王建瑶, 等. 三维荧光二阶校正测定细胞培养基样中山姜素[J]. 湖南大学学报(自然科学版), 2011, 38(8): 50.
WU HL, ZHANG J, WANG JY, et al. Determination of alpinetin in cell culture medium samples by using three-dimensional fluorescence coupled with second-order calibration[J]. J Hunan Univ(Nat Sci), 2011, 38(8): 50.
[117]
牛景芳, 吴海龙, 于永杰, 等. 三维荧光二阶校正法直接快速测定血浆样中川芎嗪和阿魏酸含量[J]. 计算机与应用化学, 2011, 28(5): 3.
NIU JF, WU HL, YU YJ, et al. Simultaneous determination of ligustrazine and ferulic acid in human plasma samples by combining excitation-emission matrix fluorescence with second-order calibration[J]. Comput Appl Chem, 2011, 28(5): 3.
[118]
江军朵, 吴海龙, 夏阿林, 等. 三维荧光光谱结合二阶校正算法测定人体血浆和厚朴药材中的厚朴酚及和厚朴酚[J]. 高等学校化学学报, 2008, 29(1): 71.
JIANG JD, WU HL, XIA AL, et al. Determination of honokiol and magnolol in both human plasma and Cortex Magnoliae Officinalis by second-order calibration coupled to three-dimensional excitation-emission fluorescence spectra[J]. Chem J Chin Univ, 2008, 29(1): 71. DOI:10.3321/j.issn:0251-0790.2008.01.014
[119]
孙翔宇, 吴海龙, 陆剑忠, 等. 三维荧光光谱法结合交替三线性分解算法同时分辨及定量测定秦皮中的秦皮甲素和秦皮乙素成分[J]. 分析科学学报, 2005, 21(2): 149.
SUN XY, WU HL, LU JZ, et al. Simultaneous resolution and determination of aesculin and aesculetin in Cortex Fraxini by emission-excitation matrix fluorometry coupled with alternating trilinear decomposition algorithm[J]. J Anal Sci, 2005, 21(2): 149. DOI:10.3969/j.issn.1006-6144.2005.02.009
[120]
翟敏, 吴海龙, 方焕, 等. 三维荧光光谱结合交替三线性分解方法同时测定人血浆样中姜黄素和双去甲氧基姜黄素含量[J]. 精细化工中间体, 2015, 45(5): 63.
ZHAI M, WU HL, FANG H, et al. Rapid quantitative analysis of curcumin and bisdemethoxy-curcumin in human plasma samples using excitation-emission matrix fluorescence coupled with alternating trilinear decomposition method[J]. Fine Chem Intermed, 2015, 45(5): 63.
[121]
许慧, 吴海龙, 刘亚娟, 等. 高效液相色谱-二极管阵列检测方法结合交替三线性分解算法快速定量测定中药黄芩中的黄芩素和汉黄芩素[J]. 精细化工中间体, 2011, 41(2): 68.
XU H, WU HL, LIU YJ, et al. Simultaneous determination of baicalein and wogonin in Chinese medicinal plant Scutellaria baicalensis using HPLC-DAD coupled with alternating trilinear decomposition[J]. Fine Chem Intermed, 2011, 41(2): 68.
[122]
苏志义, 吴海龙, 刘亚娟, 等. HPLC-DAD结合交替三线性分解二阶校正方法进行中药葛根中主要有效成分同时测定[J]. 化学学报, 2012, 70(4): 459.
SU ZY, WU HL, LIU YJ, et al. Simultaneous determination of main effective constituents in traditional Chinese medicine kudzuvine root using HPLC-DAD coupled with second-order calibration based on alternating trilinear decomposition[J]. Acta Chim Sin, 2012, 70(4): 459.
[123]
ZHANG XH, WU HL, YIN XL, et al. Exploiting third-order advantage using four-way calibration method for direct quantitative analysis of active ingredients of Schisandra chinensis in DMEM by processing four-way excitation-emission-solvent fluorescence data[J]. Chemom Intell Lab Syst, 2016, 155: 46. DOI:10.1016/j.chemolab.2016.04.008