岩石学报  2022, Vol. 38 Issue (1): 230-252, doi: 10.18654/1000-0569/2022.01.15   PDF    
西藏中拉萨地块北部早白垩世晚期控错A型花岗岩的成因及构造环境研究
刘洪1,2, 李光明1, 李文昌1,3, 黄瀚霄1, 李佑国2, 欧阳渊1, 张向飞1, 周清1     
1. 中国地质调查局成都地质调查中心, 成都 610081;
2. 成都理工大学地球科学学院, 成都 610059;
3. 昆明理工大学国土资源工程学院, 昆明 650093
摘要: 在中拉萨地块北部尼玛控错地区发育着一套碱性长石花岗岩, 对该花岗岩体开展成因和形成背景的研究, 能为探索班公湖-怒江洋的构造演化提供有价值的信息。用LA-ICP-MS方法测得该花岗岩的锆石206Pb/238U年龄加权平均值为104.9±1.4Ma(MSWD=1.5)和104.6±1.3Ma(MSWD=1.3), 表明该岩体形成于早白垩世。花岗岩具有高硅(SiO2=76.75%~77.51%, 平均77.27%)、高钾(K2O=4.61%~4.85%, 平均4.77%)、高碱(K2O+Na2O=8.24%~8.57%, 平均8.44%)、低钙(CaO=0.28%~0.48%, 平均0.35%)、低镁(MgO=0.11%~0.16%, 平均0.13%)和低铝(Al2O3=11.79%~12.22%, 平均12.09%)等特征, 里特曼指数(σ)为1.96~2.15(平均2.08), A/NK值为1.06~1.09, A/CNK值为1.01~1.04。这些特征表明控错花岗岩为弱过铝质的高钾钙碱性-钾玄岩系列岩石。控错花岗岩相对富集Zr、Nb、Ce、Y和Hf等微量元素, 相对亏损Ti、Ba、Sr和P等微量元素, 分异系数(DI)为95.5~96.9(平均: 96.3), 还具有较高的FeOT/MgO值(5.61~10.22, 平均7.26)、10000Ga/Al值(2.78~2.56, 平均2.84)、Y/Nb值(2.29~4.97, 平均3.57)、Rb/Nb值(11.6~18.2, 平均15.2);此外, 该岩体还具有较高的全岩Zr饱和温度(875~910℃, 平均890℃)和锆石Ti饱和温度(848~919℃, 平均890℃), 明显的Eu负异常(δEu=0.04~0.09, 平均0.06), 以及向右缓倾的"Ⅴ型"稀土元素配分曲线, 这些特征表明控错花岗岩为产于碰撞后环境的A2型花岗岩。正的锆石εHf(t)值(4.26~6.38, 平均5.16)、相对年轻的锆石Hf地壳模式年龄(tDM2=757~889Ma, 平均833Ma)、下地壳与地幔混合特征的(87Sr/86Sr)t(0.7194~0.7407, 平均0.7313)、εNd(t)(-3.39~-3.00, 平均-3.24))和Pb同位素特征((206Pb /204Pb)t=18.792~18.845, (207Pb /204Pb)t=15.708~15.718, (208Pb /204Pb)t=38.870~38.037), 指示控错花岗岩熔融于幔源物质加入的新生地壳。研究结果揭示, 控错花岗岩形成于羌塘-拉萨地块碰撞作用下, 俯冲板片的断离后, 软流圈上涌诱发的地壳部分熔融, 并经历了显著的以钾长石和角闪石为主的分离结晶作用。
关键词: 班公湖-怒江结合带    控错    A型花岗岩    锆石U-Pb    Sr-Nd-Pb    Lu-Hf    
Petrogenesis and tectonic setting of the late Early Cretaceous Kong Co A-type granite in the northern margin of Central Lhasa Subterrane, Tibet
LIU Hong1,2, LI GuanMing1, LI WenChang1,3, HUANG HanXiao1, LI YouGuo2, OUYANG Yuan1, ZHANG XiangFei1, ZHOU Qing1     
1. Chengdu Center, China Geological Survey, Chengdu 610081, China;
2. College of Earth Sciences, Chengdu University of Technology, Chengdu 610059, China;
3. College of Land and Resources Engineering, Kunming University of Science and Technology, Kunming 650093, China
Abstract: A set of alkali feldspar granite develops well in the Kong Co of Nyima County in the northern margin of Central Lhasa Subterrane, Tibet, which can provide invaluable information to explore the geological evolution of the Bangong Co-Nujiang Ocean. The weighted averaged zircon 206Pb/238U ages of the granite measured by LA-ICP-MS are 104.9±1.4Ma (MSWD=1.5) and 104.6±1.3Ma (MSWD=1.3), respectively, indicating that it was formed in the late phase of Early Cretaceous magmatism. The rocks in Kong Co granite are grayish-white, with fine-grained equigranular structure and medium coarse-grained porphyritic-like texture. The rock-forming minerals mainly include quartz, potassium feldspar, plagioclase, and a small amount of transparent accessory minerals such as biotite and amphibole, as well as a few melanocratic mineral like magnetite. The granite is characterized by high contents of SiO2 (6.75%~77.51%), K2O (4.61%~4.85%), and K2O+Na2O (8.24%~8.57%), with low contents of CaO (0.28%~0.48%), MgO (0.11%~0.16%) and Al2O3 (11.79%~12.22%), and a Rittman index (σ43) of 1.96~2.15 and A/CNK ratios of 1.01~1.04. These characteristics reveal that the Kong Co granite is weakly peraluminous high potassium calc-alkaline-potassium basalt series rock. The granite is relatively enriched in Zr, Nb, Ce, Y and Hf, and deficient in Ti, Ba, Sr and P. It shows a highly variation of index (DI: 95.50~96.90), and also has high values of FeOT/MgO (5.61~10.22), 10000Ga/Al (2.78~2.56), Y/Nb (2.29~4.97), Y/Nb (2.29~4.97), Rb/Nb (11.6~18.2), which is consistent with A2-type granites produced in post collision environment. In addition, the rock has high whole-rock Zr saturation temperatures (875~910℃) and zircon Ti saturation temperatures (848~919℃), with a significant negative Eu anomaly (δEu=0.04~0.09), and a " Ⅴ-shaped" rare earth element curve gently inclined to the right. These characteristics also prove the Kong Co granite is A2 type granite. They have relatively positive εHf(t) values (4.26~6.38), and two-stage Hf model ages (tDM2) ranging from 757Ma to 889Ma, with (87Sr/86Sr)t=0.7194~0.7407 and εNd(t)=-3.39~-3.00, and Pb isotopic ((206Pb/204Pb)t=18.792~18.845, (207Pb/204Pb)t=15.708~15.718, (208Pb/204Pb)t=38.870~38.037) characteristics of lower crust-mantle mixture. These data indicate that the granite was sourced from interaction between mantle-derived and juvenile lower crust-derived melts. This occurred when the post collision extension of Qiangtang and Lhasa terranes the subduction plate split to create a slab window, and rising asthenosphere triggered re-melting of the lower crust basalt, resulting in the formation of the late Early Cretaceous A-type granite around Kong Co.
Key words: Bangong Co-Nujiang Ocean    KongCo    A-type granite    Zircon U-Pb    Sr-Nd-Pb    Lu-Hf    

青藏高原是全球最为年轻的碰撞造山带,它是开展地球动力学研究的最佳场所。它由一系列近东西走向的地块(微地块)和蛇绿岩混杂带所组成(图 1a)(潘桂棠等, 2001, 2004, 2020; Li et al., 2016, 2017b, 2020, 2021; 李文昌和江小均, 2020; 莫宣学, 2020; 朱同兴等, 2020; 王立全等, 2021; 张克信等, 2021; 郑有业等, 2021),由北至南包括:松潘-甘孜地块(SG)、羌塘地块(QT)、拉萨地块(LS)和喜马拉雅地块(HM)(图 1a)。这些地块和缝合带受特提斯洋的俯冲和陆-陆碰撞的影响而发育大量的岩浆岩和矿产资源(侯增谦等, 2008; 杨志明等, 2008; Li et al., 2011; 李光明等, 2011; 宋扬等, 2013; 赵希良等, 2013; 蔡青龙等, 2015; 耿全如等, 2015; Huang et al., 2017, 2021a; 刘洪等, 2017, 2018; 唐菊兴, 2019; Cao et al., 2020),因而备受地质工作者们的关注。拉萨地块(LS)又名冈底斯地块、念青唐古拉地块,北临班公湖-怒江缝合带(BNS),南接印度河-雅鲁藏布缝合带(YZSZ)(Ding and Lai, 2003; 杨志明等, 2011; 解超明等, 2020; 李光明等, 2021; 耿全如等, 2021),它又被狮泉河-纳木错蛇绿岩混杂带(SNS)和洛巴堆-米拉山断裂带(LMF)分割为北拉萨地块(NL)、中拉萨地块(CL)和南拉萨地块(SL)三个次级单元(图 1b)(杨经绥等, 2007; 潘桂棠等, 2009; 彭建华等, 2013; Huang et al., 2020; 刘洪等, 2020)。班公湖-怒江缝合带(BNS)是拉萨地块(LS)北部重要的构造带,它是特提斯大洋的残留遗迹(Guynn et al., 2013; 许志琴等, 2013; Huang et al., 2018; 刘洪等, 2021a),对其地球动力学背景的研究为我们探索特提斯洋在中生代演化史提供了一个重要的窗口。班公湖-怒江结合带(BNS)从东向西延伸大于1500km,以复理石、混杂岩和分段蛇绿岩碎片为特征(Pan et al., 2012)。一些学者认为班公湖-怒江洋盆在晚二叠世打开,洋壳俯冲于早-中侏罗世(Yin and Harrison, 2000; Tapponnier et al., 2001),但由于该地区构造特征的复杂性及宏大的规模,班公湖-怒江洋的闭合时限至今仍存在较大的争议(Xu et al., 2015; 刘洪等, 2016, 2018; Hu et al., 2017; Li et al., 2017a; Wu et al., 2018)。

图 1 研究区地质简图 (a)中国大地构造简图(据刘洪等, 2015修改);(b)冈底斯地质简图(据刘洪等, 2019a, 2021b修改);(c)控错地区地质简图(据Liu et al., 2018a修改). 1-第四系;2-上白垩统竟珠山组砂砾岩;3-下白垩统郎山组生物碎屑石灰岩夹粉砂岩;4-下白垩统多尼组砂岩、石灰岩和火山岩;5-中二叠统下拉组石灰岩;6-石炭系永珠组砂岩、页岩、石灰岩;7-中-上泥盆统长蛇湖组砂岩夹石灰岩;8-下泥盆统达尔东组石灰岩;9-晚白垩世中酸性岩;10-早白垩世正长花岗岩;11-早白垩世碱性长石花岗岩;12-断层;13-采样位置. NL-北拉萨地块;SNS-狮泉河-纳木错蛇绿岩混杂带;CL-中拉萨地块;LMF-洛巴堆-米拉山断裂带;SL-南拉萨地块. 数据来源:i区(解龙等, 2015); ii区(Li et al., 2020); iii区(王欣欣等, 2021); iv区(Qu et al., 2012; Chen et al., 2014); v区(史少飞等,2019) Fig. 1 Geological maps of the research area (a) tectonic map of China (modified after Liu et al., 2015); (b) tectonic map of Gangdise (modified after Liu et al., 2019a, 2021b); (c) Geological map of the Kong Co (modified after Liu et al., 2018). 1-Quaternary; 2-Upper Cretaceous Jingzhushan Fm.: sandstone and conglomerate; 3-Lower Cretaceous Langshan Fm.: bioclastic limestone with siltstone; 4-Lower Cretaceous Duoni Fm.: Sandstone, limestone and volcanic rock; 5-Middle Permian Xiala Fm.: limestone; 6-Carboniferous Yongzhu Fm.: sandstone, shale and limestone; 7-Middle Upper Devonian Changshehu Fm. sandstone intercalated with limestone; 8-Lower Devonian dardong Fm. Limestone; 9-Early Cretaceous intermediate acid rock; 10-Early Cretaceous syenogranite; 11-Early Cretaceous alkali feldspar granite; 12-fault; 13-sampling positions. NL-Northern Lhasa Subterrane; SNS-Shiquanhe-Namuco Ophiolite Melange Zone; CL-Central Lhasa Subterrane; LMF-Luobadui-Milashan Fault Zone; SL-Southern Lhasa Subterrane. Data resources: i area (Xie et al., 2015); ii area (Li et al., 2020); iii area (Wang et al., 2021); iv area (Qu et al., 2012; Chen et al., 2014); v area (Shi et al., 2019)

近年来,在拉萨地块中北部相继发现了一系列白垩纪岩浆活动(曲晓明等, 2004; 黄瀚霄等, 2012; Wang et al., 2014; Guo et al., 2015; Zheng et al., 2015; 彭智敏等, 2015; 张志等, 2017; 高顺宝等, 2021),这一岩浆事件的研究为探索班公湖-怒江洋的演化史提供了详细的素材。然而,关于这一岩浆作用的地球动力学背景存在许多争论:一些学者认为它与新特提斯洋向北俯冲有关(Coulon et al., 1986; Matte, 1996; 秦臻等, 2019);也有一些学者认为它是班公湖-怒江洋向南俯冲期间发生板片断离引发的构造岩浆事件(Li et al., 2020);还有学者认为它们是羌塘地块和拉萨地块碰撞阶段岩浆作用的产物(Zhu et al., 2013; 王保弟等, 2013)。

岩浆岩的源区、形成过程和岩石组合的研究为探索岩浆岩形成时的构造环境提供了重要而有效的信息,特别是关于特殊岩石类型,如A型花岗岩、埃达克岩和板内玄武岩,这可以为区域地质演化提供重要证据(Huppert and Sparks, 1988; Wilson, 1989; Martin, 1999)。而近些年在中拉萨地块北缘发现的一系列早白垩世A型花岗岩(Qu et al., 2012; Chen et al., 2014; 解龙等, 2015; 史少飞等, 2019; Li et al., 2020; 王欣欣等, 2021),为我们研究班公湖-怒江洋在早白垩世的演化提供了良好的对象。在中拉萨地块北部尼玛县控错地区,我们新发现了早白垩世A型花岗岩(图 1c),并对其进行了地球化学、LA-ICP-MS锆石U-Pb地质年代学、锆石Lu-Hf同位素地球化学和全岩Rb-Sr-Sm-Nd-Pb同位素地球化学分析,精确限定其时代归属,探讨了其形成机制、母岩浆源区和形成的大地构造背景,进而丰富对拉萨地块中北部早白垩世A型岩浆作用动力学背景的认识。

1 地质概况及岩体特征

研究区位于中拉萨地块北缘的尼玛县控错地区(图 1c),北临狮泉河-纳木错蛇绿岩混杂带。研究区地质条件较为复杂,整体构造线呈NW-SE向,此外还存在碰撞后伸展作用形成的S-N向构造。区内沿NE-NW方向又可进一步划分为三个构造单元,依次为北拉萨地块、狮泉河-纳木措湖蛇绿岩混杂带以及中拉萨地块(图 1c)。区域出露的地层主要为上白垩统竟珠山组(K2j)砂砾岩,下白垩统郎山组(K1l)生物碎屑石灰岩夹粉砂岩、多尼组(K1d)砂岩、石灰岩和火山岩,中二叠统下拉组(P2x)石灰岩,石炭系永珠组(C1-2y)砂岩、页岩、石灰岩,中-上泥盆统长蛇湖组(D2-3c)砂岩夹石灰岩,下泥盆统达尔东组(D1d)石灰岩等。其中达尔东组为一套以深灰色薄层石灰岩、生物碎屑石灰岩、泥石灰岩为主的地层体,含丰富的竹节石Nowakia acuaria带及腕足类、珊瑚、苔藓虫、三叶虫及海百合等,为深水盆地相沉积(图 1c)。研究区白垩纪岩浆活动强烈,出露的侵入岩主要为中酸性岩体,包括早白垩(~105Ma)和晚白垩世(~90Ma)两期(图 1c),这些岩浆岩以复式岩株、岩脉的形式侵位于竟柱山组和下拉组地层中(Liu et al., 2018a; 王欣欣等, 2021)。此外,研究区还有报道了~90Ma和~102Ma的中酸性岩浆活动(Luo et al., 2019; Zeng et al., 2020),地壳熔融随着时间的推移由深变浅,从而为其伸展背景提供了重要证据。

控错早白垩世A型花岗岩体(χργK1)侵入到下泥盆统达尔东组石灰岩中,出露面积约10km2(图 1c)。该岩体的岩性主要为碱性长石花岗岩(图 1, 图 2a-c),呈灰白色,具有细粒相和中粗粒相两种岩相(图 2b, c),这两种岩相呈渐变过渡的接触关系。主要造岩矿物有石英(35%±)(图 2d, e),呈无色,他形粒状,部分颗粒较为浑圆;钾长石(55%±),主要为条纹长石(图 2d, e),半自形的宽板状,顺条纹有次生尘化现象,部分条纹长石与石英构成文象结构,部分条纹长石内包裹有斜长石小矿物,可见净边结构;斜长石(5%±),呈无色,半自形板状,表面轻微次生尘化,镜下观察计算的牌号为5±,长石类型主要为钠长石(酸性斜长石)。同时含少量黑云母、角闪石等透明矿物,以及磁铁矿等暗色矿物。岩体和围岩的接触带发育明显的矽卡岩化,接触带内还普遍可见孔雀石化、黄铜矿化、绢云母化、黄铁矿化和磁铁矿化等热液蚀变现象,附近有曲桑格勒和控错等矽卡岩铜矿化点。

图 2 控错岩体野外和镜下岩相学特征照片 (a)野外宏观特征;花岗岩细粒相(b)和中粗粒相(c)野外露头特征;细粒相(d)和中粗粒相(e)单偏光(-)和正交偏光(+)显微镜下照片. D1d-下泥盆统达尔东组石灰岩等;χργK1-白垩世花岗岩体;Qz-石英;Kfs-钾长石;Pl-斜长石;Bt-黑云母;Hb-角闪石 Fig. 2 Field photographs and photomicrographs illustrating the petrographic characteristics of the Kong Co granite (a) the field outcrop of the Kong Co granite; the field outcrops of the fine-grained facies (b) and the medium-coarse grained facies (c) in granite; microphotographs under plane polarized light (-) and perpendicular polarized light (+) of the fine-grained facies (d) and the medium-coarse grained facies (e) in granite. D1d-Lower Devonian Daerdong Fm. limestone, etc; χργ K1-Cretaceous granite; Qz-quartz; Kfs-K-feldspar; Pl-plagioclase; Bt-biotite; Hb-hornblende
2 样品及分析方法

8件样品分散采集自控错花岗岩体,采样位置为31°28′01″N、87°31′15″E附近,其中KC01~KC05采自花岗岩细粒相,KC06~KC08采自花岗岩粗粒相。所有样品均进行了野外及手标本观察、薄片鉴定及全岩主量和微量元素分析,对其中2件样品(KC05、KC08)进行了锆石U-Pb年代学分析和Lu-Hf同位素分析,5件样品进行了Rb-Sr、Sm-Nd和Pb同位素测试。

主量和微量元素分析在中国地质大学(武汉)地质过程与矿产资源国家重点实验室(GPMR)分别利用X射线荧光光谱仪(XRF)和Agilent 7700e ICP-MS分析完成,使用的国际标样为AGV-2、BHVO-2、BCR-2和RGM-2。锆石的分选、背散射电子拍摄、锆石阴极发光图像分析、锆石U-Pb同位素定年和微量元素含量在武汉上谱分析科技有限责任公司利用LA-ICP-MS同时分析完成,GeolasPro激光剥蚀系统由COMPexPro 102 ArF 193nm准分子激光器和MicroLas光学系统组成,ICP-MS型号为Agilent 7500a,内标位国际锆石标样91500(1062±4Ma),详细的仪器参数和分析流程见Zong et al. (2017)。本次分析的激光束斑为32μm。对分析数据的离线处理采用软件ICPMSDataCal (Liu et al., 2008, 2010)完成。锆石原位微区Lu-Hf同位素测试利用Neptune型LA-MC-ICP-MS和Geolas Pro型激光剥蚀系统联用的方法完成的,详细测试流程可参照Meng et al. (2014)。测试束斑直径为32μm,所有测试位置与U-Pb定年点位相同或靠近。国际锆石标样GJ-1(0.282030±40(2σ))作为Lu-Hf同位素测试的监控。Rb-Sr、Sm-Nd、Pb同位素分析在武汉上谱分析科技有限责任公司利完成。同位素分析采用ISOPROBE-T热电离质谱计,单带,M+,可调多法拉第接收器接收。质量分馏用86Sr/88Sr=0.1194校正,标准测量结果:NBS987,0.710250±7,JMC,143Nd/144Nd=0.512109±3,NBS 981, 208Pb/206Pb=2.164940±15, 207Pb/206Pb=0.914338±7,204Pb/206Pb=0.0591107±2。

3 分析结果 3.1 全岩主量元素及微量元素

岩石主量、微量元素测试分析结果显示(表 1),控错花岗岩具有高硅(SiO2=76.75%~77.51%,平均77.27%)、高钾(K2O=4.61%~4.85%,平均4.77%)、高碱(K2O+Na2O=8.24%~8.57%,平均8.44%),低钙(CaO=0.28%~0.48%,平均0.35%)、低镁(MgO=0.11%~0.16%,平均0.13%)和中等的铝含量(Al2O3=11.79%~12.22%,平均12.09%), 里特曼指数(σ)为1.96~2.15,平均2.08,属于高钾钙碱性-钾玄岩系列过渡的碱性长石花岗岩(图 3a, b)。A/NK值为1.06~1.09,A/CNK值为1.01~1.04,显示微弱的过铝质岩石特征(图 3c)。这种从碱性矿物到铝质矿物的共生也出现在中拉萨地块其他早白垩世A型花岗岩体中(图 1b, 图 3c; Qu et al., 2012; Chen et al., 2014; 解龙等, 2015; Li et al., 2020; 王欣欣等, 2021)。镁铁指数(Mg#)为14.92~23.09(平均20.18),分异系数(DI)为95.50~96.90(平均96.33),指示岩石分异程度较高。计算得到的控错花岗岩锆石饱和温度为平均875~910℃,平均891℃,表明控错岩体结晶于较高的温度环境。

表 1 控错岩体主量(wt%)和微量(×10-6)元素分析结果 Table 1 Major (wt%) and trace (×10-6) element compositions of the Kong Co granite

图 3 控错花岗岩石学图解 (a) QAP图解;(b) K2O-SiO2图解(Peccerillo and Taylor, 1976; Middlemost, 1985);(c) A/NK-A/CNK图解(Maniar and Piccoli, 1989);(d)球粒陨石标准化稀土元素配分图解(标准化值据Boynton, 1984; (e)原始地幔标准化微量元素蛛网图(标准化值据Sun and MchDonough, 1989). 数据来源:i区据Qu et al., 2012; Chen et al., 2014; 解龙等, 2015; Li et al., 2020; 王欣欣等, 2021. ii区据Zhu et al., 2011; 余红霞等, 2011; Liu et al., 2018a; Ouyang et al., 2017; Dai et al., 2020.图 7图 8数据来源同此图 Fig. 3 Petrological plots of Kong Co granite (a) QAP plot; (b) K2O vs. SiO2 plot (Peccerillo and Taylor, 1976; Middlemost, 1985); (c) A/NK vs. A/CNK plot (Maniar and Piccoli, 1989); (d) chondrite-normalized REE patterns (normalization values after Boynton, 1984); (e) mantle-normalized multi-element diagrams (normalization values after Sun and MchDonough, 1989). Data sources: i area after Qu et al. (2012), Chen et al. (2014), Xie et al. (2015), Li et al. (2020), Wang et al. (2021); ii area after Zhu et al. (2011), Yu et al. (2011), Liu et al. (2018a), Ouyang et al. (2017), Dai et al. (2020). Data resources also in Fig. 7 and Fig. 8

与中拉萨地块其它A型花岗岩特征相似。控错花岗岩稀土元素总量偏高(ΣREE=85.58×10-6~146.0×10-6,平均113.0×10-6),轻重稀土元素比值中等(LREE/HREE=2.38~3.15,平均2.96),(La/Yb)N=1.09~3.15,平均1.86,表明轻稀土富集,而重稀土轻微的亏损,具有明显的负Eu异常(δEu=0.04~0.09,平均0.06),轻微的Ce正异常(δCe=0.04~0.09,平均0.06),在球粒陨石标准化稀土元素分布型式图中(图 3d)中,各个样品变化趋势一致,具有向右缓倾的“Ⅴ型”曲线特征(图 3d)。从原始地幔标准化微量元素蛛网图(图 3e)中,可以看出,包括控错岩体在内的中拉萨地块A型花岗岩明显相对富集Rb、Th、U、K、Ta、Ce、Nd、Zr、Hf、Sm、Y、Yb和Lu等元素,明显相对亏损Ba、Nb、Sr、P、Eu和Ti。

3.2 锆石U-Pb年龄及Lu-Hf同位素组成

对控错花岗岩CK05(细粒碱性长石花岗岩)和CK08(中粗粒碱性长石花岗岩)两个样品中挑取的锆石进行了U-Pb年代学、微量元素及Lu-Hf同位素测试,测点都选择在韵律环带结构清晰的部位,分析位置和结果见图 4表 2图 5表 3表 4。从控错碱性长石花岗岩体样品中提取的锆石具有相似的特征,大多为长度为100~300μm的短柱状晶体。它们的CL图像颜色较深,振荡带密集(图 4a, d),其均匀的纹理、完整的晶体形状和相对较高的Th/U比(0.34~1.23,平均0.63)等典型岩浆锆石特征(Grimes et al., 2007),以及明显的岩浆锆石稀土配分区线(Hoskin, 2005),表明所研究的锆石主要为花岗岩结晶过程中形成岩浆锆石,此外,部分锆石样品可能发生了一定程度的热液蚀变作用,导致少量测点显示热液锆石稀土元素的特征(图 4f)。

图 4 控错花岗岩锆石的典型CL图像(a、d)、协和年龄(b、e)和稀土元素特征(c、f) Fig. 4 Cathodoluminescence (CL) images of zircon grains (a, d), concordia diagrams zircon measuring point (b, e) and chondrite-normalized REE patterns (c, f) from Kong Co granite

表 2 控错岩体LA-ICP-MS锆石U-Pb年龄 Table 2 LA-ICP-MS zircon U-Pb ages of Kong Co granite


表 3 控错岩体LA-ICP-MS锆石稀土元素组成(×10-6) Table 3 LA-ICP-MS zircon REE compositions (×10-6) of Kong Co granite

表 4 控错岩体LA-ICP-MS锆石Lu-Hf同位素 Table 4 LA-ICP-MS zircon Lu-Hf isotope compositions of Kong Co granite

KC05号样品共测试了16个分析点,其206Pb/238U表面年龄在100.3~110.2Ma之间,其加权平均值为104.9±1.4Ma(MSWD=1.5)(图 4表 2),KC08号样品共测试了19个分析点206Pb/238U表面年龄在100.7~109.4Ma之间,其加权平均值为104.6±1.3Ma(MSWD=1.3)(图 4表 2),两个样品的锆石年龄代表了控错花岗岩的结晶年龄,并与Rb-Sr等时线年龄为104.8±4.3Ma(MSWD=0.6)在误差范围内一致(图 6)。因此,控错地区的岩浆活动时间应该是早白垩世(约105Ma)。

图 6 控错岩体Rb-Sr、Sm-Nd (a, b, 底图据Zindler and Hart, 1986; Wilson, 1989; Miller et al., 1999)和Pb (c,底图据朱炳泉,1998)图解 Fig. 6 Discrimination plots of Rb vs. Sr and Sm vs. Nd (a, b, base map after Zindler and Hart, 1986; Wilson, 1989; Miller et al., 1999) and Pb (c, base map after Zhu, 1998) of Kong Co granite

在锆石U-Pb年代学测试和微量元素测试的基础上,对KC05和KC08样品的部分年代学测点开展了Lu-Hf同位素测试。控错花岗岩锆石176Yb/177Hf值为0.020226~0.056663,平均0.036282(表 4),176Lu/177Hf变化于0.000804~0.002239,平均0.001416,176Hf/177Hf值为0.282831~0.282891,平均0.282856。根据对应锆石年龄计算的εHf(0)主要分布于2.08~4.20之间,平均为5.15,εHf(t)值为正值(4.26~6.38,平均5.15,图 5表 4),二阶段模式年龄(tDM2)为757~889Ma,平均833Ma(图 5表 4)。

3.3 Rb-Sr、Sm-Nd、Pb同位素

控错花岗岩类的Rb-Sr、Sm-Nd、Pb同位素含量见表 587Rb/86Sr和87Sr/86Sr分别为91.1801~147.565(平均值为116.547)和0.8768~0.9538(平均值为0.9051);计算得到的(87Sr/86Sr)t为0.7194~0.7407(平均值为0.7313),获得Rb-Sr等时线年龄为104.8±4.3Ma(MSWD=0.6)(图 6),与锆石U-Pb年龄相在一致。147Sm/144Nd和143Nd/144Nd分别为0.1778~0.1912(平均值为0.1831)和0.5125~0.5125(平均值为0.5125);计算得到的(143Nd/144Nd)tεNd(t)分别为0.512340~0.512352(平均值为0.512346)和-3.39~-3.00(平均值为-3.24)。206Pb /204Pb、207Pb/204Pb和208Pb/204Pb分别为18.948~19.043(平均值为18.991)、15.715~15.728(平均值为15.721)和39.419~39.449(平均值为39.347);(206Pb /204Pb)t、(207Pb /204Pb) t和(208Pb /204Pb)t分别为18.792~18.845(平均值为18.823)、15.708~15.718(平均值为15.713)和38.870~38.037(平均值为39.979)。

表 5 控错岩体Rb-Sr、Sm-Nd、Pb同位素特征 Table 5 The Rb-Sr, Sm-Nd, Pb isotope compositions of Kong Co granite
4 讨论 4.1 岩石类型厘定

A型花岗岩在矿物组成上以出现碱性暗色矿物(如钠闪石、铁黑云母、钠质辉石等)为特征,在化学组成上具有低Al2O3(~12.40%)、低CaO(~0.75%)、低MgO(~0.20%)、低A/NK值(~1.08)、高Ca/Al及高含量的高场强元素(HFSE)(邓晋福等, 2009)。控错花岗岩富含钾长石(55%±),存在黑云母和角闪石等富钾矿物(图 2),在主量元素组成上具有高钾(K2O=4.61%~4.85%,平均4.77%),高碱(K2O+Na2O=8.24%~8.57%,平均8.44%),低铝(Al2O3=11.79%~12.22%,平均0.35%),低钙(CaO=0.28%~0.48%,平均0.35%),和低镁(MgO=0.11%~0.16%,平均12.09%)的特征(图 3表 1),在铝指数上表现为弱的过铝质特征(A/NK值为1.06~1.09,A/CNK值为1.01~1.04)(图 3表 1),这些特与典型的A性花岗岩矿物和主量元素组成特征(Whalen et al., 1987; 邓晋福等, 2009)相似。在微量和稀土元素方面(图 3表 1),控错花岗岩具有明显的负Eu异常(δEu=0.04~0.09,平均0.06),Ce异常不明显,轻稀土略富集于重稀土(LREE/HREE=2.38~3.15, 平均2.96),在球粒陨石标准化稀土元素配分图中(图 3d)中,具有向右缓倾的“Ⅴ型”曲线特征(图 3d),同时控错花岗岩富含Rb、Th、U、Pb、Zr和Hf,相对亏损Nb、Ta、Ti、P、Ba和Sr,在微量和稀土元素组成上具有A型花岗岩的特征(Whalen et al., 1987; Eby, 1990),并明显相近于中拉萨地块上报道的早白垩世A型花岗岩(图 3),而有别于中拉萨晚白垩世Ⅰ型花岗岩(图 3)。在FeOT/MgO(5.61~10.22,平均7.26)、10000Ga/Al(2.78~2.56,平均2.84)和Zr(91×10-6~145×10-6,平均112×10-6) 等花岗岩成因类型判别指标上(图 7a, b),控错花岗岩均表现出A型花岗岩的特征(Eby, 1992),并与中拉萨地块上报道的其它早白垩世A型花岗岩非常相似(图 7a, b)。S型花岗岩平均温度为~764℃,Ⅰ型花岗岩平均温度为~781℃,而A型花岗岩的形成温度比S型和Ⅰ型的更高(King et al., 1997; 张旗等, 2008)。全岩锆饱和温度计(Watson and Harrison, 2005)计算出控错岩体的形成温度(Tzr)为875~910℃(平均890℃),锆石Ti温度计(Schiller and Finger, 2019)计算出控错岩体锆石的结晶温度为848~919℃(平均890℃),符合A型花岗岩的形成温度范围。综上所述,我们认为,控错早白垩世碱性长石花岗岩为A型花岗岩。

图 7 控错岩体岩石成因图解(a, b, 底图据Whalen et al., 1987; c-f, 底图据Eby, 1992) Fig. 7 Discrimination diagrams of genetic types of Kong Co granite (a, b, base maps after Whalen et al., 1987; c-f, base maps after Eby, 1992)

A型花岗岩通常被定义为具有非造山期的、碱性的和无水的等特点,然而,随着研究的进一步发展,学者们发现A型花岗岩不仅在地幔柱或热点型环境中形成,而且也可以在后造山构造环境中形成(Eby, 1990)。因此,岩石学家们根据A型花岗岩的岩石学和地球化学特征,以及其物质来源和构造背景的差异,将其分为A1型和A2型两个亚类(Eby, 1992),其中A1型的微量元素含量类似于大洋洲玄武岩(OIB),被认为产于非造山环境(大陆裂谷或板内环境),而A2型花岗岩的微量元素含量类似于大陆地壳物质和岛弧玄武岩(IAB),被认为产于同碰撞/碰撞后环境。A1型花岗岩具有很低的Y/Nb和Rb/Nb比值(Eby, 1992),而A2型花岗岩则相反,具有较高Y/Nb和Rb/Nb比值。与中拉萨地块已报道早白垩世晚期(~105Ma)A型花岗岩相似,控错花岗岩具有出较高的Rb(373×10-6~506×10-6,平均429×10-6)和Y(50.2×10-6~55.0×10-6,平均51.0×10-6)元素含量和相对较低的Nb(24.6×10-6~33.9×10-6,平均28.6×10-6)元素含量,较高Y/Nb值(2.29~4.97, 平均3.57)和Rb/Nb(11.6~18.2, 平均15.2),在三角图解上落于A2型花岗岩的区域(表 1图 7c-f),在构造环境判别图上它们落于碰撞后花岗岩的范围(图 8a, b)。因此,我们认为控错岩体为弱过铝质的高钾钙碱性-钾玄岩系列的A2型碱性长石花岗岩。

图 8 控错岩体构造判别图解(a, b, 底图据Pearce et al., 1984; c-e, 底图据Boztuǧ et al., 2007; f, 底图据Grimes et al., 2007) Fig. 8 Tectonic discriminant diagrams of Kong Co granite (a, b, base maps after Pearce et al., 1984; c-e, base maps after Boztuǧ et al., 2007; f, base map after Grimes et al., 2007)
4.2 岩石成因探讨

通常认为A型花岗岩可由多种来源的岩浆形成,主要包括:①残余富F或Cl下地壳麻粒岩的部分熔融(Collins et al., 1982; Whalen et al., 1987; King et al., 1997; Yang et al., 2006);②浅地壳内英云闪长岩或花岗闪长岩材料的低压脱水熔融(深度 < 15km)(Skjerlie and Johnston, 1992);③玄武质岩石的部分熔融(Wu et al., 2002, 2018);④地幔源镁铁质岩浆分离结晶-同化混染作用(AFC)直接形成(Sparks and Marshall, 1986; Foland and Allen, 1991; Turner et al., 1992);⑤地幔源熔体和地壳熔体的相互作用形成(Kerr and Fryer, 1993)。实验岩石学表明,来自残余富氟源的熔体中通常MgO含量大于TiO2,且具有强过铝质(Creaser et al., 1991; Dooley and Patiño Douce, 1996)。与中拉萨地块中其他早白垩世A型花岗岩一样,控错岩体具有较高的TiO2/MgO值(0.51~0.68,平均0.66)和弱过铝质特征,因此,中拉萨地块中这些早白垩世A型花岗岩并非源自残余富F或Cl下地壳麻粒岩材料的部分熔融(排除了上述①的可能性)。控错花岗岩和中拉萨地块已报道的其他A型花岗岩的Ce/Pb、Ce、Nb/Th和Nb特征上,均表现为弧火山岩的亲缘性(图 8c, d),同时Rb-Sr、Sm-Nd, Pb同位素上显示出存在幔源组分的特征(图 6),因此控错岩花岗岩不可能由纯地壳来源(包括浅地壳和下地壳)形成,排除了上述②和③的可能性。控错花岗岩具有高硅(SiO2=76.75%~77.51%,平均77.27%)的特征,幔源镁铁质岩浆衍生的高硅岩石涉及巨大规模的幔源镁铁质岩浆岩分离结晶作用(Wilson, 1993)。在控错地区,并没有大规模的晚白垩世镁铁质岩浆岩活动的报道,因此控错花岗岩由AFC过程直接形成的可能性不大。

对于控错A型花岗岩的成因,我们倾向于用地幔源熔体和地壳熔体的相互作用来解释,主要证据如下:①控错花岗岩为弱过铝质的碱性长石花岗岩,这种从碱性矿物到铝质矿物的共生也出现在中拉萨地块其他早白垩世A型花岗岩体(图 1b图 3c; Qu et al., 2012; 解龙等, 2015; Li et al., 2020; 王欣欣等, 2021),以及阿根廷北部的A型花岗岩中(Shellnutt and Zhou, 2007),其形成可能与壳幔相互作用和沉积物熔融有关。②控错岩体及中拉萨地块其他早白垩世A型花岗岩体在Rb/Y-Nb图解上显示出地壳混染的趋势(图 8e),控错锆石的U、Yb、Hf和Y同位素显示出地壳来源锆石的特征(图 8f),而地壳内富含高场强元素副矿物的熔融可产生含有控错花岗质岩浆这样高浓度Zr、Ce、Y和Ga的岩浆(Kerr and Fryer, 1993),此外在微量元素蛛网图中Nb出于处于的低谷,NbN=34.5~47.6(平均40.1),也表明该花岗岩具有地壳组分(Barth et al., 2000);③在U-Pb年龄-εHf(t)关系图解(图 5)上,控错样品点落在球粒陨石均一储库(CHUR)和地幔演化线之间,并与中拉萨地块其他早白垩世花岗岩相具有相似的源区,正的锆石εHf(t)值(2.9~9.9,平均6.25)、相对年轻的锆石Hf地壳模式年龄(tDM2=529~994Ma,平均567Ma)、相对低的全岩Rb/Y和Nb/Y值(Rb/Y=7.24~10.54,Nb/Y=0.48~0.71)(表 2),和较高的全岩Ce/Pb值(0.97~1.75)(表 2图 8d)指示控错花岗岩来源于新生地壳(图 5表 5),并且有地幔物质参与(图 5);④(87Sr/86Sr)εNd(t)同位素特征(图 6b),显示为地幔和下地壳的混合,Pb同位素特征(图 6c, d)上,控错花岗岩类样品主要落在班公湖-怒江蛇绿岩以及地壳与地幔混合的铅的区域内。

一般认为元素的亏损是由某种富集该元素的矿物结晶分异引起(Chappell and White, 1992; Chappell, 1999; Wu et al., 2003),控错花岗岩类亏损Ba、Nb、Sr、P、Eu和Ti,指示其母岩浆经历了显著的铁镁矿物、富钛矿物、富磷矿物等的分离结晶作用。同时,主要氧化物(FeOT、Al2O3、CaO、MgO、P2O5和TiO2)和Sr等元素与SiO2负相关性(图 9)指示长石类矿物、铁镁矿物(如角闪石和黑云母)、含磷矿物(如磷灰石)和含钛(如钛铁矿、钛矿和金红石)矿物的分离结晶,表明在该花岗岩形成过程中发生了明显的晶体分馏。这一点得到了分离结晶定量建模的支持(图 9),它表明控错花岗岩可以解释为从分异程度最高的样品(KC06)代表的假定母岩浆成分开始,控错花岗岩浆按照70%钾长石+1%斜长石+9%黑云母+20%角闪石的比例分离结晶(图 10)。总之,控错早白垩世A型花岗岩最有可能由通过幔源镁铁质岩浆和初生下地壳再熔融产生的熔体之间的相互作用形成,并在侵位之前经历了显著的分离结晶。

图 9 控错岩体Rb-Sr-Ba-Eu结晶分异定量计算图 Kfs-钾长石;Pl-斜长石;Bt-黑云母;Amp-角闪石 Fig. 9 Quantitatively fractional crystllization diagrams with Rb-Sr-Ba-Eu of Kong Co granite Kfs-potassium feldspar; Pl-plagioclase; Bt-biotite; Amp-amphibole

图 10 控错岩体形成环境示意图 (a)据Zhu et al., 2016; Ma et al., 2014; Wang et al., 2016修改;(b)据Cao et al., 2019修改. QT-羌塘地块;BNS-班公湖-怒江结合带;NL-北拉萨地块;SNS-狮泉河-纳木错蛇绿岩混杂带;CL-中拉萨地块;LMF-洛巴堆-米拉山断裂带;SL-南拉萨地块 Fig. 10 Sketch maps showing the formation environments of Kong Co granite (a) modified after Zhu et al., 2016; Ma et al., 2014; Wang et al., 2016; (b) modified after Cao et al., 2019). QT-Qiangtang Terrane; BNS-Bangong-Nujiang Suture Zone; NL-Northern Lhasa Subterrane; SNS-Shiquanhe-Namuco Ophiolite Melange Zone; CL-Central Lhasa Subterrane; LMF-Luobadui-Milashan Fault Zone; SL-Southern Lhasa Subterrane
4.3 构造环境分析

前文已分析,控错花岗岩与中拉萨地块已报道早白垩世晚期(~105Ma)A型花岗岩一样,均属于与陆陆碰撞相关的A2型花岗岩,他们最有可能由通过幔源镁铁质岩浆和初生下地壳再熔融产生的熔体之间的相互作用形成,而地幔物质在碰撞后过程中参与成岩作用的主要方式被认为包括板片撕裂和下地壳拆离等(Hou et al., 2004)。如前文所述,拉萨地体北部和中部广泛发育的这一系列早白垩世岩浆作用的地球动力学背景存在争议,一部分学者认为其与雅鲁藏布新特提斯洋洋壳板片向北俯冲有关,也有一部分学者则认为其形成于班公湖-怒江洋的洋壳板片的向南俯冲或板片断离作用,还有一部分学者认为它们是羌塘地块和拉萨地块碰撞后岩浆作用的产物。

一些学者认为,雅鲁藏布新特提斯洋向北俯冲涉及低角度俯冲和俯冲角度的增加以及板片回撤事件触发了西藏中部白垩纪岩浆喷发(Zhang et al., 2004, 2012)。在低角度俯冲模型中,早期俯冲角较小,相应的岩浆作用较少。然而,近年来在拉萨地体南部发现了广泛的侏罗纪-白垩纪岩浆作用(Wen et al., 2008; Zhu et al., 2009; Huang et al., 2019; 刘洪等, 2019b, c),这与洋壳板片低角度俯冲模型相反。其他一些学者认为,雅鲁藏布新特提斯洋向北俯冲是正常的深俯冲,板块撕裂事件触发了早白垩世岩浆喷发(Dai et al., 2015)。考虑到拉萨地体在白垩纪之后经历了显著的地壳缩短,早白垩世晚期,北部岩浆弧与南部雅鲁藏布新特提斯洋俯冲带之间的距离超过600km(Murphy et al., 1997; Kapp et al., 2005),这很难用正常俯冲模型来解释。因此我们认为,早白垩世控错岩体的形成,与雅鲁藏布新特提斯洋的演化不相关。最近对狮泉河-纳木错蛇绿岩混杂带的研究表明,该混杂带是班怒-洋俯冲期间形成的弧后洋盆(Zhu et al., 2011; Xu et al., 2014; Zeng et al., 2018),其小规模和快速演化意味着该洋盆地中的俯冲作用与拉萨地体中北部的大规模岩浆活动不相关(Zhu et al., 2008)。

目前班公湖-怒江洋盆关闭的确切时间和俯冲方向等问题仍存在争论(Volkmer et al., 2007; 陈奇等, 2007; 高顺宝等, 2011; 李光明等, 2011; Li et al., 2014Wang et al., 2016; Huang et al., 2021b, 2021c; Liu et al., 2021):一些学者认为,班公湖-怒江洋盆在早侏罗世向北俯冲于羌塘地块之下,而拉萨和羌塘地块最有可能在140~130Ma发生弧-弧“软”碰撞(宋扬等, 2019);同时,拉萨地块北部尼玛地区在具有125~118Ma海相向非海相转变的记录(Kapp et al., 2007)、大约在110Ma就已经为陆内环境(Zhu et al., 2009, 2011),这意味着拉萨和羌塘地块在此之前已经发生了“软”碰撞;也有学者研究认为,萨地块中部申扎周围约113Ma的大规模岩浆活动,是向南俯冲的班公湖-怒江洋板块断裂的产物(Chen et al., 2014);同时还有学者提供了早白垩世早期(138~134Ma),班公湖-怒江洋尚未彻底闭合的重要证据(Zeng et al., 2021);此外,大面积分布的竟柱山组(K2j)磨拉石的报道(潘桂棠等, 2006),也暗示在早白垩世晚期以来,拉萨地块北缘已经进入了陆陆碰撞的阶段。尽管这些研究存在很大的分歧,但可以认为在早白垩世晚期,拉萨地块北缘出于碰撞环境。

班公湖-怒江洋两侧广泛发育的中生代中酸性岩浆作用在白垩纪表现出宽泛的εHf(t)值范围(图 5),从早白垩世早期到早白垩世晚期(~105Ma),εHf(t)从负值陡然上升到正值,岩浆的地幔贡献组分增加,从早白垩世晚期(~105Ma)到晚白垩世(~65Ma),εHf(t)则有所下降,甚至到达负值,岩浆的地幔贡献组分有所减少,表明早白垩世晚期存在地幔物质加入到岩浆源区的事件,这可能碰撞后与板片窗口的打开密切相关。当地壳下方存在板片窗时,将产生一系列相应的特殊伸展岩组合,包括双峰火山岩、A型花岗岩、板内玄武岩和埃达克岩。在中拉萨地块北部,已报到了与伸展相关的早白垩世晚期(~105Ma)碰撞岩浆作用事件(Qu et al., 2012; 吴浩等,2014; Wu et al., 2015a, b解龙等, 2015; Li et al., 2020; 王欣欣等, 2021),包括块玄武岩、埃达克岩、双峰火山岩以及A型花岗岩。这些花岗岩的高Ce/Pb比值、正的εHf(t)值、相对年轻的锆石Hf地壳模式年龄,地幔和下地壳混合(87Sr/86Sr)εNd(t)、Pb同位素特征提供了源于地幔源熔体和新生地壳熔体证据。这与该地区的同期伸展相关岩浆作用一致,并提供了存在板片窗的进一步证据。

因此,中拉萨地块中北部早白垩世晚期的岩浆作用既不可能是雅鲁藏布新特提斯洋壳板片平板俯冲或洋脊俯冲的产物,也不可能是班公湖-怒江洋片南向俯冲消减直接的产物,而更可能是班公湖-怒江洋板片俯冲消减闭合之后羌塘-拉萨地块碰撞过程中板片断离的产物。早白垩世晚期,羌塘-拉萨地块碰撞作用下,俯冲板片的断离形成板片窗,引起地幔物质通过板片窗上涌和上覆岩石圈内的伸展,幔源熔体与新生地壳熔体相互作用而形成了中拉萨地块中北部一系列的A型花岗岩(图 10)。

5 结论

(1) 控错花岗岩结晶年龄为~105Ma,为早白垩世晚期弱过铝质的高钾钙碱性-钾玄岩系列的A2型碱性长石花岗岩。

(2) 控错花岗岩形成于羌塘-拉萨地块碰撞作用下,俯冲板片的断离后,软流圈上涌诱发的地壳部分熔融,并经历了显著的以钾长石和角闪石为主的分离结晶作用。

致谢      研究工作得到中国地质调查局成都地质调查中心曹华文副研究员、王艺云副研究员、黄勇工程师、张腾蛟工程师,中国地质大学(北京)张静教授、曾云川副教授、吴君毅硕士生和纪旋硕士生,成都理工大学赵银兵副教授、李樋博士生的帮助,在此一并表示衷心感谢。

参考文献
Amelin Y, Lee DC, Halliday AN and Pidgeon RT. 1999. Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons. Nature, 399: 252-255 DOI:10.1038/20426
Barth MG, Mcdonough WF and Rudnick RL. 2000. Tracking the budget of Nb and Ta in the continental crust. Chemical Geology, 165(3-4): 197-213 DOI:10.1016/S0009-2541(99)00173-4
Blichert-Toft J and Albarède F. 1997. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth and Planetary Science Letters, 148(1-2): 243-258 DOI:10.1016/S0012-821X(97)00040-X
Boynton WV. 1984. Cosmochemistry of the rare earth elements: Meteorite studies. In: Henderson P (ed.). Developments in Geochemistry. Amsterdam: Elsevier, 63-114
Boztuǧ D, Harlavan Y, Arehart G, Satir M and Avci N. 2007. K-Ar age, whole-rock and isotope geochemistry of A-type granitoids in the Divriǧi-Sivas region, eastern-central Anatolia, Turkey. Lithos, 97(1-2): 193-218 DOI:10.1016/j.lithos.2006.12.014
Cai QL, Zheng ZW and He J. 2015. Age of zircon U-Pb and its geological significance of granite from western Gangdese in Tibet. Journal of East China Institute of Technology (Natural Science Edition), 38(1): 49-57 (in Chinese with English abstract)
Cao HW, Zhang YH, Santosh M, Li GM, Hollis SP, Zhang LK, Pei QM, Tang L and Duan ZM. 2019. Petrogenesis and metallogenic implications of Cretaceous magmatism in Central Lhasa, Tibetan Plateau: A case study from the Lunggar Fe skarn deposit and perspective review. Geological Journal, 54(4): 2323-2346 DOI:10.1002/gj.3299
Cao HW, Li GM, Zhang Z, Zhang LK, Dong SL, Xia XB, Liang W, Fu JG, Huang Y, Xiang AP, Qing CS, Dai ZW, Pei QM and Zhang YH. 2020. Miocene Sn polymetallic mineralization in the Tethyan Himalaya, southeastern Tibet: A case study of the Cuonadong deposit. Ore Geology Reviews, 119: 103403 DOI:10.1016/j.oregeorev.2020.103403
Cao HW, Li GM, Zhang RQ, Zhang YH, Zhang LK, Dai ZW, Zhang Z, Liang W, Dong SL and Xia XB. 2021. Genesis of the Cuonadong tin polymetallic deposit in the Tethyan Himalaya: Evidence from geology, geochronology, fluid inclusions and multiple isotopes. Gondwana Research, 92: 72-101 DOI:10.1016/j.gr.2020.12.020
Chappell BW and White AJR. 1992. Ⅰ- and S-type granites in the Lachlan Fold Belt. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 83(1-2): 1-26 DOI:10.1017/S0263593300007720
Chappell BW. 1999. Aluminium saturation in Ⅰ- and S-type granites and the characterization of fractionated haplogranites. Lithos, 46(3): 535-551 DOI:10.1016/S0024-4937(98)00086-3
Chen Q, Xie L and Xiao ZJ. 2007. Characteristics and tectonic evolution of Bangong Lake ophiolitic melange belt in the western Qinghai-Tibet Plateau. Journal of East China Institute of Technology (Natural Science Edition), 30(2): 107-112 (in Chinese with English abstract)
Chen Y, Zhu DC, Zhao ZD, Meng FY, Wang Q, Santosh M, Wang LQ, Dong GC and Mo XX. 2014. Slab breakoff triggered ca. 113Ma magmatism around Xainza area of the Lhasa Terrane, Tibet. Gondwana Research, 26(2): 449-463 DOI:10.1016/j.gr.2013.06.005
Collins WJ, Beams SD, White AJR and Chappell BW. 1982. Nature and origin of A-type granites with particular reference to southeastern Australia. Contributions to Mineralogy and Petrology, 80(2): 189-200 DOI:10.1007/BF00374895
Coulon C, Maluski H, Bollinger C and Wang S. 1986. Mesozoic and Cenozoic volcanic rocks from central and southern Tibet: 39Ar-40Ar dating, petrological characteristics and geodynamical significance. Earth and Planetary Science Letters, 79(3-4): 281-302 DOI:10.1016/0012-821X(86)90186-X
Creaser RA, Price RC and Wormald RJ. 1991. A-type granites revisited: Assessment of a residual-source model. Geology, 19(2): 163-166 DOI:10.1130/0091-7613(1991)019<0163:ATGRAO>2.3.CO;2
Dai JG, Wang CS, Zhu DC, Li YL, Zhong HT and Ge YK. 2015. Multi-stage volcanic activities and geodynamic evolution of the Lhasa terrane during the Cretaceous: Insights from the Xigaze forearc basin. Lithos, 218-219: 127-140 DOI:10.1016/j.lithos.2015.01.019
Dai ZW, Huang HX, Li GM, Huizenga JM, Santosh M, Cao HW, Huang CM and Ding J. 2020. Formation of Late Cretaceous high-Mg granitoid porphyry in central Lhasa, Tibet: Implications for crustal thickening prior to India-Asia collision. Geological Journal, 55: 6696-6717 DOI:10.1002/gj.3834
Deng JF, Luo ZH and Su SG. 2009. Petrogenesis, Tectonic Environment and Mineralization. Beijing: Geological Publishing House, 1-381 (in Chinese)
DePaolo DJ and Wasserburg GJ. 1976. Nd isotopic variations and petrogenetic models. Geophysical Research Letters, 3(5): 249-252 DOI:10.1029/GL003i005p00249
Ding L and Lai QZ. 2003. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision. Chinese Science Bulletin, 48(15): 1604-1610 DOI:10.1007/BF03183969
Dooley DF and Patiño Douce AE. 1996. Fluid-absent melting of F-rich phlogopite+rutile+quartz. American Mineralogist, 81(1-2): 202-212 DOI:10.2138/am-1996-1-225
Eby GN. 1990. The A-type granitoids: A review of their occurrence and chemical characteristics and speculations on their petrogenesis. Lithos, 26(1-2): 115-134 DOI:10.1016/0024-4937(90)90043-Z
Eby GN. 1992. Chemical subdivision of the A-type granitoids: Petrogenetic and tectonic implications. Geology, 20(7): 641-644 DOI:10.1130/0091-7613(1992)020<0641:CSOTAT>2.3.CO;2
Foland KA and Allen JC. 1991. Magma sources for Mesozoic anorogenic granites of the White Mountain magma series, New England, USA. Contributions to Mineralogy and Petrology, 109(2): 195-211 DOI:10.1007/BF00306479
Gao SB, Zheng YY, Wang JS, Zhang Z and Yang C. 2011. The geochronology and geochemistry of intrusive rocks in Bange area: Constraints on the evolution time of the Bangong Lake-Nujiang ocean basin. Acta Petrologica Sinica, 27(7): 1973-1982 (in Chinese with English abstract)
Gao SB, Zheng YY, Tian K, Chen X, Jiang XJ and Gu YR. 2021. Geochronology of magmatic intrusions and mineralization of Lunggar iron deposit in Tibet and its implications for regional multi-stage iron mineralization: Geochemistry, zircon U-Pb and phlogopite Ar-Ar isotopic dating constraints. Earth Science, 46(6): 1941-1959 (in Chinese with English abstract)
Geng QR, Mao XC, Zhang Z, Peng ZM and Guan JL. 2015. New understanding in the middle and western part of Bangong Lake-Nujiang River metallogenic belt and its implication for prospecting. Geological Survey of China, 2(2): 1-11 (in Chinese with English abstract)
Geng QR, Li WC, Wang Li, Zeng XT, Peng ZM, Zhang XF, Zhang Z, Cong F and Guan JL. 2021. Paleozoic tectonic framework and evolution of the central and western Tethys. Sedimentary Geology and Tethyan Geology, 41(2): 297-315 (in Chinese with English abstract)
Griffin WL, Pearson NJ, Belousova E, Jackson SE, van Achterbergh E, O'Reilly SY and Shee SR. 2000. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochimica et Cosmochimica Acta, 64(1): 133-147 DOI:10.1016/S0016-7037(99)00343-9
Griffin WL, Wang X, Jackson SE, Pearson NJ, O'Reilly SY, Xu XS and Zhou XM. 2002. Zircon chemistry and magma mixing, SE China: In-situ analysis of Hf isotopes, Tonglu and Pingtan igneous complexes. Lithos, 61(3-4): 237-269 DOI:10.1016/S0024-4937(02)00082-8
Grimes CB, John BE, Kelemen PB, Mazdab FK, Wooden JL, Cheadle MJ, Hanghøj K and Schwartz JJ. 2007. Trace element chemistry of zircons from oceanic crust: A method for distinguishing detrital zircon provenance. Geology, 35(7): 643-646 DOI:10.1130/G23603A.1
Guo ZF, Wilson M, Zhang ML, Cheng ZH and Zhang LH. 2015. Post-collisional ultrapotassic mafic magmatism in South Tibet: Products of partial melting of pyroxenite in the mantle wedge induced by roll-back and delamination of the subducted Indian continental lithosphere slab. Journal of Petrology, 56(7): 1365-1406 DOI:10.1093/petrology/egv040
Guynn J, Tropper P, Kapp P and Gehrels GE. 2013. Metamorphism of the Amdo metamorphic complex, Tibet: Implications for the Jurassic tectonic evolution of the Bangong suture zone. Journal of Metamorphic Geology, 31(7): 705-727 DOI:10.1111/jmg.12041
Hoskin PWO. 2005. Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills, Australia. Geochimica et Cosmochimica Acta, 69(3): 637-648 DOI:10.1016/j.gca.2004.07.006
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155 DOI:10.1016/S0012-821X(04)00007-X
Hou ZQ, Song YC, Li Z, Wang ZL, Yang ZM, Yang ZS, Liu YC, Tian SH, He LQ, Chen KX, Wang FC, Zhao CX, Xue WZ and Lu HF. 2008. Thrust-controlled, sediments-hosted Pb-Zn-Ag-Cu deposits in eastern and northern margins of Tibetan orogenic belt: Geological features and tectonic model. Mineral Deposits, 27(2): 123-144 (in Chinese with English abstract)
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS and Duan LF. 2015. A genetic linkage between subduction- and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250 DOI:10.1130/G36362.1
Hu PY, Zhai QG, Jahn BM, Wang J, Li C, Chung SL, Lee HY and Tang SH. 2017. Late Early Cretaceous magmatic rocks (118~113Ma) in the middle segment of the Bangong-Nujiang suture zone, Tibetan Plateau: Evidence of lithospheric delamination. Gondwana Research, 44: 116-138 DOI:10.1016/j.gr.2016.12.005
Huang HX, Li GM, Dong SL, Liu B, Zhang H, Zhang L, Li YX and Shi HZ. 2012. SHRIMP zircon U-Pb age and geochemical characteristics of Qinglung granodiorite in Baingoin area, Tibet. Geological Bulletin of China, 31(6): 852-859 (in Chinese with English abstract)
Huang HX, Liu H, Li GM, Zhang LK, Cao HW, Zhou Q, Wang XX and Yan GQ. 2019. Zircon U-Pb, molybdenite Re-Os and quartz vein Rb-Sr geochronology of the Luobuzhen Au-Ag and Hongshan Cu deposits, Tibet, China: Implications for the Oligocene-Miocene porphyry-epithermal metallogenic system. Minerals, 9(8): 476 DOI:10.3390/min9080476
Huang HX, Dai ZW, Liu H, Li GM, Huizenga JM, Zhang LK, Huang Y, Cao HW and Fu JG. 2021a. Zircon U-Pb ages, geochemistry, and Sr-Nd-Pb-Hf isotopes of the Mugagangri monzogranite in the southern Qiangtang of Tibet, western China: Implications for the evolution of the Bangong Co-Nujiang Meso-Tethyan Ocean. Geological Journal, 56(6): 3170-3186 DOI:10.1002/gj.4094
Huang HX, Luosang JC, Dai ZW, Liu H, Fu JG, Li GM, Cao HW and Zhou Q. 2021b. Hydrothermal zircon geochronology in the Shangxu gold deposit and its implication for the Early Cretaceous orogenic gold mineralization in the Middle Bangonghu-Nujiang suture zone. Acta Geologica Sinica, 95(4): 1249-1259 DOI:10.1111/1755-6724.14679
Huang Y, Li GM, Ding j, Dai J, Yan GQ, Dong SL and Huang HX. 2017. Origin of the newly discovered Zhunuo porphyry Cu-Mo-Au deposit in the western part of the Gangdese porphyry copper belt in the southern Tibetan Plateau, SW China. Acta Geologica Sinica, 91(1): 109-134 DOI:10.1111/1755-6724.13066
Huang Y, Cao HW, Li GM, Brueckner SM, Zhang Z, Dong L, Dai ZW, Lu L and Li YB. 2018. Middle-Late Triassic bimodal intrusive rocks from the Tethyan Himalaya in South Tibet: Geochronology, petrogenesis and tectonic implications. Lithos, 318-319: 78-90 DOI:10.1016/j.lithos.2018.08.002
Huang Y, Ren MH, Liang W, Li GM, Heilbronn K, Dai ZW, Wang YY and Zhang L. 2020. Origin of the Oligocene Tuolangla porphyry-skarn Cu-W-Mo deposit in Lhasa terrane, southern Tibet. China Geology, 3(3): 369-384
Huang Y, Ren MH, Jowitt SM, Li GM, Fu JG, Zhang Z, Lang XH, Liu H and Zhang L. 2021c. Middle Triassic arc magmatism in the southern Lhasa terrane: Geochronology, petrogenesis and tectonic setting. Lithos, 380-381: 105857 DOI:10.1016/j.lithos.2020.105857
Huppert HE and Sparks RSJ. 1988. The generation of granitic magmas by intrusion of basalt into continental crust. Journal of Petrology, 29(3): 599-624 DOI:10.1093/petrology/29.3.599
Kapp P, Yin A, Harrison TM and Ding L. 2005. Cretaceous-Tertiary shortening, basin development, and volcanism in central Tibet. Geological Society of America Bulletin, 117(7-8): 865-878
Kapp P, DeCelles PG, Gehrels GE, Heizler TM and Ding L. 2007. Geological records of the Lhasa-Qiangtang and Indo-Asian collisions in the Nima area of central Tibet. GSA Bulletin, 119: 917-932 DOI:10.1130/B26033.1
Kerr A and Fryer BJ. 1993. Nd isotope evidence for crust-mantle interaction in the generation of A-type granitoid suites in Labrador, Canada. Chemical Geology, 104(1-4): 39-60 DOI:10.1016/0009-2541(93)90141-5
King PL, White AJR, Chappell BW and Allen CM. 1997. Characterization and origin of aluminous A-type granites from the Lachlan fold belt, southeastern Australia. Journal of Petrology, 38(3): 371-391 DOI:10.1093/petroj/38.3.371
Li GM, Duan ZM, Liu B, Zhang H, Dong SL and Zhang L. 2011. The discovery of Jurassic accretionary complexes in Duolong area, northern Bangong Co-Nujiang suture zone, Tibet, and its geologic significance. Geological Bulletin of China, 30(8): 1256-1260 (in Chinese with English abstract)
Li GM, Qin KZ, Li JX, Evans NJ, Zhao JX, Cao MJ and Zhang XN. 2017a. Cretaceous magmatism and metallogeny in the Bangong-Nujiang metallogenic belt, central Tibet: Evidence from petrogeochemistry, zircon U-Pb ages, and Hf-O isotopic compositions. Gondwana Research, 41: 110-127 DOI:10.1016/j.gr.2015.09.006
Li GM, Zhang LK, Zhang Z, Xia XB, Liang W and Hou CQ. 2021. New exploration progresses, resource potentials and prospecting targets of strategic minerals in the southern Qinghai-Tibet Plateau. Sedimentary Geology and Tethyan Geology, 41(2): 351-360 (in Chinese with English abstract)
Li H, Wang M, Zeng XW, Luo AB, Yu YP and Zeng XJ. 2020. Slab break-off origin of 105Ma A-type porphyritic granites in the Asa area of Tibet. Geological Magazine, 157(8): 1281-1298 DOI:10.1017/S0016756819001559
Li JX, Qin KZ, Li GM, Richards JP, Zhao JX and Cao MJ. 2014. Geochronology, geochemistry, and zircon Hf isotopic compositions of Mesozoic intermediate-felsic intrusions in central Tibet: Petrogenetic and tectonic implications. Lithos, 198-199: 77-91 DOI:10.1016/j.lithos.2014.03.025
Li WC, Zeng PS, Hou ZQ and White NC. 2011. The Pulang porphyry copper deposit and associated felsic intrusions in Yunnan Province, southwest China. Economic Geology, 106(1): 79-92 DOI:10.2113/econgeo.106.1.79
Li WC, Wang JH, He ZH and Dou S. 2016. Formation of Au-polymetallic ore deposits in alkaline porphyries at Beiya, Yunnan, Southwest China. Ore Geology Reviews, 73: 241-252 DOI:10.1016/j.oregeorev.2015.05.003
Li WC, Yu HJ, Gao X, Liu XL and Wang JH. 2017b. Review of Mesozoic multiple magmatism and porphyry Cu-Mo (W) mineralization in the Yidun Arc, eastern Tibet Plateau. Ore Geology Reviews, 90: 795-812 DOI:10.1016/j.oregeorev.2017.03.009
Li WC and Jiang XJ. 2020. The Cenozoic tectono-magmatism-mineralization effect of the intracontinental tectonic transformation system in the western margin of Yangtze Block. Earth Science Frontiers, 27(2): 151-164 (in Chinese with English abstract)
Li WC, Pan GT, Zhang XF, Wang LQ and Zhou JX. 2021. Tectonic evolution and multi-episodic metallogenesis of the Sanjiang Paleo-Tethys multi-arc-basin-terrane system, SW Tibetan Plateau. Journal of Asian Earth Sciences, 221: 104932 DOI:10.1016/j.jseaes.2021.104932
Liu H, Huang HX, Li GM, Xiao WF, Zhang ZL, Liu B, Ma DF, Dong L and Ma D. 2015. Factor analysis in geochemical survey of the Shangxu gold deposit, northern Tibet. Geology in China, 42(4): 1126-1136 (in Chinese with English abstract)
Liu H, Zhang H, Li GM, Huang HX, Xiao WF, You Q, Ma DF, Zhang H and Zhang H. 2016. Petrogenesis of the Early Cretaceous Qingcaoshan strongly peraluminous S-type granitic pluton, southern Qiangtang, northern Tibet: Constraints from whole-rock geochemistry and zircon U-Pb geochronology. Acta Scientiarum Naturalium Universitatis Pekinensis, 52(5): 848-860 (in Chinese with English abstract)
Liu H, Li GM, Huang HX, Zhang ZL, Xiao WF, Jiao YJ, Liang SX, Guo J and Lan SS. 2017. Prospecting potential analysis of deep No. Ⅲ ore section in the Shangxu orogenic gold deposit, Bangong Co-Nujiang metallogenic belt, Tibet. Acta Geologica Sinica, 91(6): 1245-1258 (in Chinese with English abstract)
Liu H, Li GM, Huang HX, Cao HW, Yuan Q, Li YX, Ouyang Y, Lan SS, Lü MH and Yan GQ. 2018. Petrogenesis of Late Cretaceous Jiangla'angzong Ⅰ-Type granite in Central Lhasa Terrane, Tibet, China: Constraints from whole-rock geochemistry, zircon U-Pb geochronology, and Sr-Nd-Pb-Hf isotopes. Acta Geologica Sinica, 92(4): 1396-1414 DOI:10.1111/1755-6724.13634
Liu H, Li GM, Huang HX, Xiao WF, Yan GQ, Ma DF, Zhang H and Zhang H. 2018. Sources of Ore-forming materials in the Shangxu orogenic gold deposit, Northern Xizang (Tibet): Constraints form C, S, and Pb Isotopes. Geological Review, 64(5): 1285-1301 (in Chinese with English abstract)
Liu H, Li GM, Huang HX, Zhang LK, Lü MH, Lan SS, Fu JG, Zhou WD and Xie H. 2019a. Sources of ore-forming materials of Luerma porphyry copper (gold) deposit, western Gangdise. Mineral Deposits, 38(3): 631-643 (in Chinese with English abstract)
Liu H, Zhang LK, Huang HX, Li GM, Lü MH, Yan GQ, Huang Y, Lan SS and Xie H. 2019b. Origin and evolution of ore-forming fluids in Luerma porphyry copper (gold) deposit from western Gangdise. Earth Science, 44(6): 1935-1956 (in Chinese with English abstract)
Liu H, Zhang LK, Huang HX, Li GM, Ouyang Y, Lü MH, Liu H, Lan SS and Yan GQ. 2019c. Petrogenesis of Late Triassic Luerma Monzodiorite in western Gangdise, Tibet, China. Earth Science, 44(7): 2339-2352 (in Chinese with English abstract)
Liu H, Zhang LK, Huang HX, Li GM, Ouyang Y, Yu H, Liang W, Zhang HM and Chen XP. 2020. Evolution of ore-forming fluids in the Luobuzhen epithermal gold-silver deposit in western Gangdisi: Fluid inclusion and H-O isotope evidence. Earth Science Frontiers, 27(4): 49-65 (in Chinese with English abstract)
Liu H, Huang HX, Zhang LK, Li GM, Ouyang Y, Huang Y and Lü MH. 2021a. Luerma, a newly discovered Late Triassic porphyry copper-gold ore spot in the western Gangdise metallogenic belt, Tibet. Sedimentary Geology and Tethyan Geology, 40(1): 3502-3515 (in Chinese with English abstract)
Liu H, Li GM, Li WC, Zhang JH, Li YG, Zhang ZL, Guang HX, Ouyang Y and Zhang TJ. 2021b. Epithermal mineralization at Budongla gold deposit in Zhongba County of Tibet: Evidence from fluid inclusions and H-O isotopes. Mineral Deposits, 40(2): 311-328 (in Chinese with English abstract)
Liu YS, Hu ZC, Gao S, Günther D, Xu J, Gao CG and Chen HL. 2008. In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard. Chemical Geology, 257(1-2): 34-43 DOI:10.1016/j.chemgeo.2008.08.004
Liu YS, Gao S, Hu ZC, Gao CG, Zong KQ and Wang DB. 2010. Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen: U-Pb dating, Hf isotopes and trace elements in zircons from mantle xenoliths. Journal of Petrology, 51(1-2): 537-571 DOI:10.1093/petrology/egp082
Luo AB, Wang M, Li C, Xie CM, Fan JJ, Zhang TY, Liu JH and Wang W. 2019. Petrogenesis of early Late Cretaceous Asa-intrusive rocks in central Tibet, western China: Post-collisional partial melting of thickened lower crust. International Journal of Earth Sciences, 108(6): 1979-1999 DOI:10.1007/s00531-019-01744-4
Ma Y, Yang T, Yang Z, Zhang S, Wu H, Li H, Li H, Chen W, Zhang J and Ding J. 2014. Paleomagnetism and U-Pb zircon geochronology of Lower Cretaceous lava flows from the western Lhasa terrane: New constraints on the India-Asia collision process and intracontinental deformation within Asia. Journal of Geophysical Research: Solid Earth, 119: 7404-7424 DOI:10.1002/2014JB011362
Maniar PD and Piccoli PM. 1989. Tectonic discrimination of granitoids. Geological Society of America Bulletin, 101(5): 635-643 DOI:10.1130/0016-7606(1989)101<0635:TDOG>2.3.CO;2
Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429 DOI:10.1016/S0024-4937(98)00076-0
Matte P. 1996. Tectonics of western Tibet, between the Tarim and the Indus. Earth and Planetary Science Letters, 142(3-4): 311-330 DOI:10.1016/0012-821X(96)00086-6
Meng FY, Zhao ZD, Zhu DC, Mo XX, Guan Q, Huang Y, Dong GC, Zhou S, DePaolo DJ, Harrison TM, Zhang ZC, Liu JL, Liu YS, Hu ZC and Yuan HL. 2014. Late Cretaceous magmatism in Mamba area, central Lhasa subterrane: Products of back-arc extension of Neo-Tethyan Ocean?. Gondwana Research, 26(2): 505-520 DOI:10.1016/j.gr.2013.07.017
Middlemost EAK. 1985. Magmas and Magmatic Rocks. London: Longman, 1-266
Miller C, Schuster R, Klötzli U, Frank W and Purtscheller F. 1999. Post-collisional potassic and ultrapotassic magmatism in SW Tibet: Geochemical and Sr-Nd-Pb-O isotopic constraints for mantle source characteristics and petrogenesis. Journal of Petrology, 40(9): 1399-1424 DOI:10.1093/petroj/40.9.1399
Mo XX. 2020. Growth and evolution of crust of Tibetan Plateau from perspective of magmatic rocks. Earth Science, 45(7): 2245-2257 (in Chinese with English abstract)
Murphy MA, Yin A, Harrison TM, Dürr SB, Chen Z, Ryerson FJ, Kidd WSF, Wang X and Zhou X. 1997. Did the Indo-Asian collision alone create the Tibetan Plateau?. Geology, 25(8): 719-722 DOI:10.1130/0091-7613(1997)025<0719:DTIACA>2.3.CO;2
Ouyang Y, Yang WN, Huang HX, Liu H, Zhang JL and Zhang JH. 2017. Metallogenic dynamics background of Ga'erqiong Cu-Au deposit in Tibet, China. Earth Sciences Research Journal, 21(2): 59-65 DOI:10.15446/esrj.v21n2.65192
Pan GT, Wang LQ, Li XZ, Wang JM and Xu Q. 2001. The tectonic framework and spatial allocation of the archipelagic arc-basin systems on the Qinghai-Xizang Plateau. Sedimentary Geology and Tethyan Geology, 21(3): 1-26 (in Chinese with English abstract)
Pan GT, Zhu DC, Wang LQ, Liao ZL, Geng QR and Jiang XS. 2004. Bangong Lake-Nu River suture zone: The northern boundary of Gondwanaland: Evidence from geology and geophysics. Earth Science Frontiers, 11(4): 371-382 (in Chinese with English abstract)
Pan GT, Mo XX, Hou ZQ, Zhu DC, Wang LQ, Li GM, Zhao ZD, Geng QR and Liao ZL. 2006. Spatial-temporal framework of the Gangdese Orogenic Belt and its evolution. Acta Petrologica Sinica, 22(3): 521-533 (in Chinese with English abstract)
Pan GT, Xiao QH, Lu SN, Deng JF, Feng YM, Zhang KX, Zhang ZY, Wang WG, Xing GF, Hao GJ and Feng YF. 2009. Subdivision of tectonic units in China. Geology in China, 36(1): 1-28 (in Chinese with English abstract)
Pan GT, Wang LQ, Li RS, Yuan SH, Ji WH, Yin FG, Zhang WP and Wang BD. 2012. Tectonic evolution of the Qinghai-Tibet Plateau. Journal of Asian Earth Sciences, 53: 3-14 DOI:10.1016/j.jseaes.2011.12.018
Pan GT, Wang LQ, Geng QR, Yin FG, Wang BD, Wang DB, Peng ZM and Ren Fei. 2020. Space-time structure of the Bangonghu-Shuanghu-Nujiang-Changning-Menglian Mega-suture zone: A discussion on geology and evolution of the Tethys Ocean. Sedimentary Geology and Tethyan Geology, 40(3): 1-19 (in Chinese with English abstract)
Pearce JA, Harris NBW and Tindle AG. 1984. Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. Journal of Petrology, 25(4): 956-983 DOI:10.1093/petrology/25.4.956
Peccerillo R and Taylor SR. 1976. Geochemistry of Eocene calc-alkaline volcanic rocks from the Kastamonu area, Northern Turkey. Contributions to Mineralogy and Petrology, 58(1): 63-81 DOI:10.1007/BF00384745
Peng JH, Zhao LX, He J, Huang SC and Gong C. 2013. Discovery of Indosinian magmatic rocks and its significance in western Gangdise, Tibet. Journal of East China Institute of Technology (Natural Science Edition), 36(6): 21-26 (in Chinese with English abstract)
Peng ZM, Geng QR, Liu SS, Zhang Z, Guan JL and Cong F. 2015. Zircon U-Pb ages and geochemical features of the diorite por-phyrite in Gajia Formation in the Nagqu area, Tibet. Geological Bulletin of China, 34(2-3): 354-363 (in Chinese with English abstract)
Qin Z, Yang ZJ, Tang L, Wang MZ, She PT, Han K and Zhang D. 2019. Geochemical characteristics, zircon U-Pb age and metallogenic significance of Chalong granites in the Gangdise Belt of Tibet. Geological Bulletin of China, 38(2-3): 231-241 (in Chinese with English abstract)
Qu XM, Hou ZQ, Guo LJ and Xu WY. 2004. Source compositions and crustal contaminations of adakitic ore-bearing porphyries in the Gangdise copper belt: Nd, Sr, Pb and O isotope constraints. Acta Geologica Sinica, 78(6): 813-821 (in Chinese with English abstract)
Qu XM, Wang RJ, Xin HB, Jiang JH and Chen H. 2012. Age and petrogenesis of A-type granites in the middle segment of the Bangonghu-Nujiang suture, Tibetan plateau. Lithos, 146-147: 264-275 DOI:10.1016/j.lithos.2012.05.006
Schiller D and Finger F. 2019. Application of Ti-in-zircon thermometry to granite studies: Problems and possible solutions. Contributions to Mineralogy and Petrology, 174(6): 51 DOI:10.1007/s00410-019-1585-3
Shellnutt JG and Zhou MF. 2007. Permian peralkaline, peraluminous and metaluminous A-type granites in the Panxi district, SW China: Their relationship to the Emeishan mantle plume. Chemical Geology, 243(3-4): 286-316 DOI:10.1016/j.chemgeo.2007.05.022
Shi SF, Xiao YF, Yuan HW, Wei YF, Qiu CY and Jiang XQ. 2019. Geochronology and geochemical characteristics of A-type granites in Boguorize area, the northern margin of Gangdese Belt, Tibet, China and their geological significance. Journal of Earth Sciences and Environment, 41(6): 644-657 (in Chinese with English abstract)
Skjerlie KP and Johnston AD. 1992. Vapor-absent melting at 10kbar of a biotite- and amphibole-bearing tonalitic gneiss: Implications for the generation of A-type granites. Geology, 20(3): 263-266 DOI:10.1130/0091-7613(1992)020<0263:VAMAKO>2.3.CO;2
Song Y, Qu XM, Xin HB, Wang ZY and Du DD. 2013. The crustal carbon cycling in the Late Cretaceous extension of Bangong Lake arc zone in the Xizang (Tibetan) Plateau. Geological Review, 59(2): 225-233 (in Chinese with English abstract)
Song Y, Zeng QG, Liu HY, Liu ZB, Li HF and Dexi YZ. 2019. An innovative perspective for the evolution of Bangong-Nujiang Ocean: Also discussing the Paleo-and Neo-Tethys conversion. Acta Petrologica Sinica, 35(3): 625-641 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.03.02
Sparks RSJ and Marshall LA. 1986. Thermal and mechanical constraints on mixing between mafic and silicic magmas. Journal of Volcanology and Geothermal Research, 29(1-4): 99-124 DOI:10.1016/0377-0273(86)90041-7
Sun SS and MchDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds.). Magmatism in the Ocean Basins. Geological Society, London, Special Publications, 42(1): 303-345
Tang JX. 2019. Mineral resources base investigation and research status of the Tibet Plateau and its adjacent major metallogenic belts. Acta Petrologica Sinica, 35(3): 617-624 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.03.01
Tapponnier P, Xu ZQ, Roger F, Meyer B, Arnaud N, Wittlinger G and Yang JS. 2001. Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547): 1671-1677 DOI:10.1126/science.105978
Turner S, Sandiford M and Foden J. 1992. Some geodynamic and compositional constraints on "postorogenic" magmatism. Geology, 20(10): 931-934 DOI:10.1130/0091-7613(1992)020<0931:SGACCO>2.3.CO;2
Volkmer JE, Kapp P, Guynn JH and Lai QZ. 2007. Cretaceous-Tertiary structural evolution of the north central Lhasa Terrane, Tibet. Tectonics, 26: TC6007
Wang BD, Guo L, Wang LQ, Li B, Huang HX, Chen FQ, Duan ZM and Zeng QG. 2012. Geochronology and petrogenesis of the ore-bearing pluton in Chagele deposit in middle of the Gangdese metallogenic belt. Acta Petrologica Sinica, 28(5): 1647-1662 (in Chinese with English abstract)
Wang BD, Xu JF, Liu BM, Chen JL, Wang LQ, Guo L, Wang DB and Zhang WP. 2013. Geochronology and ore-forming geological background of ~90Ma porphyry copper deposit in the Lhasa terrane, Tibet Plateau. Acta Geologica Sinica, 87(1): 71-80 (in Chinese with English abstract)
Wang BD, Wang LQ, Chung SL, Chen JL, Yin FG, Liu H, Li XB and Chen LK. 2016. Evolution of the Bangong-Nujiang Tethyan ocean: Insights from the geochronology and geochemistry of mafic rocks within ophiolites. Lithos, 245: 18-33 DOI:10.1016/j.lithos.2015.07.016
Wang LQ, Wang BD, Li GM, Wang DB and Peng ZM. 2021. Major progresses of geological survey and research in East Tethys: An overview. Sedimentary Geology and Tethyan Geology, 41(2): 283-296 (in Chinese with English abstract)
Wang Q, Zhu DC, Zhao ZD, Liu SA, Chung SL, Li SM, Liu D, Dai JG, Wang LQ and Mo XX. 2014. Origin of the ca. 90Ma magnesia-rich volcanic rocks in SE Nyima, central Tibet: Products of lithospheric delamination beneath the Lhasa-Qiangtang collision zone. Lithos, 198-199: 24-37 DOI:10.1016/j.lithos.2014.03.019
Wang XX, Yan GQ, Liu H, Huang HX, Lai Y, Tian EY and Ouyang Y. 2021. Genesis of Late Cretaceous Qusang'gele granitie in Central Lhasa Block, Tibet: Constraints by geochemistry, zircon U-Pb geochronology, and Sr-Nd-Pb-Hf isotopes. Earth Science, 46(8): 2832-2849 (in Chinese with English abstract)
Watson EB and Harrison TM. 2005. Zircon thermometer reveals minimum melting conditions on earliest Earth. Science, 308(5723): 841-844 DOI:10.1126/science.1110873
Wen DR, Chung SL, Song B, Iizuka Y, Yang HJ, Ji JQ, Liu DY and Gallet S. 2008. Late Cretaceous Gangdese intrusions of adakitic geochemical characteristics, SE Tibet: Petrogenesis and tectonic implications. Lithos, 105(1-2): 1-11 DOI:10.1016/j.lithos.2008.02.005
Whalen JB, Currie KL and Chappell BW. 1987. A-type granites: Geochemical characteristics, discrimination and petrogenesis. Contributions to Mineralogy and Petrology, 95(4): 407-419 DOI:10.1007/BF00402202
Wilson M. 1989. Igneous Petrogenesis. Dordrecht: Springer, 1-446
Wilson M. 1993. Magmatism and the geodynamics of basin formation. Sedimentary Geology, 86(1-2): 5-29 DOI:10.1016/0037-0738(93)90131-N
Wu FY, Sun DY, Li HM, Jahn BM and Wilde S. 2002. A-type granites in northeastern China: Age and geochemical constraints on their petrogenesis. Chemical Geology, 187(1-2): 143-173 DOI:10.1016/S0009-2541(02)00018-9
Wu FY, Jahn BM, Wilder SA, Lo CH, Yui TF, Lin Q, Ge WC and Sun DY. 2003. Highly fractionated Ⅰ-type granites in NE China (Ⅰ): Geochronology and petrogenesis. Lithos, 66(3-4): 241-273 DOI:10.1016/S0024-4937(02)00222-0
Wu FY, Li XH, Zheng YF and Gao S. 2007. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrologica Sinica, 23(2): 185-220 (in Chinese with English abstract)
Wu H, Li C, Hu PY, Zhang HY and Li J. 2014. The discovery of Early Cretaceous bimodal volcanic rocks in the Dachagou area of Tibet and its significance. Geological Bulletin of China, 33(11): 1804-1814 (in Chinese with English abstract)
Wu H, Li C, Hu PY and Li XK. 2015a. Early Cretaceous (100~105Ma) adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for the Bangong-Nujiang Ocean subduction and slab break-off. International Geology Review, 57(9-10): 1172-1188 DOI:10.1080/00206814.2014.886152
Wu H, Li C, Xu MJ and Li XK. 2015b. Early Cretaceous adakitic magmatism in the Dachagou area, northern Lhasa terrane, Tibet: Implications for slab roll-back and subsequent slab break-off of the lithosphere of the Bangong-Nujiang Ocean. Journal of Asian Earth Sciences, 97: 51-66 DOI:10.1016/j.jseaes.2014.10.014
Wu H, Qiangba Z, Li C, Wang Q, Gesang W, Ciren O and Basang D. 2018. Geochronology and geochemistry of Early Cretaceous granitic rocks in the Dongqiao Area, Central Tibet: Implications for magmatic origin and geological evolution. The Journal of Geology, 126(2): 249-260 DOI:10.1086/695702
Xie CM, Li C, Li GM, Zhang LK, Wang Bin, Dong YC and Hao YJ. 2020. The research progress and problem of the Sumdo Paleo-Tethys Ocean, Tibet. Sedimentary Geology and Tethyan Geology, 40(2): 1-13 (in Chinese with English abstract)
Xie L, Dun D, Zhu LD, Ni MCR, Yang WG, Yao G, Li C, He B and He Y. 2015. Zircon U-Pb geochronology, geochemistry and geological significance of the Zhaduding A-type granites in northern Gangdise, Tibet. Geology in China, 42(5): 1214-1227 (in Chinese with English abstract)
Xu MJ, Li C, Zhang XZ and Wu YW. 2014. Nature and evolution of the Neo-Tethys in central Tibet: Synthesis of ophiolitic petrology, geochemistry, and geochronology. International Geology Review, 56(9): 1072-1096 DOI:10.1080/00206814.2014.919616
Xu ZQ, Yang JS, Li WC, Li HQ, Cai ZH, Yan Z and Ma CQ. 2013. Paleo-Tethys system and accretionary orogen in the Tibet Plateau. Acta Petrologica Sinica, 29(6): 1847-1860 (in Chinese with English abstract)
Xu ZQ, Dilek Y, Cao H, Yang JS, Robinson P, Ma CQ, Li HQ, Jolivet M, Roger F and Chen XJ. 2015. Paleo-Tethyan evolution of Tibet as recorded in the East Cimmerides and West Cathaysides. Journal of Asian Earth Sciences, 105: 320-337 DOI:10.1016/j.jseaes.2015.01.021
Yang JH, Wu FY, Chung SL, Wilde SA and Chu MF. 2006. A hybrid origin for the Qianshan A-type granite, northeast China: Geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 89(1-2): 89-106 DOI:10.1016/j.lithos.2005.10.002
Yang JS, Xu ZQ, Li TF, Li HQ, Li ZL, Ren YF, Xu XZ and Chen SY. 2007. Oceanic subduction-type eclogite in the Lhasa block, Tibet, China: Remains of the Paleo-Tethys ocean basin?. Geological Bulletin of China, 26(10): 1277-1287 (in Chinese with English abstract)
Yang ZM, Hou ZQ, Xia DX, Song YC and Li Z. 2008. Relationship between western porphyry and mineralization in Qulong copper deposit of Tibet and its enlightenment to further exploration. Mineral Deposits, 27(1): 28-36 (in Chinese with English abstract)
Yang ZM, Hou ZQ, Jiang YF, Zhang HR and Song YC. 2011. Sr-Nd-Pb and zircon Hf isotopic constraints on petrogenesis of the Late Jurassic granitic porphyry at Qulong, Tibet. Acta Petrologica Sinica, 27(7): 2003-2010 (in Chinese with English abstract)
Yu HX, Chen JL, Xu JF, Wang BD, Wu JB and Liang HY. 2011. Geochemistry and origin of Late Cretaceous (~90Ma) ore-bearing porphyry of Balazha in mid-northern Lhasa terrane, Tibet. Acta Petrologica Sinica, 27(7): 2011-2022 (in Chinese with English abstract)
Zeng XW, Wang M, Fan JJ, Li C, Xie CM, Liu YM and Zhang TY. 2018. Geochemistry and geochronology of gabbros from the Asa ophiolite, Tibet: Implications for the Early Cretaceous evolution of the Meso-Tethys Ocean. Lithos, 320-321: 192-206 DOI:10.1016/j.lithos.2018.09.013
Zeng YC, Xu JF, Huang F, Li MJ and Chen Q. 2020. Generation of the 105~100Ma Dagze volcanic rocks in the north Lhasa Terrane by lower crustal melting at different temperature and depth: Implications for tectonic transition. GSA Bulletin, 132(5-6): 1257-1272 DOI:10.1130/B35306.1
Zeng YC, Xu JF, Chen JL, Wang BD, Huang F, Xia XP and Li MJ. 2021. Early Cretaceous (138~134Ma) forearc ophiolite and tectonomagmatic patterns in Central Tibet: Subduction termination and re-initiation of Meso-Tethys Ocean caused by collision of an oceanic plateau at the continental margin?. Tectonics, 40(3): e2020TC006423
Zhang KJ, Xia BD, Wang GM, Li YT and Ye HF. 2004. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China. Geological Society of America Bulletin, 116(9): 1202-1222 DOI:10.1130/B25388.1
Zhang KJ, Zhang YX, Tang XC and Xia B. 2012. Late Mesozoic tectonic evolution and growth of the Tibetan Plateau prior to the Indo-Asian collision. Earth-Science Reviews, 114(3-4): 236-249 DOI:10.1016/j.earscirev.2012.06.001
Zhang KX, He WH, Xu YD, Zhang XH, Song BW, Kou XH and Wang GC. 2021. Reconstruction of main types for oceanic plate strata in the subduction-accretionary complex and feature of sequence for each type: An example from the Qinghai-Tibet Tethyan Permian strata. Sedimentary Geology and Tethyan Geology, 41(2): 137-151 (in Chinese with English abstract)
Zhang Q, Wang Y, Pan GQ, Li CD and Jin WJ. 2008. Sources of granites: Some crucial questions on granite study (4). Acta Petrologica Sinica, 24(6): 1193-1204 (in Chinese with English abstract)
Zhang Z, Song JL, Tang JX, Wang LQ, Yao XF and Li ZJ. 2017. Petrogenesis, diagenesis and mineralization ages of Galale Cu-Au deposit, Tibet: Zircon U-Pb age, Hf isotopic composition and molybdenite Re-Os dating. Earth Science, 42(6): 862-880 (in Chinese with English abstract)
Zhao LX, Gong C, He J, Peng JH, Huang SC and Yang ZL. 2013. Discovery of porphyry copper deposit and its significance of Dajiacuo in Cuoqin County, Tibet. Journal of East China Institute of Technology (Natural Science Edition), 36(6): 13-20 (in Chinese with English abstract)
Zheng YY, Sun X, Gao SB, Wu S, Xu J, Jiang JS, Chen X, Zhao ZY and Liu Y. 2015. Metallogenesis and the minerogenetic series in the Gangdese polymetallic copper belt. Journal of Asian Earth Sciences, 103: 23-39 DOI:10.1016/j.jseaes.2014.11.036
Zheng YY, Ci Q, Gao SB, Wu S, Jiang XJ and Chen X. 2021. The Ag-Sn-Cu polymetallic minerogenetic series and prospecting direction in the western Gangdese belt, Tibet. Earth Science Frontiers, 28(3): 379-402 (in Chinese with English abstract)
Zhu BQ. 1998. Theories and Application of Isotopic System in Geoscience: Crustal and Mantle Evolution in China Continent. Beijing: Science Press, 1-330 (in Chinese)
Zhu DC, Pan GT, Wang LQ, Mo XX, Zhao ZD, Zhou CY, Liao ZL, Dong GL and Yuan SH. 2008. Tempo-spatial variations of Mesozoic magmatic rocks in the Gangdise belt, Tibet, China, with a discussion of geodynamic setting-related issues. Geological Bulletin of China, 27(9): 1535-1550 (in Chinese with English abstract)
Zhu DC, Mo XX, Niu YL, Zhao ZD, Wang LQ, Liu YS and Wu FY. 2009. Geochemical investigation of Early Cretaceous igneous rocks along an east-west traverse throughout the central Lhasa Terrane, Tibet. Chemical Geology, 268(3-4): 298-312 DOI:10.1016/j.chemgeo.2009.09.008
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa Terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Zhao ZD, Niu YL, Dilek Y, Hou ZQ and Mo XX. 2013. The origin and pre-Cenozoic evolution of the Tibetan Plateau. Gondwana Research, 23(4): 1429-1454 DOI:10.1016/j.gr.2012.02.002
Zhu DC, Li SM, Cawood PA, Wang Q, Zhao ZD, Liu SA and Wang LQ. 2016. Assembly of the Lhasa and Qiangtang terranes in central Tibet by divergent double subduction. Lithos, 245: 7-17 DOI:10.1016/j.lithos.2015.06.023
Zhu TX, Feng XT, Wang XF, Zhang YJ and An XY. 2020. Summary of the Late Triassic tectonic paleogeography in the Qinghai-Tibetan Plateau, China. Sedimentary Geology and Tethyan Geology, 40(3): 59-71 (in Chinese with English abstract)
Zindler A and Hart S. 1986. Chemical geodynamics. Annual Review of Earth and Planetary Sciences, 14(1): 493-571 DOI:10.1146/annurev.ea.14.050186.002425
Zong KQ, Klemd R, Yuan Y, He ZY, Guo JL, Shi XL, Liu YS, Hu ZC and Zhang ZM. 2017. The assembly of Rodinia: The correlation of Early Neoproterozoic (ca. 900Ma) high-grade metamorphism and continental arc formation in the southern Beishan Orogen, southern Central Asian Orogenic Belt (CAOB). Precambrian Research, 290: 32-48 DOI:10.1016/j.precamres.2016.12.010
蔡青龙, 郑志文, 何俊. 2015. 西藏冈底斯西部地区花岗岩锆石U-Pb年龄及其地质意义. 东华理工大学学报(自然科学版), 38(1): 49-57. DOI:10.3969/j.issn.1674-3504.2015.01.007
陈奇, 谢琳, 肖志坚. 2007. 青藏高原西部班公湖蛇绿混杂岩带的基本特征与构造演化. 东华理工大学学报(自然科学版), 30(2): 107-112. DOI:10.3969/j.issn.1674-3504.2007.02.002
邓晋福, 罗照华, 苏尚国. 2009. 岩石成因、构造环境与成矿作用. 北京: 地质出版社, 1-381.
高顺宝, 郑有业, 王进寿, 张众, 杨成. 2011. 西藏班戈地区侵入岩年代学和地球化学: 对班公湖-怒江洋盆演化时限的制约. 岩石学报, 27(7): 1973-1982.
高顺宝, 郑有业, 田坎, 陈鑫, 姜晓佳, 顾艳荣. 2021. 西藏隆格尔铁矿床成岩成矿时代及对区域多期铁成矿作用的启示: 地球化学、锆石U-Pb及金云母Ar-Ar同位素定年约束. 地球科学, 46(6): 1941-1959.
耿全如, 毛晓长, 张璋, 彭智敏, 关俊雷. 2015. 班公湖-怒江成矿带中、西段岩浆弧新认识及其对找矿的启示. 中国地质调查, 2(2): 1-11.
耿全如, 李文昌, 王立全, 曾祥婷, 彭智敏, 张向飞, 张璋, 丛峰, 关俊雷. 2021. 特提斯中西段古生代洋陆格局与构造演化. 沉积与特提斯地质, 41(2): 297-315.
侯增谦, 宋玉财, 李政, 王召林, 杨志明, 杨竹森, 刘英超, 田世洪, 何龙清, 陈开旭, 王富春, 赵呈祥, 薛万文, 鲁海峰. 2008. 青藏高原碰撞造山带Pb-Zn-Ag-Cu矿床新类型: 成矿基本特征与构造控矿模型. 矿床地质, 27(2): 123-144. DOI:10.3969/j.issn.0258-7106.2008.02.001
黄瀚霄, 李光明, 董随亮, 刘波, 张晖, 张丽, 李应栩, 石洪召. 2012. 西藏班戈地区青龙花岗闪长岩SHRIMP锆石U-Pb年龄及其地球化学特征. 地质通报, (6): 852-859. DOI:10.3969/j.issn.1671-2552.2012.06.004
李光明, 段志明, 刘波, 张晖, 董随亮, 张丽. 2011. 西藏班公湖-怒江结合带北缘多龙地区侏罗纪增生杂岩的特征及意义. 地质通报, 30(8): 1256-1260. DOI:10.3969/j.issn.1671-2552.2011.08.012
李光明, 张林奎, 张志, 夏祥标, 梁维, 侯春秋. 2021. 青藏高原南部的主要战略性矿产: 勘查进展、资源潜力与找矿方向. 沉积与特提斯地质, 41(2): 351-360.
李文昌, 江小均. 2020. 扬子西缘陆内构造转换系统与构造岩浆成矿效应. 地学前缘, 27(2): 151-164.
刘洪, 黄瀚霄, 李光明, 肖万峰, 张智林, 刘波, 马东方, 董磊, 马东. 2015. 因子分析在藏北商旭金矿床地球化学勘查中的应用. 中国地质, 42(4): 1126-1136. DOI:10.3969/j.issn.1000-3657.2015.04.026
刘洪, 张晖, 李光明, 黄瀚霄, 肖万峰, 游钦, 马东方, 张海, 张红. 2016. 藏北羌塘南缘早白垩世青草山强过铝质S型花岗岩的成因: 来自地球化学和锆石U-Pb年代学的约束. 北京大学学报(自然科学版), 52(5): 848-860.
刘洪, 李光明, 黄瀚霄, 张智林, 肖万峰, 焦彦杰, 梁生贤, 郭境, 兰双双. 2017. 班公湖-怒江成矿带商旭造山型金矿床Ⅲ号矿段深部找矿潜力研究. 地质学报, 91(6): 1245-1258. DOI:10.3969/j.issn.0001-5717.2017.06.006
刘洪, 李光明, 黄瀚霄, 肖万峰, 闫国强, 马东方, 张海, 张红. 2018. 藏北商旭造山型金矿床成矿物质来源探讨: C、S、Pb同位素证据. 地质论评, 64(5): 1218-1231.
刘洪, 李光明, 黄瀚霄, 张林奎, 吕梦鸿, 兰双双, 付建刚, 周维德, 解惠. 2019a. 冈底斯成矿带西段鲁尔玛斑岩型铜(金)矿床的成矿物质来源研究. 矿床地质, 38(4): 631.
刘洪, 张林奎, 黄瀚霄, 李光明, 吕梦鸿, 闫国强, 黄勇, 兰双双, 解惠. 2019b. 冈底斯西段鲁尔玛斑岩型铜(金)矿成矿流体性质及演化. 地球科学, 44(6): 1935-1956.
刘洪, 张林奎, 黄瀚霄, 李光明, 欧阳渊, 吕梦鸿, 刘函, 兰双双, 闫国强. 2019c. 西藏冈底斯西段鲁尔玛晚三叠世二长闪长岩的成因. 地球科学, 44(7): 2339-2352.
刘洪, 张林奎, 黄瀚霄, 李光明, 欧阳渊, 余槐, 梁维, 张洪铭, 陈小平. 2020. 冈底斯西段罗布真浅成低温热液型金银矿的成矿流体演化: 来自流体包裹体、H-O同位素的证据. 地学前缘, 27(4): 50-65.
刘洪, 黄瀚霄, 张林奎, 李光明, 欧阳渊, 黄勇, 吕梦鸿, 兰双双. 2021a. 冈底斯西段打加错地区鲁尔玛晚三叠世斑岩型铜(金)矿点的地质特征及发现意义. 沉积与特提斯地质, 40(1): 569-581.
刘洪, 李光明, 李文昌, 张景华, 李佑国, 张智林, 黄瀚霄, 欧阳渊, 张腾蛟. 2021b. 西藏布东拉金矿床浅成低温热液成矿作用: 来自流体包裹体和H-O同位素的证据. 矿床地质, 40(2): 311-328.
莫宣学. 2020. 从岩浆岩看青藏高原地壳的生长演化. 地球科学, 45(7): 2245-2257.
潘桂棠, 王立全, 李兴振, 王洁民, 徐强. 2001. 青藏高原区域构造格局及其多岛弧盆系的空间配置. 沉积与特提斯地质, 21(3): 1-26. DOI:10.3969/j.issn.1009-3850.2001.03.001
潘桂棠, 朱弟成, 王立全, 廖忠礼, 耿全如, 江新胜. 2004. 班公湖-怒江缝合带作为冈瓦纳大陆北界的地质地球物理证据. 地学前缘, 11(4): 371-382. DOI:10.3321/j.issn:1005-2321.2004.04.004
潘桂棠, 莫宣学, 侯增谦, 朱弟成, 王立全, 李光明, 赵志丹, 耿全如, 廖忠礼. 2006. 冈底斯造山带的时空结构及演化. 岩石学报, 22(3): 521-533.
潘桂棠, 肖庆辉, 陆松年, 邓晋福, 冯益民, 张克信, 张智勇, 王方国, 邢光福, 郝国杰, 冯艳芳. 2009. 中国大地构造单元划分. 中国地质, 36(1): 1-28.
潘桂棠, 王立全, 耿全如, 尹福光, 王保弟, 王冬兵, 彭智敏, 任飞. 2020. 班公湖-双湖-怒江-昌宁-孟连对接带时空结构――特提斯大洋地质及演化问题. 沉积与特提斯地质, 40(3): 1-19.
彭建华, 赵希良, 何俊, 黄韶春, 龚臣. 2013. 西藏冈底斯西部地区印支期岩浆岩的发现及其意义. 东华理工大学学报(自然科学版), 36(6): 21-26.
彭智敏, 耿全如, 刘书生, 张璋, 关俊雷, 丛峰. 2015. 西藏那曲地区嘎加组闪长玢岩LA-ICP-MS锆石U-Pb年龄与地球化学特征. 地质通报, 34(2-3): 354-363.
秦臻, 杨志军, 唐力, 王明志, 佘朋涛, 韩奎, 张黛. 2019. 西藏冈底斯带查隆花岗岩地球化学特征、锆石U-Pb年龄及其成矿意义. 地质通报, 38(2-3): 231-241.
曲晓明, 侯增谦, 国连杰, 徐文艺. 2004. 冈底斯铜矿带埃达克质含矿斑岩的源区组成与地壳混染: Nd、Sr、Pb、O同位素约束. 地质学报, 78(6): 813-821. DOI:10.3321/j.issn:0001-5717.2004.06.012
史少飞, 肖渊甫, 袁浩为, 魏永峰, 邱婵媛, 江小强. 2019. 西藏冈底斯带北缘波果日则地区A型花岗岩年代学、地球化学特征及其地质意义. 地球科学与环境学报, 41(6): 644-657. DOI:10.3969/j.issn.1672-6561.2019.06.002
宋扬, 曲晓明, 辛洪波, 王志云, 杜德道. 2013. 西藏班公湖岛弧带晚白垩世地壳伸展期间碳的壳内循环. 地质论评, 59(2): 225-233. DOI:10.3969/j.issn.0371-5736.2013.02.005
宋扬, 曾庆高, 刘海永, 刘治博, 李海峰, 德西央宗. 2019. 班公湖-怒江洋形成演化新视角: 兼论西藏中部古-新特提斯转换. 岩石学报, 35(3): 625-641.
唐菊兴. 2019. 青藏高原及邻区重要成矿带矿产资源基地调查与研究进展. 岩石学报, 35(3): 617-624.
王保弟, 郭琳, 王立全, 李冰, 黄瀚霄, 陈富琦, 段志明, 曾庆高. 2012. 中冈底斯成矿带查个勒矿床含矿岩体的年代学及成因. 岩石学报, 28(5): 1647-1662.
王保弟, 许继峰, 刘保民, 陈建林, 王立全, 郭琳, 王冬兵, 张万平. 2013. 拉萨地块北部~90Ma斑岩型矿床年代学及成矿地质背景. 地质学报, 87(1): 71-80. DOI:10.3969/j.issn.0001-5717.2013.01.007
王立全, 王保弟, 李光明, 王冬兵, 彭智敏. 2021. 东特提斯地质调查研究进展综述. 沉积与特提斯地质, 41(2): 283-296.
王欣欣, 闫国强, 刘洪, 黄瀚霄, 赖杨, 田恩源, 欧阳渊. 2021. 中拉萨地块晚白垩世曲桑格勒花岗岩的成因: 地球化学、锆石U-Pb年代学及Sr-Nd-Pb-Hf同位素的约束. 地球科学, 46(8): 2832-2849.
吴福元, 李献华, 郑永飞, 高山. 2007. Lu-Hf同位素体系及其岩石学应用. 岩石学报, 23(2): 185-220.
吴浩, 李才, 胡培远, 张红雨, 李娇. 2014. 藏北班公湖-怒江缝合带早白垩世双峰式火山岩的确定及其地质意义. 地质通报, 33(11): 1804-1814. DOI:10.3969/j.issn.1671-2552.2014.11.016
解超明, 李才, 李光明, 张林奎, 王斌, 董宇超, 郝宇杰. 2020. 西藏松多古特提斯洋研究进展与存在问题. 沉积与特提斯地质, 40(2): 1-13.
解龙, 顿都, 朱利东, 尼玛次仁, 杨文光, 陶刚, 李超, 何碧, 和源. 2015. 西藏北冈底斯扎独顶A型花岗岩锆石U-Pb年代学、地球化学及其地质意义. 中国地质, 42(5): 1214-1227. DOI:10.3969/j.issn.1000-3657.2015.05.004
许志琴, 杨经绥, 李文昌, 李化启, 蔡志慧, 闫臻, 马昌前. 2013. 青藏高原中的古特提斯体制与增生造山作用. 岩石学报, 29(6): 1847-1860.
杨经绥, 许志琴, 李天福, 李化启, 李兆丽, 任玉峰, 徐向珍, 陈松永. 2007. 青藏高原拉萨地块中的大洋俯冲型榴辉岩: 古特提斯洋盆的残留?. 地质通报, 26(10): 1277-1287. DOI:10.3969/j.issn.1671-2552.2007.10.006
杨志明, 侯增谦, 夏代详, 宋玉财, 李政. 2008. 西藏驱龙铜矿西部斑岩与成矿关系的厘定: 对矿床未来勘探方向的重要启示. 矿床地质, 27(1): 28-36. DOI:10.3969/j.issn.0258-7106.2008.01.003
杨志明, 侯增谦, 江迎飞, 张洪瑞, 宋玉财. 2011. 西藏驱龙矿区早侏罗世斑岩的Sr-Nd-Pb及锆石Hf同位素研究. 岩石学报, 27(7): 2003-2010.
余红霞, 陈建林, 许继峰, 王保弟, 邬建斌, 梁华英. 2011. 拉萨地块中北部晚白垩世(约90Ma)拔拉扎含矿斑岩地球化学特征及其成因. 岩石学报, 27(7): 2011-2022.
张克信, 何卫红, 徐亚东, 张雄华, 宋博文, 寇晓虎, 王国灿. 2021. 论从俯冲增生杂岩带重建洋板块地层主要类型与序列: 以青藏特提斯二叠系为例. 东华理工大学学报(自然科学版), 41(2): 137-151.
张旗, 王焰, 潘国强, 李承东, 金惟俊. 2008. 花岗岩源岩问题――关于花岗岩研究的思考之四. 岩石学报, 24(6): 1193-1204.
张志, 宋俊龙, 唐菊兴, 王立强, 姚晓峰, 李志军. 2017. 西藏嘎拉勒铜金矿床的成岩成矿时代与岩石成因: 锆石U-Pb年龄、Hf同位素组成及辉钼矿Re-Os定年. 地球科学, 42(6): 862-880.
赵希良, 龚臣, 何俊, 彭建华, 黄韶春, 杨志龙. 2013. 西藏措勤县打加错地区斑岩型铜矿点发现及其意义. 东华理工大学学报(自然科学版), 36(6): 13-20.
郑有业, 次琼, 高顺宝, 吴松, 姜晓佳, 陈鑫. 2021. 西藏冈底斯西段银锡铜多金属成矿系列与找矿方向. 地学前缘, 28(3): 379-402.
朱炳泉. 1998. 地球科学中同位素体系理论与应用――兼论中国大陆壳幔演化. 北京: 科学出版社, 1-330.
朱弟成, 潘桂棠, 王立全, 莫宣学, 赵志丹, 周长勇, 廖忠礼, 董国臣, 袁四化. 2008. 西藏冈底斯带中生代岩浆岩的时空分布和相关问题的讨论. 地质通报, 27(9): 1535-1550. DOI:10.3969/j.issn.1671-2552.2008.09.013
朱同兴, 冯心涛, 王晓飞, 张予杰, 安显银. 2020. 青藏高原晚三叠世构造-古地理综述. 沉积与特提斯地质, 40(3): 59-71.