岩石学报  2022, Vol. 38 Issue (2): 513-528, doi: 10.18654/1000-0569/2022.02.14   PDF    
湖南瑶岗仙矽卡岩型白钨矿床成矿流体演化特征研究
于志峰1,2, 赵正2, 王艳丽3, 祝新友4, 尹政1, 李宏伟1     
1. 中国地质大学(北京)地球科学与资源学院, 北京 100083;
2. 中国地质科学院矿产资源研究所, 自然资源部成矿作用与资源评价重点实验室, 北京 100037;
3. 北京矿产地质研究院, 北京 100012;
4. 中色紫金地质勘查(北京)有限责任公司, 北京 100012
摘要: 湖南瑶岗仙超大型钨矿床位于南岭成矿带中段,主要由石英脉型黑钨矿矿脉和矽卡岩型白钨矿矿体组成。前人对瑶岗仙石英脉型黑钨矿矿体开展了较为详细研究,但对矽卡岩型白钨矿的研究则相对较少,有关其矿体特征、成矿过程及其与石英脉型矿化的成因联系尚不清楚。本文在矿床地质研究基础上,将瑶岗仙矽卡岩型钨矿床分为早期石榴子石-透辉石-白钨矿阶段(Ⅰ)和晚期碳酸盐-硫化物-白钨矿阶段(Ⅱ),并重点针对两个阶段的白钨矿开展了矿物学、元素地球化学、成矿流体地球化学研究,进而厘定了矽卡岩型白钨矿的成矿过程。结果显示,Ⅰ阶段白钨矿的Mo含量(1648×10-6~3310×10-6)明显高于Ⅱ阶段白钨矿的Mo含量(816×10-6~1725×10-6),且Ⅰ阶段白钨矿的稀土配分具明显的MREE和HREE亏损特征,指示早期矽卡岩阶段成矿流体具有相对高的氧化条件。两阶段的流体包裹体具有相似的δ18O值(7.7‰~9.8‰和7.4‰~8.9‰)和δD值(-53‰~-60‰),表明成矿流体均主要来源于花岗质岩浆,而大气降水与岩浆流体的混合程度低于其他矽卡岩型钨矿床。白钨矿中的流体包裹体具有富CO2和CH4的特征,指示该成矿流体体系易于发生流体不混溶作用。白钨矿Ⅰ的成矿流体均一温度为229.1~377.3℃,盐度为1.8%~14.7% NaCleqv,白钨矿Ⅱ的成矿流体均一温度为187.4~294.5℃,盐度为1.2%~10.2% NaCleqv,指示成矿流体演化过程中流体温度和盐度逐渐降低。由此可见,瑶岗仙矽卡岩型矿床的成矿流体起源于花岗质岩浆,与石英脉型黑钨矿同源,总体上经历了两阶段钨矿的叠加成矿作用,流体不混溶作用对钨的聚集至关重要,在早期矽卡岩阶段形成了呈条带状的白钨矿矿体,在晚期矽卡岩退化蚀变阶段形成了被碳酸盐交代的白钨矿矿体。
关键词: 瑶岗仙钨矿床    矽卡岩    白钨矿    成矿流体    流体包裹体    
Characteristics and evolutions of ore-forming fluids in the Yaogangxian skarn-type scheelite deposit, Hunan Province
YU ZhiFeng1,2, ZHAO Zheng2, WANG YanLi3, ZHU XinYou4, YIN Zheng1, LI HongWei1     
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. MNR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, Chinese Academy of Geological Sciences, Beijing 100037, China;
3. Beijing Institute of Geology for Mineral Resources, Beijing 100012, China;
4. Sino-Zijin Resources Ltd., Beijing 100012, China
Abstract: Yaogangxian deposit, a famous W deposit in China, is located in in the middle Nanling metallogenic belt in Hunan Province. This deposit is mainly composed of the quartz vein-type wolframite and the skarn-type scheelite mineralization. Much attention of previous studies has been paid on quartz vein-type mineralization in Yaogangxian, however, the skarn-type mineralization is lack of detailed study, and as a result, its ore body and mineralization processes are not clear. This study focused on scheelite formed in the two-stage skarn-type mineralization to clarify its mineralization processes by using in-situ analytical techniques for the scheelite grains and its fluid inclusions. The skarn-type scheelite mineralization is classified into the garnet-diopside-scheelite stage (early stage) scheelite (Ⅰ) and the carbonate-sulfide-scheelite (late stage) scheelite (Ⅱ). The Mo content of scheelite Ⅰ (1648×10-6~3310×10-6) is significantly higher than that of scheelite Ⅱ (816×10-6~1725×10-6), and scheelite Ⅰ show a right-dipping chondrite-normalized REE pattern, with depleted MREE and HREE, implying that the early-stage is relatively oxidized. In addition, the fluid inclusions in both stages have similar δ18O values (7.7‰~9.8‰ and 7.4‰~8.9‰) and δD (-53‰~-60‰), which suggest that the ore-forming fluids of two stages might be mainly derived from magma. The involvement of meteoric water was probably extremely weak in the skarn-type mineralization. The fluid inclusion microthermometry show that the ore-forming fluids decreased in temperature and salinity from early (229.1~377.3℃ and 1.8%~14.7% NaCleqv) to late stage (187.4~294.5℃ and 1.2%~10.2% NaCleqv) with supersaturated CO2 and CH4. It suggests that fluid immiscibility would occur in the ore-forming fluid system. Therefore, we propose that the skarn-type scheelite mineralization of Yaogangxian deposit were mainly originated from the granitic magma, and generally experienced two stages of scheelite superposition mineralization. The fluid immiscibility was crucial to enrichment of W, where the banded scheelite mineralization was formed in the early skarn stage, and the disseminated scheelite mineralization was formed in the late skarn stage.
Key words: Yaogangxian W deposit    Skarn    Scheelite    Ore-forming fluid    Fluid inclusion    

南岭成矿带是世界著名的与花岗岩成矿相关的战略性矿产资源基地。矽卡岩型和石英脉型钨矿床是该成矿带的主要矿床类型,其成矿作用受花岗岩和围岩共同制约。成矿花岗质岩浆具有高分异、富碱、富挥发分,高Y、Rb、Rb/Sr,低Ba+Sr、TiO2,Eu强烈亏损等特征(Mao et al., 1996; 祝新友等,2012)。湖南瑶岗仙钨矿床是南岭成矿带中部重要的钨矿产地,同时发育石英脉型黑钨矿体(23.6万吨WO3Zhao et al., 2017)和矽卡岩型白钨矿体(约31万吨WO3Li et al., 2020),两者均达大型规模。目前,石英脉型为主采矿体,矽卡岩型矿体的开采工作相对滞后,近些年正在逐渐展开。

前人对瑶岗仙矿区西段石英脉型矿体做了大量的研究。矿床地质方面,陈依壤(1981, 1988)详细介绍了含矿石英脉的产出特征;陈毓川等(1990)结合“五层楼”式矿化模式,阐明了瑶岗仙复式岩体与石英脉型矿床成矿的空间关系和成因联系;陈依壤(1992)建立了瑶岗仙西段“上层下脉”的石英脉型钨矿模型。成岩成矿年代学方面,锆石SHRIMP U-Pb同位素定年结果显示瑶岗仙花岗岩成岩年龄为159~155Ma(李顺庭等, 2011a),辉钼矿Re-Os、白云母Ar-Ar、黑钨矿的LA-ICP-MS U-Pb同位素定年结果显示石英脉型黑钨矿成矿时代主要集中在155Ma左右(Peng et al., 2006; Wang et al., 2008; 王登红等, 2009; 李顺庭等, 2011b; Deng et al., 2019; Li et al., 2020)。瑶岗仙钨矿床的成矿作用与燕山早期高度结晶分异的花岗岩浆作用有关(陈依壤, 1992; Mao et al., 1996),熔体和流体包裹体的研究表明石英脉型黑钨矿的成矿流体由岩浆-热液流体不混溶作用形成(林新多等, 1986; 于志峰等, 2015),成矿流体具有富挥发分、高温、中低盐度特征(王巧云等, 2007; 董少花等, 2011; Li et al., 2018a; Xiao et al., 2019)。然而,目前对于瑶岗仙东段矽卡岩型白钨矿体的研究工作相对滞后(祝新友等, 2012; Li et al., 2020),对于矽卡岩型白钨矿的矿体特征、成矿期次、成矿流体演化与成矿过程缺乏系统认识,矽卡岩型矿体与石英脉型矿体成因联系尚不清楚。本文对瑶岗仙矿床矽卡岩型矿体不同阶段的白钨矿及其中的流体包裹体开展了系统研究,通过矿物原位地球化学、流体包裹体显微测温、激光拉曼分析和H-O同位素研究,刻画了各阶段成矿流体演化特征,进一步明确了瑶岗仙矽卡岩型白钨矿的矿床成因。

1 矿床地质特征

瑶岗仙矿床位于湖南省郴州市东南约35km的瑶岗仙镇,大地构造上位于湘东南隆起和湘桂粤海西-印支坳陷带的交接部位(图 1)。矿区出露的主要地层为寒武系砂岩、中-上泥盆统灰岩、砂岩以及其他中生代地层,其中泥盆系为赋矿层位(陈依壤, 1981; 林新多等, 1986)。区内瑶岗仙复式岩体侵入到寒武系和泥盆系的变质砂岩、灰岩中,该岩体被划分为中粒斑状碱长花岗岩、细粒斑状碱长花岗岩和石英斑岩三阶段(祝新友等, 2012; 图 1)。

图 1 瑶岗仙钨矿床矿区地质简图(据祝新友等, 2012修改) 1-第四系;2-矽卡岩钨矿;3-铅锌矿;4-黑钨矿石英脉;5-石英斑岩;6-细粒碱长花岗岩;7-中粒碱长花岗岩;8-唐陇组地层;9-棋梓桥组地层;10-寒武系地层 Fig. 1 Simplified geological map of the Yaogangxian tungsten deposit (modified after Zhu et al., 2012) 1-Quaternary; 2-skarn-type scheelite orebody; 3-lead-zinc ore vein; 4-quartz-vein type wolframite orebody; 5-quartz porphyry; 6-alkali feldspar granite Ⅱ; 7-alkali feldspar granite Ⅰ; 8-Triassic Tanglong Formation; 9-Devonian Qiziqiao Formation; 10-Cambrian strata

岩体主体的中粒斑状碱长花岗岩和岩体顶部的细粒斑状碱长花岗岩与钨成矿关系密切(图 1)。中粒斑状碱长花岗岩分布于岩体中西部,与石英脉型黑钨矿化相关。岩石呈灰白色,中粒-中粗粒,局部粗粒,斑晶为钾长石,少量石英,斑晶粒径3~5mm。与矽卡岩型白钨矿化相关的为细粒斑状碱长花岗岩,分布于瑶岗仙岩体东南角。岩石呈浅灰白色,似斑状结构,发育少量斑晶,斑晶为钾长石,斑晶边部发育不同程度硅化和钠长石化。岩石基质呈花岗结构,矿物粒径呈细粒,主要矿物为钾长石、钠长石、石英,少量白云母、石榴子石等(图 2)。祝新友等(2012)研究表明细粒斑状碱长花岗岩为中粒斑状碱长花岗岩进一步分离结晶演化的产物,两者属同源岩浆。

图 2 瑶岗仙矿床细粒碱长花岗岩显微镜下特征照片 (a)细粒似斑状结构; (b)似斑状结构,钾长石斑晶硅化; (c)长石边部硅化形成的似文象结构;(d)石榴子石呈环状骸晶; (e)环状石榴子石,共生有细粒的铌钽矿物; (f)花岗结构. 矿物缩写:Kf-钾长石; Q-石英; Pl-斜长石; Mc-微斜长石; Grt-石榴子石; Bis-辉铋矿 Fig. 2 Photomicrographs showing characteristics of fine-grained alkali feldspar granite from Yaogangxian tungsten deposit (a) fine-grained porphyritic-like texture; (b) porphyritic-like texture, potassium feldspar phenocryst silicification; (c) silicified feldspar form graphic texture; (d) circinal skeleton crystal of garnet; (e) circinal garnet with niobium-tantalum mineral and biotite alteration; (f) granitic texture. Mineral abbreviation: Kf-potassium feldspar; Q-quartz; Pl-plagioclase; Mc-microcline; Grt-garnet; Bis-bismuthinite

矽卡岩型矿体主要发育在细粒碱长花岗岩与灰岩接触带,为白钨矿化富石榴子石和萤石矽卡岩(图 3a, b)。白钨矿主要呈两种类型,一种以自形-半自形粒状,群体呈条带状分布于块状石榴子石-透辉石矽卡岩中,即早期矽卡岩阶段的白钨矿(白钨矿Ⅰ,图 3c, d); 另一种则以半自形粒状,群体呈浸染状分布于碳酸盐-硫化物矽卡岩中,即晚期矽卡岩阶段的白钨矿(白钨矿Ⅱ,图 3e, f),该期矽卡岩出现明显的绢云母化、碳酸盐化、蛇纹石化,蛇纹石和碳酸盐明显交代硅酸盐及白钨矿(图 4c, d),表现矽卡岩矿床的退化蚀变特征(Einaudi et al., 1981)。此外,在岩体顶部的矽卡岩矿体与灰岩接触带还常见碱交代脉。矽卡岩型矿化与这些网脉状分布的脉体关系密切,属于脉体外侧的接触交代蚀变(图 3g, h)。典型的碱交代脉具有由中心向脉体两侧对称发育的分带特征,中心为花岗岩带,主要为长英质成分,外部带主要为石英,有钾长石分布于石英粒间,出现部分萤石及白钨矿,在最外围出现热液交代结构特点,有磁铁矿产出,而矽卡岩矿体则出现在碱交代脉的外侧(程细音等, 2012; 祝新友等, 2015)。

图 3 瑶岗仙矿床矽卡岩型白钨矿矿石特征 (a)白钨矿矽卡岩矿体; (b)矿石中的石榴子石与白钨矿; (c、d)条带状白钨矿化,主要为白钨矿(Ⅰ); (e、f)浸染状白钨矿(Ⅱ)与萤石; (g)矽卡岩中的碱交代脉; (h)灰岩地层中的碱交代脉. 矿物缩写:Sch-白钨矿; Fl-萤石 Fig. 3 Photographs showing scheelite mineralization and ore textures in Yaogangxian tungsten deposit (a) skarn-type scheelite orebody; (b) scheelite and garnet in orebody; (c, d) banded scheelite Ⅰ; (e, f) disseminated scheelite Ⅱ and fluorite; (g) alkali metasomatism veins in skarn; (h) alkali metasomatic veins in limestone. Mineral abbreviation: Sch-scheelite; Fl-flourite

图 4 瑶岗仙矿床白钨矿显微镜下特征照片 (a、b)早期矽卡岩中的白钨矿(Ⅰ)与黑钨矿、萤石、石榴子石、透辉石共生; (c、d)晚期矽卡岩中浸染状白钨矿(Ⅱ)与蛇纹石、方解石、辉钼矿共生.矿物缩写:Wf-黑钨矿; Di-透辉石; Srp-蛇纹石; Cal-方解石; Mo-辉钼矿 Fig. 4 Microphotographs showing mineral assemblages associated with scheelite in Yaogangxian tungsten deposit (a, b) scheelite Ⅰ in early stage skarn with wolframite, fluorite, and garnet; (c, d) disseminated scheelite Ⅱ in late stage skarn ore with serpentine, calcite, and molybdenite. Mineral abbreviation: Wf-wolframite; Di-diopside; Srp-serpentine; Cal-calcite; Mo-molybdenite

早期矽卡岩中的白钨矿Ⅰ在正交偏光显微镜下呈自形-半自形粒状结构,通常粒径较大,颜色为深灰色,常与石榴子石、黑钨矿、萤石等共生(图 4a, b)。晚期矽卡岩中的白钨矿Ⅱ具有矽卡岩退化蚀变阶段特征,在正交偏光显微镜下白钨矿多呈半自形粒状结构,矿物颗粒破碎,颜色为灰色,共生矿物有方解石、蛇纹石、辉钼矿及少量的萤石(图 4c, d)。

2 样品制备与分析方法

本文研究的12个样品均采自瑶岗仙矿床,为白钨矿化矽卡岩矿石。对主矿体典型矽卡岩矿石中两阶段的白钨矿进行了原位地球化学成分分析,并对不同阶段的白钨矿中的流体包裹体开展岩相学分类、显微测温、激光拉曼和H-O同位素分析。

2.1 白钨矿原位地球化学成分分析

电子探针分析  实验在自然资源部成矿作用与资源评价重点实验室进行。仪器型号为日本电子公司(JEOL)生产的JXA-8230电子探针仪。测试条件为:加速电压为15kV,电流为15nA,束斑直径为1μm,仪器的检测限制为0.01%~0.05%。测试元素包括WO3、CaO、MoO3、FeO、MnO、P2O5,采用ZAF校正法。

LA-ICP-MS分析  实验在南京聚谱检测科技有限公司完成。采用由Teledyne Cetac Technologies制造的型号为Analyte Excite的193nm ArF准分子激光剥蚀系统进行白钨矿原位微量元素分析。四极杆型电感耦合等离子体质谱仪(ICP-MS)由安捷伦科技(Agilent Technologies)制造,型号为Agilent 7700x。准分子激光发生器产生的深紫外光束经匀化光路聚焦于矿物表面,能量密度为6.06J/cm2,束斑直径为40um,频率为6Hz,共剥蚀40s,剥蚀气溶胶由氦气送入ICP-MS完成测试。校正是在外部完成的,每10个样品使用2个NIST SRM 610和1个NIST SRM 612,以Ca作为内部标准校正仪器漂移。使用商业软件ICP-MSDataCal 10.8进行数据缩减(Liu et al., 2008)。LA-ICP-MS对稀土元素的检出限为0.05×10-6~0.1×10-6。对标准SRM 610和SRM 612的反复分析表明,大多数分析元素的精密度和准确度都优于10%。测试元素有Rb、Sr、Y、Zr、Nb、Mo、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Hf、Ta、Yh、U。

2.2 流体包裹体地球化学分析

显微测温实验   实验在自然资源部成矿作用与资源评价重点实验室进行。流体包裹体显微测温实验所采用仪器为英国产的Linkam-THMS600冷热台,配有Zeiss观察系统。大多数测量都是在0.2~0.4℃/min的升温速率下进行的。采用温度循环法测定了含CO2流体包裹体的冰点温度、笼形物融化温度、CO2相均一温度、最终均一温度(Roedder, 1984; Diamond, 2001; Fan et al., 2003)。测量相变温度时,测量的升温速率为0.1~0.2℃/min,在30℃以下的温度测量精度为±0.2℃,在30℃以上的温度测量精度为±2℃。

激光拉曼光谱分析   测试工作在自然资源部成矿作用与资源评价重点实验室完成。实验使用的仪器是英国产Renishaw RM2000型激光Raman探针。实验条件:温度23℃,Ar离子激光器(514nm),风冷,狭缝宽50μm,光栅1800,扫描时间60s,扫描次数为1次。

氢氧同位素分析   测试工作在核工业地质分析测试中心进行。利用MAT-253质谱仪测定了其同位素比值(δ18O)。所有值都相对于VSMOW标准报告,不确定度为±0.2‰。对相同的流体包裹体样品进行了氢同位素分析。样品首先在真空下150℃加热3h,去除不稳定挥发物,然后逐渐升温至500℃,使流体包裹体破裂并收集析出的水。水在410℃的温度下通过加热的锌粉转化为氢气(Friedman, 1953),其同位素组成由LSIG的MAT-252质谱仪确定。对标准水样的分析的精密度δD为±3‰。

3 分析结果 3.1 白钨矿地球化学成分

瑶岗仙钨矿床两阶段的白钨矿共12个样品、18个探针点的主量元素结果见表 1。白钨矿Ⅰ中的CaO的含量为18.97%~19.99%,平均含量为19.63%,WO3的含量为79.33%~80.83%,平均含量为79.95%,MoO3的含量为0.25%~0.50%,平均含量为0.35%,FeO的含量为0.02%~0.03%,平均含量为0.02%;白钨矿Ⅱ中的CaO的含量为18.42%~20.26%,平均含量为19.01%,WO3的含量为80.01%~81.4%,平均含量为80.71%,MoO3的含量为0.12%~0.26%,平均含量为0.17%,FeO的含量为0.01%~0.03%,平均含量为0.02%。两阶段白钨矿中W与Mo的含量具负相关关系(图 5b)。

表 1 瑶岗仙钨矿床白钨矿地球化学元素分析结果(主量元素: wt%;稀土和微量元素: ×10-6) Table 1 The geochemical results of scheelite from the Yaogangxian tungsten deposit (major elements: wt%; trace elements: ×10-6)

图 5 瑶岗仙钨矿床白钨矿地球化学元素图解 (a)球粒陨石标准化稀土元素配分模型(标准化值据McDonough and Sun, 1995); (b) MoO3与WO3关系图; (c) EuN*与EuN关系图; (d) Mo与∑REE关系图 Fig. 5 The geochemical diagrams of scheelite from the Yaogangxian tungsten deposit (a) chondrite-normalized REE distribution patterns (normalization values after McDonough and Sun, 1995); (b) comparison of WO3 and MoO3 contents in scheelite; (c) plot of chondrite-normalized Eu concentrations (EuN) versus calculated EuN* values; (d) plot of Mo versus total REEs in scheelite

白钨矿的微量元素测试结果见表 1。白钨矿Ⅰ中Mo的含量为1648×10-6~3310×10-6,平均含量为2326×10-6;稀土总量(∑REE)为60×10-6~157×10-6,平均含量为97×10-6;其中轻稀土(LREE)含量为47×10-6~145×10-6,平均含量为84×10-6;中稀土(MREE)含量为6×10-6~15×10-6,平均含量为10×10-6;重稀土(HREE)含量为1×10-6~6×10-6,平均含量为3×10-6;EuN*(=(SmN× GdN)1/2)为1~3,平均为2。白钨矿Ⅱ中Mo的含量为816×10-6~1725×10-6,平均含量为1121×10-6;∑REE为244×10-6~1186×10-6,平均含量为624×10-6;LREE含量为142×10-6~418×10-6,平均含量为291×10-6;MREE含量为33×10-6~175×10-6,平均含量为103×10-6;HREE含量为63×10-6~593×10-6,平均含量为231×10-6;EuN*为4~19,平均为12。以上测试结果表明白钨矿Ⅰ的∑REE相较于白钨矿Ⅱ更低,其中两者的轻稀土含量大致相同,但是白钨矿Ⅰ明显亏损MREE和HREE,稀土曲线表现为明显的右倾型特点。即从早期矽卡岩阶段至晚期矽卡岩阶段,白钨矿稀土总量逐渐富集,尤其是MREE和HREE富集明显。此外,各阶段白钨矿中均表现出Eu正异常(图 5a),EuN/EuN*均在1线上下波动(图 5c)。但∑REE与Mo含量表现出负相关性,即晚期白钨矿Ⅱ中明显更为富集∑REE却亏损Mo含量(图 5d)。

3.2 流体包裹体地球化学特征

根据显微镜下及冷冻回温时的相态变化,白钨矿中出现的流体包裹体分为3类:气液包裹体(VL型)、含CO2流体包裹体(C型)、含子矿物流体包裹体(CB型)。它们的主要特征如下:

VL型:气液包裹体,室温下由气相和液相两相组成的流体包裹体。VL-1型,富液相流体包裹体,在室温下主要有液相和气相,气液比小于50%,加热后均一到液相(图 6a-c)。VL-2型,富气相流体包裹体,室温下含有较大气泡和少量液相组成的两相包裹体。气泡所占包裹体整体比例大于50%,加热后均一到气相(图 6b, c)。这两种类型的流体包裹体往往同时出现,在两类白钨矿中VL-1型出现较多,VL-2型零散出现。

图 6 瑶岗仙钨矿床白钨矿中不同类型包裹体镜下特征 (a)富液相气液流体包裹体杂乱分布(VL-1),寄主矿物为白钨矿Ⅰ; (b、c)富气相气液流体包裹体(VL-2),寄主矿物为白钨矿Ⅰ; (d)气液流体包裹体呈线状分布(VL),寄主矿物为白钨矿Ⅱ; (e)含CO2三相流体包裹体(C-2),寄主矿物为白钨矿Ⅱ; (f)含CO2气体流体包裹体(C-1),寄主矿物为白钨矿Ⅱ; (g)含子矿物包裹体(CB),子矿物晶型很好,成群分布,寄主矿物为白钨矿Ⅱ Fig. 6 The microscopic characteristics of fluid inclusion in scheelite from the Yaogangxian tungsten deposit (a) VL-1 type fluid inclusion from scheelite Ⅱ; (b, c) VL-2 type fluid inclusion from scheelite Ⅰ; (d) VL type fluid inclusion from scheelite Ⅱ; (e) C-2 type fluid inclusion from scheelite Ⅱ; (f) C-1 type fluid inclusion from scheelite Ⅱ; (g) CB type fluid inclusion from scheelite Ⅱ

C型:含CO2流体包裹体。本类包裹体有两种出现形式。一种是由气相CO2和液相CO2组成的CO2包裹体,气泡很大,属于含CO2气体包裹体(C-1型;图 6f);另一种包裹体由气相CO2、液相CO2和盐水溶液组成的含CO2三相包裹体,气泡较小,属于含CO2液体包裹体(C-2型;图 6e)。C-1型流体包裹体为主要的含CO2流体包裹体类型,C-2型出现相对较少,常与C-1型共存。

CB型:含子矿物流体包裹体。由气相、液相和子矿物组成的三相包裹体。子矿物一般具有较好的晶型,包裹体通常较大,多大于10μm(图 6g)。

以上各类包裹体在两阶段不同寄主矿物中出现的特点归纳如下:

白钨矿Ⅰ中的流体包裹体多以杂乱分布(图 6a)。VL型流体包裹体个体较白钨矿Ⅱ的流体包裹体稍大。流体包裹体总体数量相对较多,但是C型流体包裹体相较于白钨矿Ⅱ中出现少,CB型流体包裹体出现极少。包裹体一般10~20μm或更大(图 6a-c表 2)。

表 2 瑶岗仙钨矿床两阶段白钨矿中流体包裹体分类 Table 2 The classification of fluid inclusions in scheelite from the Yaogangxian tungsten deposit

白钨矿Ⅱ中的流体包裹体多以线、面状形式分布(图 6d)。流体包裹体总体数量相对白钨矿Ⅰ中少,但是流体包裹体类型更为全面,表现为VL型流体包裹体个体较小,但C型流体包裹体丰富,且包裹体个体较大,通常为10~15μm,而CB型流体包裹体成群出现(图 6d-g表 2)。

激光拉曼光谱学特征:对含子矿物流体包裹体的分析结果如图 7所示,结果表明两阶段白钨矿中流体包裹体均有CH4(2918)峰值,此外,白钨矿Ⅰ中流体包裹体还有一定强度的CO2(1354)峰值共存于少量的子矿物包裹体中,而子矿物则为萤石(321, 948)。虽然在白钨矿Ⅱ中CO2包裹体大量出现,但白钨矿Ⅱ的子矿物流体包裹体中无CO2的出现,子矿物为石英(465)。以上特点说明瑶岗仙矽卡岩型白钨矿中的含子矿物包裹体中的子矿物为矿物晶体,而非水盐体系中的NaCl或CaCl2子晶,指示了该时期流体有岩浆期流体特点(石英子晶)并在流体体系中富F(萤石子晶)。

图 7 瑶岗仙钨矿流体包裹体拉曼图谱 (a)白钨矿Ⅰ中流体包裹体拉曼图谱; (b)白钨矿Ⅱ中流体包裹体拉曼图谱 Fig. 7 Laser Raman spectroscopic analyses of fluid inclusions from the Yaogangxian tungsten deposit (a) CO2, CH4 and fluorite are hosted in fluid inclusions of scheelite Ⅰ; (b) CH4 and quartz are hosted in fluid inclusions of scheelite Ⅱ

显微测温特征:在岩相学研究的基础上,对两类白钨矿中的流体包裹体进行了显微测温实验。分别对白钨矿Ⅰ和白钨矿Ⅱ中的VL型、C型流体包裹体进行测温。显微测温实验结果如表 3图 8图 9所示。

表 3 流体包裹体均一温度、冰点温度及盐度分析结果 Table 3 The analysis result of Th, Tm and salinity of fluid inclusions

图 8 瑶岗仙钨矿流体包裹体均一温度(a)和盐度(b)直方图 Fig. 8 Histograms showing total homogenization temperature (a) and salinity (b) of fluid inclusions from the Yaogangxian tungsten deposit

图 9 瑶岗仙钨矿流体包裹体盐度-均一温度散点图 Fig. 9 Scatterplot of salinity and homogenization temperature in of fluid inclusions from the Yaogangxian tungsten deposit

白钨矿Ⅰ流体包裹体均一温度范围229.2~377.3℃,其中VL型流体包裹体的均一温度范围为229.2~293.6℃,C型流体包裹体的均一温度范围为270.6~377.3℃。白钨矿Ⅱ流体包裹体均一温度范围187.4~294.5℃,其中VL型流体包裹体的均一温度范围为187.4~258.1℃,C型流体包裹体的均一温度范围为212.5~294.5℃。

VL型流体包裹体的盐度利用冰点温度计算求得,计算采用公式WNaCl=0.00+1.78Tm-4.42×10-2Tm2+5.57×10-4Tm3(Hall et al., 1988),其中Tm为冰点下降温度。C型流体包裹体的盐度利用CO2笼形物的熔化温度求得,计算采用公式WNaCl=15.52022-1.02342×T-0.05286×T2(Roedder, 1984),其中T为笼形物融化温度。通过计算得到的盐度结果表明,白钨矿Ⅰ中流体包裹体的主要盐度范围为1.80%~14.67% NaCleqv,白钨矿Ⅱ中流体包裹体的主要盐度范围为1.24%~10.21% NaCleqv。

氢氧同位素特征:共采集白钨矿中10件样品,测试结果见表 4,白钨矿Ⅰ的δ18O=7.7‰~9.8‰,白钨矿Ⅱ的δ18O=7.4‰~8.9‰。根据同位素分馏方程,以前面压力校正后的温度,计算水的δ18OH2O‰投图,全部落入岩浆水范围(图 10)。

表 4 瑶岗仙钨矿床流体包裹体氢氧同位素组成 Table 4 Hydrogen and oxygen isotopic compositions of fluid inclusions from the Yaogangxian tungsten deposit

图 10 瑶岗仙矿区白钨矿中流体包裹体的δ18O-δD图解 Fig. 10 The δ18Ofluid vs. δDV-SMOW diagram of the Yaogangxian tungsten deposit
4 讨论 4.1 白钨矿稀土元素特征对成矿环境的指示

白钨矿(CaWO4)中稀土元素的赋存,与Ca2+的关系密切(McIntire, 1963),例如,2Ca2+=REE3++Na+,Ca2++W6+=REE3++Nb5+,3Ca2+=2REE3++Ca(Nassau and Loiacono, 1963; Burt, 1989)。Zhao et al.(2018)提出矽卡岩型白钨矿稀土元素的分布与矿物中的Na元素无关,而与白钨矿中的Nb元素有关,同时白钨矿中的Mo含量与Nb呈负相关,高Mo白钨矿形成于氧化环境,而低Mo白钨矿形成于相对还原环境(Hsu and Galli, 1973; Hsu, 1977; Rempel et al., 2009)。

本文的研究结果表明瑶岗仙矿床早期矽卡岩流体具有明显的中稀土和重稀土元素的亏损特征(图 5a),推测这是岩浆流体开始与灰岩反应形成含石榴石矽卡岩的结果,该作用下中稀土元素和重稀土元素优先进入石榴石中(Smith et al., 2004; Gaspar et al., 2008; Zhao et al., 2018)。同时,早期白钨矿(Ⅰ)中的Mo含量明显高于晚期白钨矿(Ⅱ),也说明瑶岗仙矽卡岩型白钨矿化的早期成矿流体具有相对更高的氧化条件。但是地球化学的结果显示Ⅰ阶段白钨矿中出现了Eu正异常(图 5ac),这与氧化体系中通常不会出现Eu正异常的认识相悖。而这个特殊的Eu正异常则是由于在白钨矿(CaWO4)结晶过程中,Eu2+(1.120Å)与Ca2+(1.250Å)的相对离子半径与白钨矿最优结晶离子半径r03+(1.072Å)的差异均要明显大于Eu3+(1.066Å)与r03+的差异(Shannon, 1976; Smyth and Bish, 1988; Blundy and Wood, 2003; Zhao et al., 2018),因此,在白钨矿结晶过程中,Eu3+的流体分配系数明显大于Eu2+,从而造成了高的Eu3+/Eu2+及特殊的Eu正异常现象。这一认识也与高氧化条件流体体系有益于白钨矿结晶成矿的实验地球化学工作相一致(Nassau and Loiacono, 1963; Brugger et al., 2000)。综上所述,瑶岗仙矽卡岩型矿化的成矿流体演化过程中,在早阶段体系相对高氧化条件下,白钨矿会优先在流体演化过程中结晶形成早期的白钨矿,而此时流体中的Eu更倾向于优先富集在白钨矿中,产生Eu正异常。虽然在早期矽卡岩的流体体系中含有高含量的Mo,但是由于成矿流体体系的高氧化条件及相对高温(图 9),这些Mo并不能以辉钼矿的形式析出,而是赋存在白钨矿中(Williams-Jones and Migdisov, 2014)。直至随着流体演化至晚期矽卡岩,流体体系逐渐降温及氧化条件减弱,Mo才会以辉钼矿的状态结晶析出(图 4d)。

4.2 矽卡岩型白钨矿的成矿流体来源

众多研究表明,矽卡岩型钨矿床中,白钨矿的形成温度主要为约625~450℃和约300~200℃,基本对应于岩浆流体白钨矿形成温度及与大气降水混合流体白钨矿的形成温度(Einaudi et al., 1981; Newberry, 1998; Singoyi and Zaw, 2001; Lu et al., 2003; Meinert et al., 2005; Soloviev, 2011)。瑶岗仙两期白钨矿的流体包裹体显微测温结果表明,成矿温度分别为230~380℃和190~300℃。而流体包裹体的氢氧同位素结果显示δD值为-53‰~-60‰,同时两期白钨矿具有相似的δ18O值,分别为7.7‰~9.8‰和7.4‰~8.9‰。这些值相差不大,均指示成矿流体属于岩浆水的特征(图 10),表明成矿流体来源于岩浆,而大气降水的混合并不明显(Burnham, 1979; Jackson et al., 2000),也说明上文根据均一温度特点对成矿流体演化模式的推测并不正确。而H-O同位素特征指示的成矿流体源自岩浆的这一认识则与前人对瑶岗仙矿床黑钨矿化的研究结果相一致(Li et al., 2018a; Pan et al., 2019),均表明岩浆流体在瑶岗仙矿床成矿作用中起着主要作用。

虽然对于典型的矽卡岩型矿床来说,氢氧同位素的结果往往显示成矿流体属于岩浆水与大气水的混合来源(张理刚, 1987; 毛景文等, 1998),不过瑶岗仙矽卡岩型矿化的成矿流体中,大气降水与岩浆流体的混合程度可能远低于以往的认知,甚至成矿流体可能是由岩浆流体直接演化而来。原始岩浆流体在先形成部分黑钨矿化后,随着流体进一步演化并逐渐进入开放体系,特别是与碳酸盐岩类型的地层接触,形成了矽卡岩型白钨矿(徐克勤, 1957; 祝新友等, 2015),而这些白钨矿则是属于岩浆流体演化的产物。

4.3 矽卡岩型白钨矿的成矿流体演化特征

对于钨矿床的成矿流体演化模式,前人取得了大量的成果,代表性的钨矿床成矿流体演化类型具有三种,即单一的温度冷却过程(Ni et al., 2015)、岩浆热液-大气降水混合过程(Kelly and Rye, 1979; Samson 1990)、流体不混溶过程(Higgins, 1980; Williams-Jones and Heinrich, 2005; Pirajno, 2018)。

上文讨论说明瑶岗仙矽卡岩型白钨矿化的成矿流体应该来源于岩浆,较少或没有大气降水的混合作用,即瑶岗仙矽卡岩型成矿流体演化不符合岩浆热液-大气降水混合过程类型。而流体包裹体显微测温结果则显示,随着成矿流体体系温度的降低,成矿体系的盐度也在随之减小(图 9),因此,瑶岗仙流体演化过程也不是单一的温度冷却过程。所以流体不混溶作用应为瑶岗仙成矿流体演化的主要类型。相应的实验地球化学结果表明成矿流体体系中盐度的降低则会造成K、Na等碱金属元素含量的降低(Iveson et al., 2019),同时这些碱金属元素在体系中的析出又通常以碱金属、Cl、O相互配对的形式进行反应(Williams et al., 1997; Farges et al., 2006)。因此,流体体系中碱金属元素的降低会造成流体中有过量的Cl和O以气相挥发分的形式存在,使得流体体系中的挥发分成分处于过饱状态,进而为体系中发生流体不混溶现象提供了合适的条件(Dolejš and Baker, 2007; Dolejš and Zajacz, 2018; Hsu et al., 2019),这一实验结果也进一步验证瑶岗仙成矿流体的演化模式与流体不混溶作用有关。此外,拉曼测试结果显示成矿流体中有CH4、CO2及萤石的子矿物结晶,说明流体体系中有过量的气相组分及富F的成分特点。这些气相组分同样是成矿流体体系中的不稳定因素,当岩浆演化至后期流体体系时,该体系会随着温压的变化等多种因素不再封闭,气相组分便会溢出,形成钨矿化。例如,CO2组分的流失会导致流体体系中PH值的增长,使得体系更偏碱性,从而使WO42-的溶解度降低,更易于W以WO42-形式与地层中的Ca+络合,结晶形成白钨矿(Lowenstern, 2001; Li et al., 2018a, b)。同时,CH4在NaCl-H2O-CO2体系中也会导致流体不混溶的现象(Xiao et al., 2019),也会诱发WO42-的络合及钨矿的结晶。这些挥发分的存在也进一步证明流体不混溶作用与瑶岗仙白钨矿化的成矿作用密切有关。虽然Wood and Samson(2000)曾提出在热液流体中WO42-不会直接受到CO2的影响,但是在瑶岗仙白钨矿化流体中,由挥发分造成的不混溶作用却是导致钨成矿的关键因素(Lowenstern, 2001; 于志峰等, 2015; Li et al., 2018b)。在白钨矿Ⅱ中更为大量的出现富CO2包裹体也说明了在流体演化过程中,随着温度盐度的降低,不混溶作用更为明显,从而使得白钨矿结晶作用更为强烈,进而出现浸染状分布的白钨矿颗粒。

同样的认识也在野外地质现象中有所体现,在瑶岗仙矽卡岩矿区出现典型的含白钨矿的碱交代脉(图 3f, g),这些广泛的网脉状构造通常是大规模隐爆的结果,同样也属于岩浆演化作用的产物(祝新友等, 2015)。通过隐爆作用,位于岩浆流体中的WO42-便可以沿着这些细脉从封闭的岩浆体系中带出,并在围岩接触带上形成早期矽卡岩阶段的白钨矿化(庄永秋等, 1996; 赵一鸣, 2002; 程细音等, 2012; 祝新友等, 2015)。在碱交代脉边部,则形成大量钾长石、萤石,并在脉体两侧形成石榴子石,沉淀大量萤石及白钨矿等。这些特点说明,形成碱交代脉的流体是介于岩浆和热液之间的浆液过渡态流体,也符合了上文对成矿流体演化中出现流体不混溶作用的讨论。综上所述,瑶岗仙矿床矽卡岩型白钨矿化的成矿流体由岩浆流体直接演化而来,流体演化过程中伴随着成矿流体温度、盐度的减小或者隐爆作用的发生,使得成矿流体发生了流体不混溶作用,典型的矽卡岩型矿化便开始出现,随着成矿流体的温度、盐度进一步降低,白钨矿化的分布状态也从早阶段的条带状向晚阶段的浸染状颗粒化分布转换。已有很多相似的研究证明矽卡岩型钨锡多金属矿床成矿作用与岩浆-热液不混溶流体密切相关,如中国柿竹园矿床(程细音等, 2012)、德国Erzgebirge矿床(Štemprok, 1967)、加拿大East Kemptville(Halter et al., 1998)、葡萄牙Panasqueira(Kelly and Rye, 1979)、德国和捷克的Zinnwald-Cínovec(Korges et al., 2018)。

关于石英脉型黑钨矿化和矽卡岩型白钨矿化两类钨矿化的成因,徐克勤(1957)提出了围岩性质的决定性因素,即岩浆与碎屑岩接触,形成石英脉型黑钨矿,而与碳酸盐岩接触,便形成了矽卡岩型白钨矿。本文通过以上研究,认识到除了围岩性质的不同,两种类型钨矿化对应的不同的流体性质,也是形成不同类型钨矿化的另一重要因素。矽卡岩型钨多金属矿床中,自岩浆中分离出来的富含挥发份的成矿流体具有不混溶流体(岩浆-热液流体)特征,并且该流体相对于石英脉阶段流体有着更高的氧化条件,从而使得钨在岩浆期便会由于不混溶作用结晶沉淀,并随着温度的降低逐渐由岩浆向热液演化,形成典型的矽卡岩型矿化模式。而石英脉型的黑钨矿化的成矿作用则与岩浆期后热液流体作用相关,属于典型的岩浆期后热液矿化模式(Ni et al., 2020; Wang et al., 2021; Zhao et al., 2021)。

5 结论

(1) 瑶岗仙矽卡岩型白钨矿床主要分为早期石榴子石-透辉石-白钨矿阶段和晚期碳酸盐-硫化物-白钨矿阶段,早阶段的成矿流体具有更高的氧化条件,有利于白钨矿的富集和沉淀。

(2) 瑶岗仙矽卡岩型白钨矿化的成矿流体主要来自岩浆流体,与石英脉型黑钨矿成矿流体同源,但很少大气降水的参与。

(3) 白钨矿的成矿作用起源于岩浆期流体的不混溶作用或岩浆隐爆作用,并于岩浆演化晚期就形成了的早期矽卡岩型白钨矿化,随着流体进一步演化形成晚期矽卡岩型退化蚀变阶段的白钨矿化。

致谢      审稿专家和本刊编辑给予了诸多建设性意见;瑶岗仙钨矿地质科专家们对野外工作给予了大量的指导和帮助;在测试工作中得到了李建康研究员、王莉娟高工、王宇奇、钟业定的帮助;在此一并致以诚挚的谢意。

参考文献
Blundy J and Wood B. 2003. Partitioning of trace elements between crystals and melts. Earth and Planetary Science Letters, 210(3-4): 383-397 DOI:10.1016/S0012-821X(03)00129-8
Brugger J, Lahaye Y, Costa S, Lambert D and Bateman R. 2000. Inhomogeneous distribution of REE in scheelite and dynamics of Archaean hydrothermal systems (Mt. Charlotte and Drysdale gold deposits, Western Australia). Contributions to Mineralogy and Petrology, 139(3): 251-264 DOI:10.1007/s004100000135
Burnham CW. 1979. Magmas and hydrothermal fluids. In: Barnes HL (ed.). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley & Sons, 71-136
Burt DM. 1989. Compositional and phase relations among rare earth element minerals. Reviews in Mineralogy and Geochemistry, 21(1): 259-307
Chen YC, Pei RF and Zhang HL. 1990. The geology of nonferrous and rare metal deposits related to Mesozic granitoids in the Nanling region, China. Bulletin of the Chinese academy of geological sciences, 20(1): 79-85 (in Chinese with English abstract)
Chen YR. 1981. Geological features and ore-prospecting indications in the Yaogangxian vein-type tungsten deposit. Geology and Exploration, 17(2): 25-30 (in Chinese)
Chen YR. 1988. Geological and geochemical characteristics and diagenetic-minerogenetic processes of Yaogangxian granite. Mineral Resources and Geology, 2(1): 62-72 (in Chinese with English abstract)
Chen YR. 1992. Analysis of the control factors and conditions of the mineralization in Yaogangxian orefield, Yizhang County, Hunan. Hunan Geology, 11(4): 285-293 (in Chinese with English abstract)
Cheng XY, Zhu XY, Wang YL, Li ST and Han Y. 2012. Research on the alkali metasomatic veins in skarn of the Shizhuyuan W-Sn polymetallic deposit. Geology in China, 39(4): 1023-1033 (in Chinese with English abstract)
Deng XD, Luo T, Li JW and Hu ZC. 2019. Direct dating of hydrothermal tungsten mineralization using in situ wolframite U-Pb chronology by laser ablation ICP-MS. Chemical Geology, 515: 94-104 DOI:10.1016/j.chemgeo.2019.04.005
Diamond LW. 2001. Review of the systematics of CO2-H2O fluid inclusions. Lithos, 55(1-4): 69-99 DOI:10.1016/S0024-4937(00)00039-6
Dolejš D and Baker DR. 2007. Liquidus equilibria in the system K2O-Na2O-Al2O3-SiO2-F2O-1-H2O to 100MPa: Ⅰ. Silicate-fluoride liquid immiscibility in anhydrous systems. Journal of Petrology, 48(4): 785-806 DOI:10.1093/petrology/egm001
Dolejš D and Zajacz Z. 2018. Halogens in silicic magmas and their hydrothermal systems. In: Harlov DE and Aranovich L (eds.). The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Cham: Springer, 431-543
Dong SH, Bi XW, Hu RZ, Chen YW and Chen H. 2011. Characteristics of ore-forming fluid in Yaogangxian quartz-vein wolframite deposit, Hunan Province. Journal of Mineralogy and Petrology, 31(2): 54-60 (in Chinese with English abstract)
Einaudi MT, Meinert LD and Newberry RJ. 1981. Skarn deposits. In: Skinner BJ (ed.). Seventy-Fifth Anniversary Volume. Society of Economic Geologists, 75: 317-391
Fan HR, Zhai MG, Xie YH and Yang JH. 2003. Ore-forming fluids associated with granite-hosted gold mineralization at the Sanshandao deposit, Jiaodong gold province, China. Mineralium Deposita, 38(6): 739-750 DOI:10.1007/s00126-003-0368-x
Farges F, Linnen RL and Brown GE Jr. 2006. Redox and speciation of tin in hydrous silicate glasses: A comparison with Nb, Ta, Mo and W. The Canadian Mineralogist, 44(3): 795-810 DOI:10.2113/gscanmin.44.3.795
Friedman I. 1953. Deuterium content of natural waters and other substances. Geochimica et Cosmochimica Acta, 4(1-2): 89-103 DOI:10.1016/0016-7037(53)90066-0
Gaspar M, Knaack C, Meinert LD and Moretti R. 2008. REE in skarn systems: A LA-ICP-MS study of garnets from the Crown Jewel gold deposit. Geochimica et Cosmochimica Acta, 72(1): 185-205 DOI:10.1016/j.gca.2007.09.033
Hall DL, Sterner SM and Bodnar RJ. 1988. Freezing point depression of NaCl-KCl-H2O solutions. Economic Geology, 83(1): 197-202 DOI:10.2113/gsecongeo.83.1.197
Halter WE, Williams-Jones AE and Kontak DJ. 1998. Modeling fluid-rock interaction during greisenization at the East Kemptville tin deposit: Implications for mineralization. Chemical Geology, 150(1-2): 1-17 DOI:10.1016/S0009-2541(98)00050-3
Higgins NC. 1980. Fluid inclusion evidence for the transport of tungsten by carbonate complexes in hydrothermal solutions. Canadian Journal of Earth Sciences, 17(7): 823-830 DOI:10.1139/e80-082
Hsu KC. 1957. Discovery of pyrometasomatic scheelite deposits near a wolframite-producing district in Southern China, and a discussion about the origin of these two classes of deposits. Acta Geological Sinica, 37(2): 117-151 (in Chinese with English abstract)
Hsu LC and Galli PE. 1973. Origin of the scheelite-powellite series of minerals. Economic Geology, 68(5): 681-696 DOI:10.2113/gsecongeo.68.5.681
Hsu LC. 1977. Effects of oxygen and sulfur fugacities on the scheelite-tungstenite and powellite-molybdenite stability relations. Economic Geology, 72(4): 664-670 DOI:10.2113/gsecongeo.72.4.664
Hsu YJ, Zajacz Z, Ulmer P and Heinrich CA. 2019. Chlorine partitioning between granitic melt and H2O-CO2-NaCl fluids in the earth's upper crust and implications for magmatic-hydrothermal ore genesis. Geochimica et Cosmochimica Acta, 261: 171-190 DOI:10.1016/j.gca.2019.07.005
Iveson AA, Webster JD, Rowe MC and Neill OK. 2019. Fluid-melt trace-element partitioning behaviour between evolved melts and aqueous fluids: Experimental constraints on the magmatic-hydrothermal transport of metals. Chemical Geology, 516: 18-41 DOI:10.1016/j.chemgeo.2019.03.029
Jackson P, Changkakoti A, Krouse HR and Gray J. 2000. The origin of greisen fluids of the Foley's zone, Cleveland tin deposit, Tasmania, Australia. Economic Geology, 95(1): 227-236 DOI:10.2113/gsecongeo.95.1.227
Kelly WC and Rye RO. 1979. Geologic, fluid inclusion, and stable isotope studies of the tin-tungsten deposits of Panasqueira, Portugal. Economic Geology, 74(8): 1721-1822 DOI:10.2113/gsecongeo.74.8.1721
Korges M, Weis P, Lüders V and Laurent O. 2018. Depressurization and boiling of a single magmatic fluid as a mechanism for tin-tungsten deposit formation. Geology, 46(1): 75-78 DOI:10.1130/G39601.1
Li JK, Liu YC, Zhao Z and Chou IM. 2018b. Roles of carbonate/CO2 in the formation of quartz-vein wolframite deposits: Insight from the crystallization experiments of huebnerite in alkali-carbonate aqueous solutions in a hydrothermal diamond-anvil cell. Ore Geology Reviews, 95: 40-48 DOI:10.1016/j.oregeorev.2018.02.024
Li ST, Wang JB, Zhu XY, Wang YL, Han Y and Guo NN. 2011a. Chronological characteristic of the Yaogangxian composite pluton in Hunan Province. Geology and Exploration, 47(2): 143-150 (in Chinese with English abstract)
Li ST, Wang JB, Zhu XY and Li C. 2011b. Re-Os dating of molybdenite and sulfur isotope analysis of the Yaogangxian tungsten polymetallic deposits in Hunan Province and their geological significance. Geoscience, 25(2): 228-235 (in Chinese with English abstract)
Li WS, Ni P, Pan JY, Wang GG, Chen LL, Yang YL and Ding JY. 2018a. Fluid inclusion characteristics as an indicator for tungsten mineralization in the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Journal of Geochemical Exploration, 192: 1-17 DOI:10.1016/j.gexplo.2017.11.013
Li WS, Ni P, Wang GG, Yang YL, Pan JY, Wang XL, Chen LL and Fan MS. 2020. A possible linkage between highly fractionated granitoids and associated W-mineralization in the Mesozoic Yaogangxian granitic intrusion, Nanling region, South China. Journal of Asian Earth Sciences, 193: 104314 DOI:10.1016/j.jseaes.2020.104314
Lin XD, Zhang DH and Zhang CL. 1986. A discussion on the property of ore-forming fluid of the wolframite quartz-vein in the Yaogangxian tungsten deposit, Yizhang County, Hunan Province. Earth Science, 11(2): 153-160 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HH. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Lowenstern JB. 2001. Carbon dioxide in magmas and implications for hydrothermal systems. Mineralium Deposita, 36(6): 490-502 DOI:10.1007/s001260100185
Lu HZ, Liu YM, Wang CL, Xu YZ and Li HQ. 2003. Mineralization and fluid inclusion study of the Shizhuyuan W-Sn-Bi-Mo-F skarn deposit, Hunan Province, China. Economic Geology, 98(5): 955-974 DOI:10.2113/gsecongeo.98.5.955
Mao JW, Li HY, Shimazaki H, Raimbault L and Guy B. 1996. Geology and metallogeny of the Shizhuyuan skarn-greisen deposit, Hunan Province, China. International Geology Review, 38(11): 1020-1039 DOI:10.1080/00206819709465379
Mao JW, Li HY and Song XX. 1998. Geology and Geochemistry of the Shizhuyuan W-Sn-Mo-Bi Polymetallic Deposit, Hunan, China. Beijing: Geological Publishing House, 136-167 (in Chinese)
McDonough WF and Sun SS. 1995. The composition of the Earth. Chemical Geology, 120(3-4): 223-253 DOI:10.1016/0009-2541(94)00140-4
McIntire WL. 1963. Trace element partition coefficients: A review of theory and applications to geology. Geochimica et Cosmochimica Acta, 27(12): 1209-1264 DOI:10.1016/0016-7037(63)90049-8
Meinert LD, Dipple GM and Nicolescu S. 2005. World skarn deposits. In: Hedenquist JW, Thompson JFH, Goldfarb RJ and Richards JP (eds.). One Hundredth Anniversary Volume. Society of Economic Geologists, 299-336
Nassau K and Loiacono GM. 1963. Calcium tungstate. Ⅲ: Trivalent rare earth substitution. Journal of Physics and Chemistry of Solids, 24(12): 1503-1510 DOI:10.1016/0022-3697(63)90090-8
Newberry RJ. 1998. W-and Sn-skarn deposits: A 1998 status report. In: Lentz DR (ed.). Mineralized Intrusion-Related Skarn Systems. Ottawa: Mineralogical Association of Canada, 289-335
Ni P, Wang XD, Wang GG, Huang JB, Pan JY and Wang TG. 2015. An infrared microthermometric study of fluid inclusions in coexisting quartz and wolframite from Late Mesozoic tungsten deposits in the Gannan metallogenic belt, South China. Ore Geology Reviews, 65: 1062-1077 DOI:10.1016/j.oregeorev.2014.08.007
Ni P, Li WS and Pan JY. 2020. Ore-forming fluid and metallogenic mechanism of wolframite-quartz vein-type tungsten deposits in South China. Acta Geologica Sinica, 94(6): 1774-1796
Pan JY, Ni P and Wang RC. 2019. Comparison of fluid processes in coexisting wolframite and quartz from a giant vein-type tungsten deposit, South China: Insights from detailed petrography and LA-ICP-MS analysis of fluid inclusions. American Mineralogist, 104(8): 1092-1116 DOI:10.2138/am-2019-6958
Peng JT, Zhou MF, Hu RZ, Shen NP, Yuan SD, Bi XW, Du AD and Qu WJ. 2006. Precise molybdenite Re-Os and mica Ar-Ar dating of the Mesozoic Yaogangxian tungsten deposit, central Nanling district, South China. Mineralium Deposita, 41(7): 661-669 DOI:10.1007/s00126-006-0084-4
Pirajno F. 2018. Halogens in hydrothermal fluids and their role in the formation and evolution of hydrothermal mineral systems. In: Harlov DE and Aranovich L (eds.). The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Cham: Springer, 759-804
Rempel KU, Williams-Jones AE and Migdisov AA. 2009. The partitioning of molybdenum (Ⅵ) between aqueous liquid and vapour at temperatures up to 370℃. Geochimica et Cosmochimica Acta, 73(11): 3381-3392 DOI:10.1016/j.gca.2009.03.004
Roedder E. 1984. Fluid inclusions. Reviews in Mineralogy, 12. Mineralogical Society of America, 1-644
Samson IM. 1990. Fluid evolution and mineralization in a subvolcanic granite stock: The Mount Pleasant W-Mo-Sn deposits, New Brunswick, Canada. Economic Geology, 85(1): 145-163 DOI:10.2113/gsecongeo.85.1.145
Shannon RD. 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A, 32(5): 751-767 DOI:10.1107/S0567739476001551
Singoyi B and Zaw K. 2001. A petrological and fluid inclusion study of magnetite-scheelite skarn mineralization at Kara, Northwestern Tasmania: Implications for ore genesis. Chemical Geology, 173(1-3): 239-253 DOI:10.1016/S0009-2541(00)00278-3
Smith MP, Henderson P, Jeffries TER, Long J and Williams CT. 2004. The rare earth elements and uranium in garnets from the Beinn an Dubhaich Aureole, Skye, Scotland, UK: Constraints on processes in a dynamic hydrothermal system. Journal of Petrology, 45(3): 457-484 DOI:10.1093/petrology/egg087
Smyth JR and Bish DL. 1988. Crystal Structures and Cation Sites of the Rock-forming Minerals. Allen and Unwin Boston, 1-122
Soloviev SG. 2011. Geology, mineralization, and fluid inclusion characteristics of the Kensu W-Mo skarn and Mo-W-Cu-Au alkalic porphyry deposit, Tien Shan, Kyrgyzstan. Economic Geology, 106(2): 193-222 DOI:10.2113/econgeo.106.2.193
Štemprok M. 1967. Genetische probleme der Zinn-Wolfram-Vererzung im Erzgebirge. Mineralium Deposita, 2(2): 102-118 DOI:10.1007/BF00206583
Wang DH, Li HQ, Qin Y, Mei YP, Chen ZH, Qu WJ, Wang YB, Cai H, Gong SQ and He XP. 2009. Rock-forming and ore-forming ages of the Yaogangxian tungsten deposit of Hunan Province. Rock and Mineral Analysis, 28(3): 201-208 (in Chinese with English abstract)
Wang QY, Hu RZ, Peng JT, Bi XW, Wu LY, Liu H and Su BX. 2007. Characteristics and significance of the fluid inclusions from Yaogangxian tungsten deposit in south of Hunan. Acta Petrologica Sinica, 23(9): 2263-2273 (in Chinese with English abstract)
Wang XS, Williams-Jones AE, Hu RZ, Shang LB and Bi XW. 2021. The role of fluorine in granite-related hydrothermal tungsten ore genesis: Results of experiments and modeling. Geochimica et Cosmochimica Acta, 292: 170-187 DOI:10.1016/j.gca.2020.09.032
Wang YL, Pei RF, Li JW, Qu WJ, Li L, Wang HL and Du AD. 2008. Re-Os dating of molybdenite from the Yaogangxian tungsten deposit, South China, and its geological significance. Acta Geologica Sinica, 82(4): 820-825
Williams TJ, Candela PA and Piccoli PM. 1997. Hydrogen-alkali exchange between silicate melts and two-phase aqueous mixtures: An experimental investigation. Contributions to Mineralogy and Petrology, 128(2): 114-126
Williams-Jones AE and Heinrich CA. 2005. 100th Anniversary Special Paper: Vapor transport of metals and the formation of magmatic-hydrothermal ore deposits. Economic Geology, 100(7): 1287-1312 DOI:10.2113/gsecongeo.100.7.1287
Williams-Jones AE and Migdisov AA. 2014. Experimental constraints on the transport and deposition of metals in ore-forming hydrothermal systems. In: Kelley KD and Golden HC (eds.). Building Exploration Capability for the 21st Century. Society of Economic Geologists, 18: 77-96
Wood SA and Samson IM. 2000. The hydrothermal geochemistry of tungsten in granitoid environments: Ⅰ. Relative solubilities of ferberite and scheelite as a function of T, P, pH, and mNaCl. Economic Geology, 95(1): 143-182 DOI:10.2113/gsecongeo.95.1.143
Xiao M, Qiu HN, Jiang YD, Cai Y, Bai XJ, Zhang WF, Liu M and Qin CJ. 2019. Gas release systematics of mineral-hosted fluid inclusions during stepwise crushing: Implications for 40Ar/39Ar geochronology of hydrothermal fluids. Geochimica et Cosmochimica Acta, 251: 36-55 DOI:10.1016/j.gca.2019.02.016
Yu ZF, Xu H, Zhu XY, Wang YL and Cheng XY. 2015. Characteristics and evolution of ore-forming fluids in Yaogangxian tungsten deposit, Hunan Province. Mineral Deposits, 34(2): 309-320 (in Chinese with English abstract)
Zhang LG. 1987. Oxygen isotopic studies of wolframite in tungsten ore deposits of South China. Geochimica, (3): 233-242 (in Chinese with English abstract)
Zhao WW, Zhou MF, Li YHM, Zhao Z and Gao JF. 2017. Genetic types, mineralization styles, and geodynamic settings of Mesozoic tungsten deposits in South China. Journal of Asian Earth Sciences, 137: 109-140 DOI:10.1016/j.jseaes.2016.12.047
Zhao WW, Zhou MF, Williams-Jones AE and Zhao Z. 2018. Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit, South China. Chemical Geology, 477: 123-136 DOI:10.1016/j.chemgeo.2017.12.020
Zhao YM. 2002. Some new important advances in study of skarn deposits. Mineral Deposits, 21(2): 113-120, 136 (in Chinese with English abstract)
Zhao Z, Fu TY, Gan JW, Liu C, Wang DH, Sheng JF, Li WB, Wang PA, Yu ZF and Chen YC. 2021. A synthesis of mineralization style and regional distribution and a proposed new metallogenic model of Mesozoic W-dominated polymentallic deposits in South China. Ore Geology Reviews, 133: 104008 DOI:10.1016/j.oregeorev.2021.104008
Zhu XY, Wang JB, Wang YL, Cheng XY, He P, Fu QB and Li ST. 2012. Characteristics of alkali feldspar granite in tungsten (tin) deposits of Nanling region. Geology in China, 39(2): 359-381 (in Chinese with English abstract)
Zhu XY, Wang JB, Wang YL and Chen XY. 2015. The role of magma-hydrothermal transition fluid in the skarn-type tungsten mineralization process: A case study from the Shizhuyuan tungsten and tin polymetallic ore deposit. Acta Petrologica Sinica, 31(3): 891-905 (in Chinese with English abstract)
Zhuang YQ, Wang RZ, Yang SP and Yin JM. 1996. Gejiu Sn-Cu Polymetallic Deposit, Yunnan Province. Beijing: Seismological Press, 1-89 (in Chinese)
陈依壤. 1981. 瑶岗仙脉钨矿床地质特征与找矿标志. 地质与勘探, 17(2): 25-30.
陈依壤. 1988. 瑶岗仙花岗岩地质地球化学特征与成岩成矿作用. 矿产与地质, 2(1): 62-72.
陈依壤. 1992. 瑶岗仙矿田控矿因素及成矿条件分析. 湖南地质, 11(4): 285-293.
陈毓川, 裴荣富, 张宏良. 1990. 南岭地区与中生代花岗岩类有关的有色、稀有金属矿床地质. 中国地质科学院院院报, 20(1): 79-85.
程细音, 祝新友, 王艳丽, 李顺庭, 韩英. 2012. 柿竹园钨锡多金属矿床矽卡岩中碱交代脉研究. 中国地质, 39(4): 1023-1033. DOI:10.3969/j.issn.1000-3657.2012.04.018
董少花, 毕献武, 胡瑞忠, 陈佑纬, 陈恒. 2011. 湖南瑶岗仙石英脉型黑钨矿床成矿流体特征. 矿物岩石, 31(2): 54-60. DOI:10.3969/j.issn.1001-6872.2011.02.008
李顺庭, 王京彬, 祝新友, 王艳丽, 韩英, 郭宁宁. 2011a. 湖南瑶岗仙复式岩体的年代学特征. 地质与勘探, 47(2): 143-150.
李顺庭, 王京彬, 祝新友, 李超. 2011b. 湖南瑶岗仙钨多金属矿床辉钼矿Re-Os同位素定年和硫同位素分析及其地质意义. 现代地质, 25(2): 228-235.
林新多, 张德会, 章传玲. 1986. 湖南宜章瑶岗仙黑钨矿石英脉成矿流体性质的探讨. 地球科学, 11(2): 153-160.
毛景文, 李红艳, 宋学信. 1998. 湖南柿竹园钨锡钼铋多金属矿床地质与地球化学. 北京: 地质出版社, 136-167.
王登红, 李华芹, 秦燕, 梅玉萍, 陈郑辉, 屈文俊, 王彦斌, 蔡红, 龚述清, 何晓平. 2009. 湖南瑶岗仙钨矿成岩成矿作用年代学研究. 岩矿测试, 28(3): 201-208. DOI:10.3969/j.issn.0254-5357.2009.03.002
王巧云, 胡瑞忠, 彭建堂, 毕献武, 武丽艳, 刘华, 苏本勋. 2007. 湖南瑶岗仙钨矿床流体包裹体特征及其意义. 岩石学报, 23(9): 2263-2273. DOI:10.3969/j.issn.1000-0569.2007.09.024
徐克勤. 1957. 湘南钨铁锰矿矿区中矽嘎岩型钙钨矿的发现, 并论两类矿床在成因上的关系. 地质学报, 37(2): 117-151.
于志峰, 许虹, 祝新友, 王艳丽, 程细音. 2015. 湖南瑶岗仙钨矿床成矿流体演化特征研究. 矿床地质, 34(2): 309-320.
张理刚. 1987. 华南钨矿床黑钨矿的氧同位素研究. 地球化学, (3): 233-242. DOI:10.3321/j.issn:0379-1726.1987.03.005
赵一鸣. 2002. 夕卡岩矿床研究的某些重要新进展. 矿床地质, 21(2): 113-120, 136. DOI:10.3969/j.issn.0258-7106.2002.02.003
祝新友, 王京彬, 王艳丽, 程细音, 何鹏, 傅其斌, 李顺庭. 2012. 南岭锡钨多金属矿区碱长花岗岩的厘定及其意义. 中国地质, 39(2): 359-381. DOI:10.3969/j.issn.1000-3657.2012.02.009
祝新友, 王京彬, 王艳丽, 陈细音. 2015. 浆液过渡态流体在矽卡岩型钨矿成矿过程中的作用——以湖南柿竹园钨锡多金属矿为例. 岩石学报, 31(3): 891-905.
庄永秋, 王任重, 杨树培, 尹金明. 1996. 云南个旧锡铜多金属矿床. 北京: 地震出版社, 1-189.