期刊检索:
  药物分析杂志   2018, Vol. 38 Issue (1): 29-33.  DOI: 10.16155/j.0254-1793.2018.01.04
0

糖类分析专栏

引用本文 [复制中英文]

陈凌霄, 钟如此, 赵静, 李绍平. 薄层色谱结合气相色谱-质谱法评价几种市售功能糖质量[J]. 药物分析杂志, 2018, 38(1): 29-33. DOI: 10.16155/j.0254-1793.2018.01.04.
[复制中文]
CHEN Ling-xiao, ZHONG Ru-ci, ZHAO Jing, LI Shao-ping. Quality evaluation of commercial functional saccharides by TLC and GC-MS[J]. Chinese Journal of Pharmaceutical Analysis, 2018, 38(1): 29-33. DOI: 10.16155/j.0254-1793.2018.01.04.
[复制英文]

基金项目

国家自然科学基金(No.81673389和No.81603069);澳门科学技术发展基金项目(074/2016/A2、034/2017/A1和040/2016/A);澳门大学研究基金(MYRG2015-00202和MYRG2015-00122)

第一作者

陈凌霄, Tel:+853-88222625, E-mail:yb47517@umac.mo;
钟如此, Tel:+853-88222625, E-mail:mb45827@umac.mo

通信作者

赵静, Tel:+853-88224873, E-mail:zhaojing.cpu@163.com
李绍平, Tel:+853-88224692, E-mail:lishaoping@hotmail.com

文章历史

收稿日期:2017-10-16
薄层色谱结合气相色谱-质谱法评价几种市售功能糖质量
陈凌霄 , 钟如此 , 赵静 , 李绍平     
澳门大学中药质量研究国家重点实验室, 中国澳门 999078
摘要目的:建立基于薄层色谱(TLC)结合气相色谱-质谱(GC-MS)法评价市售功能糖质量。方法:首先应用TLC结合苯胺-二苯胺显色对功能糖样品进行初步鉴定,然后应用甲基化反应结合GC-MS分析,确定其糖苷键类型及其比例。TLC展开剂为正丁醇-异丙醇-水-醋酸(7:5:2:1);用于糖苷键分析的毛细管色谱柱为HP-5MS(30 m×0.25 mm×0.25 μm),进样量1 μL,程序升温条件为起始温度120℃,以5℃·min-1升温至200℃,以8℃·min-1升温至250℃,以20℃·min-1升至280℃。结果:乳果糖样品TLC呈单一条带且显红色,但其不含t-Galp,说明样品与标示不符。大豆低聚糖样品TLC条带颜色及糖苷键分析结果与蔗糖和棉子糖系列寡糖相近,说明产品中可能含有蔗糖、棉子糖、水苏糖等。海藻糖样品TLC显色较弱,仅含有t-Glcp,说明产品可能含有海藻糖但糖含量较低。低聚果糖样品部分条带显红色,与低聚果糖特征一致;但t-Glcp含量较高,说明还含有低聚葡萄糖成分。低聚木糖条带颜色明显不同于对照品,且样品中未检出与木糖相关糖苷键,提示特征与标示产品不符。结论:检测的市售乳果糖和低聚木糖样品与标示不符,存在明显质量问题,低聚果糖中可能混有低聚葡萄糖。
关键词功能糖    寡糖    乳果糖    大豆低聚糖    低聚果糖    低聚木糖    海藻糖    糖苷键    质量评价    薄层色谱    气质联用    
Quality evaluation of commercial functional saccharides by TLC and GC-MS
CHEN Ling-xiao, ZHONG Ru-ci, ZHAO Jing, LI Shao-ping    
State Key Laboratory of Quality Research in Chinese Medicine, University of Macau, Macao 999078, China
Abstract: Objective: To establish an effective method, based on TLC and GC-MS, for quality evaluation of commercial functional saccharides. Methods: TLC was used to separate saccharides and colorized with aniline-diphenylamine agent for preliminary identification. Methylation combined with GC-MS analysis was employed to analyze the glycosidic linkages. TLC developing solvent was 1-butanol-isopropanol-water-acetic acid(7:5:2:1). Capillary column for glycosidic linkages analysis was HP-5MS (30 m×0.25 mm×0.25 μm) and the injection volume was 1 μL. The column temperature was set at 120 and then programmed at 5℃·min-1 to 200℃, then at 8℃·min-1 to 250℃, and finally, at 20℃·min-1 to 280℃. Results: A single red band was detected in TLC chromatogram of lactulose sample but t-Galp was not found. This indicated that the sample was not in accordance with its claimed characters. The TLC band and glycosidic linkage of soybean oligosaccharides were similar with those of sucrose and raffinose family oligosaccharides, which indicated that the sample might contain sucrose, raffinose and stachyose. TLC band of trehalose was not obvious with only t-Glcp being detected, which was in accordance with the characters of trehalose, but the content of saccharides was low. High ratio of t-Glcp was detected in fructo-oligosaccharides, indicating that glucose-oligosaccharides also existed in this sample. The band color of xylo-oligosaccharides sample was significantly different from the reference and no xylose type linkages were detected, which suggested the sample was not in accordance with the claimed characters. Conclusion: Investigation results of lactulose, fructo-oligosaccharides and xylo-oligosaccharides samples did not conformed to their claimed characters, indicating obvious quality defect. And glucose-oligosaccharides might exist in fructo-oligosaccharides samples.
Key words: functional saccahrides    oligosaccharides    lactulose    soybean oligosaccharides    fructo-oligosaccharides    xylo-oligosaccharides    trehalose    glycosidic linkage    quality evaluation    TLC    GC-MS    

低聚糖,又称寡糖,包括功能性低聚糖和普通低聚糖2类[1-2],其中功能性低聚糖是指由2~10个单糖,通过糖苷键聚合而成,可代替蔗糖但不被人体胃酸、胃酶降解,不被小肠吸收直接进入大肠的一类糖[3-5]。功能性低聚糖具有低热、稳定、安全无毒等良好理化性质,可改善肠道菌群,提高机体免疫力[6]。目前,功能性低聚糖产品有数十种,主要为低聚果糖、低聚木糖、海藻糖、乳果糖、大豆低聚糖等[5, 7-8]

由于糖类结构复杂,分析难度大,市场上功能糖产品质量参差不齐,一来严重损害消费者利益,二来不利于功能糖产品市场健康发展。因此,建立功能糖质量评价方法十分必要。功能糖质量评价关键应包括组成单糖种类、糖苷键类型、不同聚合度组分和纯度等。目前,糖苷键分析方法主要有GC-MS法、LC-MS法、NMR法等[9],而低聚糖单糖组成、聚合度和纯度,可应用TLC、HPLC-ELSD/CAD、LC-MS等方法分析[10-12]。由于TLC法简便、快捷,对低聚糖有较好的分离度且可通过显色区分,快速初步了解寡糖种类、纯度和聚合度;甲基化GC-MS法可了解组成糖和糖苷键,有利相同聚合度寡糖区分。因此,本文采用TLC结合甲基化GC-MS法对市售低聚糖质量进行评价。

1 仪器与试药 1.1 仪器

安捷伦公司Agilent 6890气相色谱仪配置5973 NMSD质谱检测器;安捷伦公司Agilent 19091S-433 HP-5MS毛细管柱(30 m×0.25 mm× 0.25 μm;涂层:(5%-苯基)-甲基聚硅氧烷);CTC公司CombiPAL自动进样器;Desaga公司TLC点样系统;Merck公司硅胶薄层板。

1.2 试药

乳果糖(98%)、大豆低聚糖(80%)、海藻糖(99%)、低聚果糖(95%)、低聚木糖(95%)均产自西安某厂,购于澳门山有行有限公司;棉子糖系列寡糖(棉子糖,水苏糖)为实验室自制,其纯度大于97%(w/w,HPLC-CAD法测定)[13]。葡萄糖和蔗糖对照品,硼氢化钠(98.5%)、吡啶(99.8%)、乙酸酐(99.5%)购自Sigma公司,对照低聚木糖(95%)购自鹤壁市泰新科技有限公司,无水二甲基亚砜,氢氧化钠(97%),分析级三氟乙酸、氢氧化铵、醋酸、苯胺、二苯胺购于上海阿拉丁公司,色谱级甲醇购买于Merck公司。分析级正丁醇、异丙醇、二氯甲烷购买于天津市富宇精细化工有限公司,碘甲烷(99%)购买于山东西亚化学工业有限公司。

2 试验方法与结果 2.1 TLC分析

TLC法参照文献报道方法进行[14-15]。取各低聚糖样品,配制成质量浓度为2.0 mg·mL-1的供试品溶液。薄层板为默克硅胶板,点样量为3 μL,展开剂为正丁醇-异丙醇-水-醋酸(7:5:2:1),展开至95 mm,取出吹干,用苯胺-二苯胺显色剂进行显色,显色后放置于加热板上105 ℃加热10 min,在日光灯下观察。

对市售寡糖样品进行TLC分析,结果见图 1。乳果糖在TLC上呈现单一条带,但位置与葡萄糖一致,显红色,是否为二糖有待进一步分析。大豆低聚糖与对照品棉子糖系列寡糖条带颜色及位置基本一致,说明其中可能含有棉子糖系列寡糖,符合大豆低聚糖特征。海藻糖在TLC板上显色不明显,说明该产品含糖量很低。低聚果糖中有一明显条带与蔗糖的颜色、位置一致,且含多个二糖以上的低聚糖,符合低聚果糖基本特征。低聚木糖产品条带较杂,且与低聚木糖对照品条带位置和颜色不一致,提示产品中主要为其他类型的低聚糖。

1.乳果糖(98%)[lactulose(98%)] 2.大豆低聚糖(80%)[soybean oligosaccharides(80%)] 3.海藻糖(99%)[mycose(99%)] 4.低聚果糖(95%)[fructo-oligosaccharide(95%)] 5.低聚木糖(95%)[xylo-oligosaccharide(95%)] 6.葡萄糖(a)和蔗糖(b)[glucose(a)and sucrose(b)] 7.对照低聚木糖(95%)(c.木糖d.木二糖e.木三糖)[reference of xylo-oligosaccharide(95%)with xylose(c),xylobiose(d)and xylotriose(e)] 8.棉子糖(g)和水苏糖(h)[raffinose(g)and stachyose(h)] 图 1 市售功能糖样品TLC图谱 Figure 1 TLC chromatogram of reference and commercial functional saccharides
2.2 糖苷键分析

称取低聚糖样品3 mg,加入无水二甲基亚砜1 mL,充分溶解,随后加入氢氧化钠约20 mg,置于常温超声(250 W,44 kHz)溶解10 min;再加入碘甲烷100 μL,利用微波辅助甲基化,微波功率为200 W,反应时间4 min,冷却后加去离子水1 mL终止反应,加入1 mL二氯甲烷萃取2次,取下层,氮吹干燥;加入三氟乙酸至终浓度2 mol·L-1,封管,微波辅助水解(500 W,4 min),反应结束后,氮吹干燥;加入2 mol·L-1氢氧化铵溶液(含有1 mol·L-1硼氢化钠)1 mL还原,置于常温搅拌1 h;加入50 μL乙酸终止反应,氮吹干燥,加入200 μL甲醇和5 μL乙酸干燥2次,最后加入200 μL甲醇干燥;加入吡啶0.5 mL和乙酸酐0.5 mL进行乙酰化反应,90 ℃反应30 min。反应后加入水1 mL和二氯甲烷1 mL萃取2次,收集二氯甲烷层,氮吹干燥,加入1 mL甲醇复溶,即得供试品溶液。待GC-MS分析。

GC-MS分析条件:采用Agilent 19091S-433 HP-5MS毛细管柱(30 m×0.25 mm×0.25 μm),进样口温度250 ℃,载气为He气,柱流量1.0 mL·min-1,分流进样,分流比25:1,进样量1 μL,柱温为程序升温(初始温度120 ℃,以5 ℃·min-1的速率程序升温至200 ℃,以8 ℃·min-1的速率程序升温至250 ℃,以20 ℃·min-1升至280 ℃)。市售乳果糖、大豆低聚糖、海藻糖、低聚果糖、低聚木糖产品按上法进行GC-MS分析,结果见图 2。乳果糖,又称4-O-β-D-吡喃半乳糖基-D-果糖,由半乳糖和果糖以β-1,4糖苷键连接而成[16];大豆低聚糖中主要应含有棉子糖系列寡糖(如棉子糖、水苏糖等),其糖苷键应以t-Fruf、t-Glcp、1,6-Galp、1,6-Glcp为主[13, 17];海藻糖,化学名称又为α-D-吡喃葡萄糖基-α-D-吡喃葡萄糖苷,其糖苷键只含有t-Glcp[18]。低聚果糖,应含有t-Fruf及2,1-Fruf[19];低聚木糖应含有t-Xylp及1,4-Xylp[20]。乳果糖样品GC-MS结果显示含t-Fruf和t-Glcf,不含t-Galp,说明产品非乳果糖。大豆低聚糖显示含t-Fruf、t-Glcp、1,6-Glcp和1,6-Galp,与棉子糖系列寡糖甲基化结果一致,说明产品中可能含有蔗糖、棉子糖、水苏糖等,符合大豆聚糖特征。海藻糖样品中仅含t-Glcp,符合产品特征,但TLC显色浅,说明产品纯度低。低聚果糖样品中t-Glcf较高(表 1),说明其中含有较多非低聚果糖成分。对照低聚木糖中含有t-Xylp及1,4-Xylp,而低聚木糖样品中含有t-Fruf、t-Glcp、1,4-Glcp及2,1-Fruf,但未检出木糖相关糖苷键,说明产品中主要为其他类型低聚糖。

A.乳果糖(lactulose)B.大豆低聚糖(soybean oligosaccharides)C.低聚果糖(fructo-oligosaccharide)D.低聚木糖(xylo-oligosaccharides)E.海藻糖(trehalose)F.对照低聚木糖(reference of xylo-oligosaccharides) 图 2 市售功能糖糖苷键分析 Figure 2 Analysis of glycosidic linkages in commercial functional saccharides

表 1 市售功能糖样品糖苷键连接类型及摩尔比例 Table 1 The glycosidic linkages and their molar ratio of the commercial functional saccharides
3 结论

应用薄层色谱结合苯胺-二苯胺显色和甲基化GC-MS分析,可对功能糖特征和纯度等进行评价,以了解其质量。几种市售功能质量评价结果显示:市售乳果糖和低聚木糖样品与标示不符,存在明显质量问题,低聚果糖中可能混有低聚葡萄糖,海藻糖样品中可检出海藻糖,但糖含量较低。

参考文献
[1]
张桂生, 郑素琴, 李艳. 功能性低聚糖的生理功效及开发[J]. 中国食物与营养, 2004(4): 20.
ZHANG GS, ZHENG SQ, LI Y. Development and biological effect of functional oligosaccharides[J]. Food Nutr China, 2004(4): 20.
[2]
吴昊, 杨思行, 张艳杰. 功能性低聚糖的开发现状及在食品中的应用[J]. 中国乳品工业, 2001, 29(3): 41.
WU H, YANG SX, ZHANG YJ. The current studing of functional oligosaccharides and their application in food[J]. China Dairy Ind, 2001, 29(3): 41.
[3]
汪清美, 杨海军, 赵志军. 功能性低聚糖的发展及其生理功能[J]. 天津农业科学, 2015, 21(6): 70.
WANG QM, YANG HJ, ZHAO ZJ. Development and physiological function of functional oligosaccharide[J]. Tianjin Agric Sci, 2015, 21(6): 70.
[4]
尤新. 低聚糖的功能和发展前景[J]. 食品与药, 2007, 9(11): 1.
YOU X. The function and development prospect of oligosaccharide[J]. Food Drug, 2007, 9(11): 1. DOI:10.3969/j.issn.1672-979X.2007.11.001
[5]
QB/T 2492-2000功能性低聚糖通用技术规则[S]. 2000
QB/T 2492-2000 General Technical Rules of Functional Oligosaccharides[S]. 2000
[6]
操然. 功能性低聚糖改善肠道机理及其在乳品中的应用[J]. 科教文汇旬刊, 2015(22): 177.
CAO R. The improvement of intestinal mechanism with functional oligosaccharide and its application in dairy products[J]. Sci Educ Art Collect, 2015(22): 177.
[7]
唐春江, 邓放明, 王乔隆, 等. 大豆低聚糖的研究进展[J]. 农产品加工:学刊, 2008, 33(2): 33.
TANG CJ, DENG FM, WANG QL, et al. Research progress of soybean oligosaccharides[J]. Acad Period Farm Prod Proce, 2008, 33(2): 33.
[8]
尤新. 功能性低聚糖发展动向及前景[J]. 中国食品添加剂, 2008(3): 45.
YOU X. Development trends and prospects of functional oligosaccharides[J]. China Food Addit, 2008(3): 45.
[9]
CHEONG KL, MENG LZ, CHEN XQ, et al. Structural elucidation, chain conformation and immuno-modulatory activity of glucogalactomannan from cultured Cordyceps sinensis fungus UM 01[J]. J Funct Foods, 2016, 25: 174. DOI:10.1016/j.jff.2016.06.002
[10]
LI J, LIU X, ZHOU B, et al. Determination of fructooligosaccharides in burdock using HPLC and microwave-assisted extraction[J]. J Agric Food Chem, 2013, 61(24): 5888. DOI:10.1021/jf400534n
[11]
LI J, HU DJ, ZONG WR, et al. Determination of inulin-type fructooligosaccharides in edible plants by high-performance liquid chromatography with charged aerosol detector[J]. J Agric Food Chem, 2014, 62(31): 7707. DOI:10.1021/jf502329n
[12]
WU DT, CHEONG KL, DENG Y, et al. Characterization and comparison of polysaccharides from Lycium barbarum in China using saccharide mapping based on PACE and HPTLC[J]. Carbohydr Polym, 2015, 134: 12. DOI:10.1016/j.carbpol.2015.07.052
[13]
ZONG WY, CHEONG KL, WU DT, et al. Preparation and purification of raffinose family oligosaccharides from Rehmannia glutinosa Libosch. by fast protein liquid chromatography coupled with refractive index detection[J]. Sep Purif Technol, 2014, 138: 98. DOI:10.1016/j.seppur.2014.10.001
[14]
WU DT, CHEONG KL, WANG LY, et al. Characterization and discrimination of polysaccharides from different species of Cordyceps using saccharide mapping based on PACE and HPTLC[J]. Carbohydr Polym, 2014, 103: 100. DOI:10.1016/j.carbpol.2013.12.034
[15]
DENG Y, CHEN LX, HAN BX, et al. Qualitative and quantitative analysis of specific polysaccharides in Dendrobium huoshanense by using saccharide mapping and chromatographic methods[J]. J Pharm Bioorg Med Chem, 2016, 129: 163.
[16]
刘芳, 杨瑞金, 张文斌, 等. 薄层色谱法快速分析乳果糖[J]. 食品与发酵工业, 2008, 34(1): 119.
LIU F, YANG RJ, ZHANG WB, et al. Rapid determination of lactulose by a thin-layer chromatography method[J]. Food Ferment Ind, 2008, 34(1): 119.
[17]
杨秀芳, 陈梅, 马养民. 大豆低聚糖功能及其应用[J]. 粮食与油脂, 2010(5): 8.
YANG XF, CHEN M, MA YM. Function and application of soybean oligosaccharides[J]. Cereal Oil, 2010(5): 8.
[18]
靳文斌, 李克文, 胥九兵, 等. 海藻糖的特性、功能及应用[J]. 精细与专用化学品, 2015, 23(1): 30.
JIN WB, LI KW, XU JB, et al. The character and function of trehalose and its application[J]. Fine Spec Chem, 2015, 23(1): 30.
[19]
LI J, CHEONG KL, ZHAO J, et al. Preparation of inulin-type fructooligosaccharides using fast protein liquid chromatography[J]. J Chromatogr A, 2013, 1308: 52. DOI:10.1016/j.chroma.2013.08.012
[20]
YANG ZY, WU DT, CHEN CW, et al. Preparation of xylooligosaccharides from xylan by controlled acid hydrolysis and fast protein liquid chromatography coupled with refractive index detection[J]. Sep Purif Technol, 2016, 171: 151. DOI:10.1016/j.seppur.2016.06.051