岩石学报  2022, Vol. 38 Issue (1): 143-156, doi: 10.18654/1000-0569/2022.01.10   PDF    
昌宁-孟连缝合带老厂矿床Ag-Pb-Zn矿体C-O和Zn同位素组成及其地质意义
唐鑫1, 陈福川2, 张鹏飞1, 李龚健1, 赵枫3, 陈威4     
1. 中国地质大学地质过程与矿产资源国家重点实验室,北京 100083;
2. 昆明理工大学国土资源工程学院,昆明 650093;
3. 内江师范学院地理与资源科学学院,内江 641100;
4. 盛屯矿业股份有限公司,厦门 361012
摘要: 老厂矿床是昌宁-孟连缝合带内唯一大型矿床,本文报道了老厂矿床Ag-Pb-Zn矿体中Ⅰ号矿体群下部块状矿体和上部网脉状矿体的方解石C-O同位素组成,以及Ⅰ、Ⅱ、Ⅳ三个矿体群内闪锌矿的Zn同位素组成。Ⅰ号矿体群下部块状矿体和上部网脉状矿体方解石δ13CPDB的范围分别为-6.17‰~2.71‰和-2.18‰~3.87‰,δ18OPDB的范围分别为-19.57‰~-17.23‰和-22.10‰~-16.21‰;计算获得对应成矿流体的δ13CCO2为-6.16‰~1.53‰和-2.39‰~6.43‰,δ18OH2O分别为1.62‰~7.62‰和4.36‰~16.92‰,通过与岩浆CO2(δ13C=-2‰~-8‰)和围岩灰岩(δ13C=-1.6‰~4.0‰)的δ13C值相比较,指示块状矿体成矿流体中的碳主要来自岩浆,网脉状矿体成矿流体中的碳则主要来自围岩,说明老厂矿床深部水岩反应较强。10件闪锌矿的δ66Zn和δ68Zn值分别为0.17‰~0.25‰和0.33‰~0.49‰,与VMS型矿床以及现代海底热液流体的Zn同位素组成重合,不同标高均一的Zn同位素组成寓示老厂矿床Ag-Pb-Zn矿体中闪锌矿形成过程中几乎未受到温度、分馏和微生物作用的影响,可以直接反映金属源区的Zn同位素组成,揭示老厂矿床Ag-Pb-Zn矿体为VMS成因,成矿金属主要来自于下石炭统海底火山作用。
关键词: 老厂矿床Ag-Pb-Zn矿体    昌宁-孟连缝合带    Zn同位素    C-O同位素    物质来源    
The C-O and Zn isotopic compositions of the Laochang Ag-Pb-Zn ore bodies in the Changning-Menglian suture zone, and its geological implications
TANG Xin1, CHEN FuChuan2, ZHANG PengFei1, LI GongJian1, ZHAO Feng3, CHEN Wei4     
1. State Key Laboratory of Geological Process and Mineral Resources, China University of Geosciences, Beijing 100083, China;
2. Faculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China;
3. School of Geogrophy and Resource Science, Neijiang Normal University, Neijiang 641100, China;
4. Chengtun Mining Group Co. Ltd, Xiamen 361012, China
Abstract: The Laochang deposit is the only large ore deposit in the Changning-Menglian suture zone. In this study, the C-O isotopic compositions of calcites from the lower massive ore bodies and the upper stockwork ore bodies of No.Ⅰ ore bodies in Laochang Ag-Pb-Zn ore bodies and the Zn isotopic compositions of sphalerites from No.Ⅰ, Ⅱ, Ⅳ ore bodies are investigated. The range of δ13CPDB of calcites from the lower massive ore bodies and the upper stockwork ore bodies of No.Ⅰ ore bodies is -6.17‰~2.71‰ and -2.18‰~3.87‰, respectively, and the range of δ18OPDB is -19.57‰~-17.23‰ and -22.10‰~-16.21‰, respectively. The δ13CCO2 of the corresponding ore-forming fluids are calculated to be -6.16‰~1.53‰ and -2.39‰~6.43‰, respectively, and the δ18OH2O are calculated to be 1.62‰~7.62‰ and 4.36‰~16.92‰, respectively. By comparison with the δ13C of magmatic CO2 (δ13C=-2‰~-8‰) and wall-rock limestone (δ13C=-1.6‰~4.0‰), it indicates that the carbon in the ore-forming fluids of massive ore bodies mainly comes from magma, while the carbon in the ore-forming fluids of stockwork ore bodies mainly comes from limestone, which further shows that there is strong water-rock reaction in the deep part of Laochang deposit. The δ66Zn and δ68Zn values of ten sphalerites are 0.17‰~0.25‰ and 0.33‰~0.49‰, respectively, which coincides with the Zn isotopic compositions of VMS deposits and modern submarine hydrothermal fluids. The homogeneous Zn isotopic compositions at different elevations implies that the Zn isotopic compositions of sphalerite from Ag-Pb-Zn orebodies in Laochang deposit are almost unaffected by temperature, fractionation and microbial action. And it can directly reflect the Zn isotopic compositions of the metal source, revealing the genesis type of the Laochang Ag-Pb-Zn ore body as VMS-type, and the metallogenic metal mainly comes from the Lower Carboniferous submarine volcanism.
Key words: Ag-Pb-Zn ore bodies of Laochang deposit    Changning-Menglian suture zone    Zn isotope    C-O isotope    Source of materials    

老厂Ag-Pb-Zn-Mo-Cu矿床位于三江特提斯构造带南部的昌宁-孟连缝合带内,是三江特提斯构造带南部最具代表性的大型多金属矿床。其开采历史悠久,成矿地质条件独特、矿化元素多且富银,因而受到广大学者的关注。矿床Ag-Pb-Zn矿体主体赋存于下石炭统依柳组火山岩内,在上覆的中-上石炭统-二叠系碳酸盐岩中也有部分矿体产出。依据矿体产出形态、火山岩与矿体年龄以及矿石结构构造、矿化分带等特征,这些矿体被普遍认为是石炭纪火山喷流沉积成矿作用的产物(杨开辉和莫宣学, 1993; 龙汉生等, 2007; 李峰等, 2009; 陈百友等, 2002; Li et al., 2015; Liu et al., 2015; 张鹏飞等, 2017; Meng et al., 2018; Wei et al., 2018)。近年来,在老厂矿床Ag-Pb-Zn矿体之下又陆续揭露出隐伏的花岗斑岩体以及与其相关的斑岩-矽卡岩型Mo矿化(体)(李峰等, 2009, 2010a, b; 黄钰涵等, 2017),针对岩体的锆石U-Pb定年和矿体的辉钼矿Re-Os定年显示其年龄分别为44~46Ma、44~47Ma(李峰等, 2010b; Deng et al., 2016; Meng et al., 2018),与三江特提斯构造带内发育的一系列碰撞斑岩型Cu、Cu-Mo、Cu-Au矿床年龄(33~40Ma)相近(Hou et al., 2006; Deng et al., 2014a, 2021),指示老厂矿床深部在新生代又经历了斑岩-矽卡岩成矿作用。

多层位的赋矿地层、强烈的岩浆活动以及多期次的构造成矿事件导致目前对于老厂矿床Ag-Pb-Zn矿体成因及其成矿流体、成矿物质来源的认识存在很大分歧,总结起来分为以下三种:(1)老厂矿床Ag-Pb-Zn矿体主要为火山喷流沉积成因,后期叠加了岩浆-热液成矿作用,因此成矿物质主要来自依柳组火山岩,碳酸盐地层和隐伏花岗斑岩也提供了部分物质(陈百友等, 2002; 龙汉生等, 2007; Meng et al., 2018);(2)老厂矿床Ag-Pb-Zn矿体是与新生代花岗斑岩相关的岩浆-热液成因,成矿物质来自隐伏花岗斑岩和上部碳酸盐地层,没有火山岩的贡献(Deng et al., 2016);(3)老厂矿床Ag-Pb-Zn矿体成矿活动与火山岩关系不大,成矿物质主要来自燕山晚期-喜马拉雅早期次火山热液活动(薛步高, 1998; 徐楚明和欧阳成甫, 1991; 欧阳成甫和徐楚明, 1991)。

同位素是示踪成矿流体和成矿物质来源的重要手段。其中,方解石的C-O同位素组成已经被广泛用于示踪矿床中碳的来源以及成矿流体的来源。此外,不同于C、O、S同位素,Zn是Ag-Pb-Zn矿床中的成矿金属,因此Zn同位素能更直接指示矿床中成矿金属来源。得益于多接收电感耦合等离子质谱(MC-ICP-MS)分析技术的进步(Maréchal et al., 1999; Albarède, 2004),目前Zn同位素在矿床研究方面有了长足发展(王跃和朱祥坤, 2010; 王达等, 2020)。学者们对不同成因矿床的Zn同位素组成特征和控制矿床中Zn同位素变化的关键因素也有了系统的研究(Mason et al., 2005; Wilkinson et al., 2005; John et al., 2008; Kelley et al., 2009; Gagnevin et al., 2012; Pašava et al., 2014; Zhou et al., 2014a, b; Gao et al., 2018)。最新研究中,部分学者运用Zn同位素识别了成矿过程中流体迁移路径(Xu et al., 2020; Wu et al., 2021),揭示生物活动对成矿过程的影响(Yang et al., 2022),并有效的约束了Pb-Zn矿床中Zn的来源(Zhou et al., 2014a, b; 何承真等, 2016Zhang et al., 2019a)。如Zhang et al. (2019a)最近对茂租矿床的研究发现其闪锌矿具有均一的Zn同位素组成(δ66ZnJMC=-0.06‰~0.23‰),说明闪锌矿与流体之间分馏很小,同时闪锌矿Zn同位素组成与矿区元古代基底杂岩(δ66ZnJMC=0.10‰~0.34‰)重叠,认为Zn主要来自元古代基底杂岩。这些研究表明Zn同位素分析是揭示矿床成矿过程,示踪成矿物质来源的可靠手段。

针对老厂矿床Ag-Pb-Zn矿体成矿物质来源及成因机制这一关键科学问题,本文通过分析老厂矿床Ag-Pb-Zn矿体中闪锌矿的Zn同位素组成以及成矿期方解石的C-O同位素组成,并结合前人的研究成果,讨论老厂矿床Zn、C、O同位素时空变化规律,查明控制Zn、C、O同位素组成变化的关键因素,为揭示老厂矿床Ag-Pb-Zn矿体成矿物质来源和矿床成因机制提供新的证据。

1 地质概况 1.1 区域地质背景

昌宁-孟连缝合带位于三江特提斯构造带的南部,夹在西侧的保山地块与东侧的思茅地块之间,呈南北向延伸,延伸长度近400km。区内地层由老到新包含元古宇、古生界、中生界和新生界(图 1),元古宇主要为一套遭受强烈变形和绿片岩相浅变质岩;古生界又包括泥盆系、石炭系和二叠系,是区域地层的主体,主要由蛇绿混杂岩、洋岛-海山火山岩、高压变质杂岩、浅海相碳酸盐岩和深海-半深海远洋沉积(含丰富的放射虫硅质岩)构成(Sone and Metcalfe, 2008),其中蛇绿混杂岩以铜厂街、干龙塘、牛井山、老厂和曼信地区出露为典型(莫宣学等, 1998; 王慧宁, 2020),岩性主要为方辉橄榄岩、辉长岩、辉绿岩、玄武岩、远洋沉积型灰岩和硅质岩(张旗等, 1996; 沈上越等, 2002; 赖绍聪等, 2010; Jian et al., 2009),泥盆纪至晚二叠世洋岛-海山火山岩则出露在曼信、依柳、老厂和双江等地(He and Liu, 1993; Feng, 2002; 陈觅等, 2011),其上覆早石炭世至晚二叠世的浅海相碳酸盐岩被认为是海底山上的碳酸盐岩盖层(He and Liu, 1993; Ueno et al., 2003),老厂矿床Ag-Pb-Zn矿体即产于上述火山岩和碳酸盐岩中。中生界为侏罗纪花开佐组一套紫红色湖沼相砾岩、砂砾岩和细碎屑沉积,新生界主要为河流冲积和冲洪积堆积。

图 1 昌宁-孟连缝合带位置(a)及区域地质简图(b)(据张鹏飞等, 2017修改) Fig. 1 Sketch map showing the locality (a) and geology (b) of the Changning-Menglian suture zone (modified after Zhang et al., 2017)

昌宁-孟连缝合带拥有复杂的演化历史(Deng et al., 2014a, b),依次经历三个主要演化阶段:(1)原特提斯洋演化阶段,近几年针对南汀河、湾河、牛井山蛇绿混杂岩、勐勇-芒红地区洋岛玄武岩的研究陆续报道了473~439Ma的锆石U-Pb年龄(王保弟等, 2013; 刘桂春等, 2017; 王冬兵等, 2016; 孙载波等, 2017),表明该地区在中奥陶世至晚志留世时期存在原特提斯洋壳(王保弟等, 2018; 吴福元等; 2020);(2)古特提斯洋演化阶段,昌宁-孟连缝合带是古特提斯洋主洋闭合的残余(莫宣学等, 1998; Sone and Metcalfe, 2008; Metcalfe, 2013),其内深海放射虫硅质岩、蛇绿混杂岩、火山岩、高压变质岩和东侧的花岗岩完整记录了古特提斯昌宁-孟连洋于中泥盆世时开启(段向东等, 2006),并持续扩张成为开阔洋盆(Liu et al., 1991; Feng and Ye, 1996; Feng, 2002; Ueno et al., 2003; 段向东等, 2012),在早二叠世早期开始东向俯冲(Jian et al., 2009; Li et al., 2012),最终于中三叠世闭合的过程(Dong et al., 2013; Hennig et al., 2009),其中古特提斯洋的扩张阶段形成了老厂矿区石炭系OIB型火山岩(陈觅等, 2011; Li et al., 2015);(3)新生代印度-欧亚大陆碰撞造山阶段,在老厂矿区深部形成了新生代花岗斑岩体(Deng et al., 2014a)。多期次的构造事件孕育了该带内不同类型的矿床(Deng et al., 2014b),原特提斯洋演化阶段形成了东侧的大平掌VMS型Cu多金属矿床,古特提斯洋扩张阶段形成了北部的铜厂街VMS型Cu矿床,新生代碰撞造山阶段形成了老厂深部的斑岩-矽卡岩Mo矿体。

1.2 矿床地质特征

老厂多金属矿床位于澜沧拉祜族自治县西北方30km处,是昌宁-孟连缝合带内已探明的唯一大型Ag-Pb-Zn矿床,其次生和原生矿体共蕴含了1737t品位为41.7×10-6~495.8×10-6的Ag、86.6万t品位为2.8%~33.0%的Pb,33.6万t品位为1.1%~5.8%的Zn,以及11.6万t品位为0.1%~0.6%的Cu,同时还伴生有一定量的Au、Ga、In和Cd(李峰等, 2010a)。矿区地层出露泥盆系、下石炭统、中-上石炭统、二叠系和第四系(图 2),泥盆系主要为砂岩和硅质岩,以飞来峰形式分布;下石炭统依柳组为火山岩夹少量页岩、灰岩,是Ⅰ号和Ⅱ号矿体群的赋矿层位,蕴含了矿区大部分Ag-Pb-Zn资源,根据熔岩-凝灰岩-沉积岩的火山活动顺序,又可将其划分为C11-C15+6和C17-C18两个火山旋回(李峰等, 2009),Wei et al. (2018)陈觅等(2010)分别获得C15+6中火山岩和凝灰岩锆石U-Pb年龄为312±4Ma和324±3Ma。中-上石炭统-二叠系为泥晶灰岩、粗晶白云岩和生物灰岩,夹少量硅质条带和页岩,其中中-上石炭统是Ⅲ号和Ⅳ号矿体群的主要含矿层位。第四系为残坡积、冲积层。

图 2 老厂矿区地质图(据李峰等, 2010a修改) Fig. 2 Geological map of Laochang ore deposit (modified after Li et al., 2010a)

矿区褶皱发育老厂背斜和雄狮山向斜,为成矿后构造,使得层状矿体与地层发生同步变形。断裂主要发育北西向和北东向断裂,其控制了火山-沉积地层和矿体的分布,被认为是与火山活动-成矿作用同步形成的(龙汉生等, 2009)。新生代时这些断层受到了印度-亚欧陆陆碰撞作用的影响重新活化(邓军等, 2012),控制了深部花岗斑岩的侵位。已有的钻孔揭示深部的花岗斑岩体潜伏标高约为902~1530m,其最高侵入层位为C15+6(黄钰涵等, 2017)。花岗斑岩斑晶主要由钾长石、石英和斜长石组成,少量为黑云母,基质主要为微细粒正长石、石英,含量大于60%(李峰等, 2010b),锆石U-Pb定年显示其年龄为44~46Ma(李峰等, 2010b; 黄钰涵, 2018)。从花岗斑岩到外接触带依次发育斑岩型Mo矿化(体)-矽卡岩型Mo矿化,已探明0.041%~0.171%的Mo 11.78万t(李峰等, 2010b)。

老厂共探明原生矿体138个,分为6个矿体群(图 3),依据矿体的产出特征和矿化蚀变特征,可划分为四类(李峰等, 2010b; Deng et al., 2016):(1)脉状Ag-Pb-Zn矿体(海拔>1700m),是指产于C15+6-P1碳酸盐岩当中的脉状、透镜状Ag-Pb-Zn矿体,其产出受到主断层和各类次级断层、节理裂隙的控制,矿体规模较小,两侧常发育铁锰碳酸盐化、绢云母化蚀变,矿石矿物主要为方铅矿、闪锌矿和黄铁矿,通常伴生有少量黄铜矿、硫铋锑银矿、菱铁矿,Ⅲ号和Ⅳ号矿体群为该类型矿体;(2)层状Ag-Pb-Zn矿体(海拔>1600m),是指产于C15+6和C18火山岩当中的主体为层状-似层状的矿体(图 4a),矿体下部通常发育有网脉状矿体(图 4b),表现出“上黑下黄”的金属分带(上部富方铅矿-闪锌矿,下部富黄铁矿),矿石矿物主要为黄铁矿、含银方铅矿和闪锌矿,含少量毒砂、磁黄铁矿和自然银,脉石矿物为石英和方解石,发育青磐岩化蚀变,Ⅰ号和Ⅱ号矿体群即为该类型矿体;(3)层状含铜Pb-Zn-Ag矿体(海拔:1200~1700m),是指产于C15+6当中层状-似层状、透镜状矿体,矿石矿物主要为黄铁矿、方铅矿、黄铜矿、闪锌矿,含少量磁黄铁矿、自然银、白钨矿(Deng et al., 2016);(4)斑岩-矽卡岩型Mo矿体(海拔 < 1400m; 图 4c),矽卡岩矿化产于外接触带的石炭系粗面安山岩和玄武岩中,矽卡岩矿物组合为石榴石、透辉石、绿帘石、绿泥石、绢云母和硅灰石,主要的硫化物为辉钼矿、黄铜矿、黄铁矿、磁黄铁矿和白钨矿(图 4d; Deng et al., 2016; Meng et al., 2018)。花岗斑岩体内斑岩型Mo矿化形式为细脉-网脉状石英-硫化物脉和浸染状分布的硫化物,辉钼矿通常与黄铁矿、黄铜矿和毒砂共生(Meng et al., 2018)。

图 3 老厂矿区剖面图(据李峰等, 2010a修改) Fig. 3 Geologic cross-section (A-B) of Laochang deposit (modified after Li et al., 2010a)

图 4 老厂矿床不同类型矿体及手标本照片 (a)透镜状矿体中致密块状硫化物;(b)安山质玄武岩中网脉状矿体;(c)花岗斑岩体中辉钼矿脉;(d)石榴子石-辉石矽卡岩中辉钼矿脉 Fig. 4 Photos of different types of ore bodies and hand specimens of the Laochang deposit (a) massive sulfides in lenticular orebody; (b) stockwork orebodies in andesitic basalt; (c) molybdenite veins in granitic porphyry; (d) molybdenite veins in garnet-pyroxene skarn
2 样品采集与分析方法 2.1 C-O同位素

本次研究选取Ⅰ号矿体群中的11件新鲜方解石样品进行C-O同位素研究,根据矿石产出位置和构造的不同,其中7件来自矿体下部的网脉状矿体(化),4件来自上部块状矿体。所采集的样品及附近围岩未见与下部花岗斑岩有关的硅化、钾化蚀变,因此认为样品未受下部花岗斑岩有关热事件改造。

方解石C-O同位素组成分析在在中国地质大学(北京)地质过程与矿产资源国家重点实验室完成,采用GasBenchⅡ-IRMS法进行,稳定同位素质谱仪采用美国Thermo Fisher公司生产的MAT253气体稳定同位素质谱仪。实验过程中,将方解石样品粉碎至200目后称量约100mg进入反应瓶中,然后向反应瓶中注入高纯氦气,排空反应瓶中的空气(流速100mL/min,排空时长10min),从而消除空气中CO2等气体对测试结果的影响。排空结束后,加入5滴100%无水磷酸进行反应(反应温度72℃),最后将反应平衡后的气体导入70℃的Poraplot Q色谱柱中(25m×0.32mm)进行分离,分离后的CO2直接进入气体稳定同位素质谱仪进行δ13C、δ18O测定。实验采用PDB作为标准,测试结果的精度均高于±0.1‰(2SD)。计算δ18OSMOW时采用:δ18OSMOW=1.03091×δ18OPDB+30.91(Coplen et al., 1983)。

2.2 Zn同位素

本次研究根据不同标高从Ⅰ、Ⅱ、Ⅳ三个矿体群中选取了10件新鲜闪锌矿样品进行Zn同位素测试,其中Ⅰ号矿体群4件,Ⅱ号矿体群和Ⅳ号矿体群各3件。

闪锌矿Zn同位素组成分析在中国地质大学(北京)地质过程与矿产资源国家重点实验室完成,遵循在Maréchal et al. (1999)提出的而改进的方法(Liu et al., 2014; et al., 2016)。实验过程中,先使用双目镜挑选闪锌矿颗粒,使纯度高于99%,待清洗研磨粉碎后加入1mL 8N HCl+0.001% H2O2,置于80℃条件下加热,重复三次该过程使样品完全溶解,随后使用强阴离子树脂AG-MP-1M进行分离,在最后阶段使用10mL 0.5N HNO3洗脱Zn后待测。Zn同位素比值测试使用多接收等离子体质谱仪Neptune plus MC-ICP-MS完成,采用JMC3-0749L作为标样,测试结果以δnZn=[(nZn/64Zn)样品/(nZn/64Zn)标准-1]×1000‰(n=66或68)计算,同时采用样品-标样间插法矫正仪器产生的分馏。实验测试精度优于±0.05‰(2SD)(et al., 2016)。国际岩石标样BCR-2和BHVO-2也被测试,用于检验测试的准确度,分别获得了0.29±0.05‰和0.31±0.06‰的结果,与前人测量结果及推荐值在误差范围内一致(Archer and Vance, 2004; Chen et al., 2013)。

3 实验结果 3.1 方解石C-O同位素组成

方解石C-O同位素组成测试结果见表 1中,同时表中还列出了前人对老厂矿区围岩灰岩的测试结果(龙汉生等, 2009)。从表中可以看出,本次研究的7件网脉状矿体(化)方解石δ13CPDB的范围为-2.18‰~3.87‰,δ18OPDB的范围为-22.10‰~-16.21‰,计算得到δ18OSMOW的范围为8.13‰~14.20‰;而4件块状矿体方解石δ13CPDB的范围为-6.17‰~2.71‰,δ18OPDB的范围为-19.57‰~-17.23‰,计算得到δ18OSMOW的范围为11.01‰~13.15‰。

表 1 老厂矿床Ag-Pb-Zn矿体热液方解石与围岩灰岩C-O同位素组成 Table 1 C-O isotopic compositions of hydrothermal calcites and wall-rocks from Ag-Pb-Zn orebodies in Laochang deposit
3.2 Zn同位素组成

本次研究的10件闪锌矿Zn同位素组成测试结果见表 2中,其中4件Ⅰ号矿体群的闪锌矿δ66Zn和δ68Zn范围分别为0.18‰~0.21‰和0.36‰~0.42‰;3件Ⅱ号矿体群闪锌矿的δ66Zn和δ68Zn范围分别为0.19‰~0.20‰和0.38‰~0.40‰;3件Ⅳ号矿体群闪锌矿的δ66Zn和δ68Zn范围分别为0.17‰~0.25‰和0.330‰~0.49‰。三个矿体群的Zn同位素组成非常相近,且整体来看十分狭窄,10件闪锌矿的δ66Zn和δ68Zn范围为0.17‰~0.25‰和0.33‰~0.49‰,说明老厂矿床Ag-Pb-Zn矿体闪锌矿的Zn同位素组成非常均一。

表 2 老厂矿床Ag-Pb-Zn矿体闪锌矿样品Zn同位素组成 Table 2 Zn isotopic compositions of sphalerites from Ag-Pb-Zn orebodies in Laochang deposit
4 讨论 4.1 成矿流体中C的来源

老厂矿床的方解石和围岩灰岩的δ13CPBDδ18OSMOW值如表 1所示,根据方解石-CO2的C同位素平衡分馏方程(Ohmoto and Rye, 1979)、方解石-H2O之间的O同位素平衡分馏方程(O'Neil et al., 1969)以及方解石沉淀的温度区间(网脉状矿体和块状矿体的流体包裹体均一温度分别为186~371℃和110~158℃;张鹏飞等, 2017),可以计算出成矿流体中CO2的C同位素组成(δ13CCO2)和成矿流体的O同位素组成(δ18OH2O)。计算结果显示网脉状矿体成矿流体的δ13CCO2为-2.39‰~6.43‰,δ18OH2O为4.36‰~16.92‰;块状矿体成矿流体的δ13CCO2为-6.16‰~1.53‰,δ18OH2O为1.62‰~7.62‰;在110~371℃时与灰岩达到同位素平衡的流体的δ13CCO2为-1.44‰~6.56‰。如图 5所示,老厂矿床Ⅰ号矿体群不同类型矿体的C同位素组成与岩浆CO2δ13C(-2~-8‰; Deines and Gold, 1973)和围岩灰岩的δ13C(-1.6‰~4.0‰)相比较,显示出块状矿体成矿流体的δ13CCO2与岩浆CO2δ13C一致,表明块状矿体成矿流体中CO2主要来自岩浆,而网脉状矿体成矿流体的δ13CCO2与灰岩的δ13CCO2相近,指示网脉状矿体成矿流体中CO2主要来自灰岩,有少量来自岩浆。从块状矿体到网脉状矿体,δ13CCO2的变化可能反映了流体与围岩灰岩的水岩交换逐渐增强,导致远离矿化中心的网脉状矿体中有更多来自围岩的碳。这一过程已经被龙汉生等(2009)建立的水-岩反应理论模拟所印证。

图 5 老厂矿床Ⅰ号矿体群中根据方解石计算的流体δ13C值 Fig. 5 The δ13C value of fluid calculated from calcite in No.Ⅰ ore bodies of Laochang deposit

同时,前人对老厂矿床Ag-Pb-Zn矿体的H-O同位素研究显示同火山期石英和硫化物的δD为-92‰~54.8‰,δ18OH2O为2.7‰~9.21‰(徐楚明和欧阳成甫, 1991; 叶庆同等, 1992; 李虎杰和田煦, 1995),与岩浆水(δD=-80‰~-40‰, δ18OH2O=5.5‰~9.5‰; Ohmoto, 1986)范围接近,认为成矿流体主要为岩浆水。另外,龙汉生等(2009)根据老厂成矿期方解石和灰岩进行水-岩反应理论模拟,结果显示老厂矿床Ag-Pb-Zn矿体成矿流体的可溶性碳主要为H2CO3,意味着Ag-Pb-Zn矿体的成矿流体中δ13CCO2可以近似于成矿流体总的δ13C。综合上述结果,我们认为老厂矿床Ag-Pb-Zn矿体成矿流体中的碳为岩浆和地层的混合来源。

4.2 闪锌矿的Zn同位素组成及其地质意义

老厂矿床Ag-Pb-Zn矿体中闪锌矿的δ66Zn为0.17‰~0.25‰,与已报导的各类矿床的Zn同位素组成相比较,整体落入VMS型矿床的范围内,与SEDEX型矿床的峰值重叠,而略高于矽卡岩型矿床范围(图 6)。同时,与现代海底烟囱硫化物以及John et al. (2008)报导的现代海底热液相比(图 7),老厂矿床闪锌矿也具有一致的Zn同位素组成,符合喷流沉积成矿作用的特点。但是,与VMS型矿床不同的是,老厂矿床的Zn同位素组成非常均一,而VMS型矿床的整体变化范围较宽。从单个矿床来看,Mason et al. (2005)报导的乌拉尔地区Alexandrinka VMS型矿床的δ66Zn为-0.431‰~0.231‰,表现出相当宽泛的Zn同位素组成,Deng et al. (2019)报导红海VMS型矿床的δ66Zn为0.05‰~0.17‰,与老厂相似,都比较均一,而内蒙古小坝梁VMS型矿床的δ66Zn值则相对较高,为0.10‰~0.70‰,Yang et al. (2022)认为这种较宽的Zn同位素组成可能与生物活动相关。现阶段的研究指示在热液矿床中能引起闪锌矿Zn同位素组成的因素有多种,归纳起来分别是:(1)闪锌矿沉淀过程中的瑞利分馏(Wilkinson et al., 2005; Kelley et al., 2009; Gagnevin et al., 2012; Zhou et al., 2014a; Gao et al., 2018; Xu et al., 2020);(2)温度变化(Mason et al., 2005; John et al., 2008);(3)生物活动(Li et al., 2019);(4)不同来源Zn的混合(Mason et al., 2005; Wu et al., 2021; Gao et al., 2021)。

图 6 老厂与世界各地不同类型矿床闪锌矿的Zn同位素组成直方图 Irish型Pb-Zn矿床:爱尔兰Navan矿床(Gagnevin et al., 2012)、爱尔兰Irish矿集区(Wilkinson et al., 2005);VMS型矿床:内蒙古小坝梁矿床(Yang et al., 2022)、新疆红海矿床(Deng et al., 2019)、乌拉尔地区Alexandrinka矿床(Mason et al., 2005);现代海底烟囱硫化物:冲绳海槽(Zhang et al., 2019b)、TAG热液区(John et al., 2008);矽卡岩型矿床:云南金厂河矿床(待发表)、安徽铜陵矿集区(王跃和朱祥坤, 2010);SEDEX型矿床:内蒙古东升庙矿床(Gao et al., 2018)、阿拉斯加Red Dog矿床(Kelley et al., 2009);川滇黔地区碳酸盐岩容矿型Pb-Zn矿床:毛坪矿床(Wu et al., 2021)、双水井矿床(Zhou et al., 2014b)、茂租矿床(Zhang et al., 2019a)、天宝山矿床(何承真等, 2016)、天桥矿床(Zhou et al., 2014a)、板板桥矿床(Zhou et al., 2014a) Fig. 6 Histograms of Zn isotopic compositions of sphalerites from Laochang and different types of zinc deposits around the world Irish-type Pb-Zn deposits: Navan deposit in Ireland (Gagnevin et al., 2012), Irish district (Wilkinson et al., 2005); VMS deposits: Xiaobaliang deposit in Inner Mongolia (Yang et al., 2022), Honghai deposit in Xinjiang (Deng et al., 2019), Alexandrinka deposit in Ural, Russia (Mason et al., 2005); Modern submarine chimney sulfides: Okinawa Trough (Zhang et al., 2019b), TAG district (John et al., 2008); Skarn deposits: Jinchanghe deposit in Yunnan (to be published), Tongling district in Anhui (Wang et al., 2010); SEDEX deposits: Dongshengmiao deposit in Inner Mongolia (Gao et al., 2018), Red Dog deposit in Alaska (Kelley et al., 2009); Chuan-Dian-Qian area Carbonate-hosted Pb-Zn deposits: Maoping deposit (Wu et al., 2021), Shuanshuijing deposit (Zhou et al., 2014b), Maozu deposit (Zhang et al., 2019a), Tianbaoshan deposit (He et al., 2016), Tianqiao deposit (Zhou et al., 2014a), Banbanqiao deposit (Zhou et al., 2014a)

图 7 老厂矿床闪锌矿以及各地质储库的Zn同位素组成直方图 洋岛玄武岩(Herzog et al., 2009; Chen et al., 2013; Wang et al., 2017)、花岗岩(Telus et al., 2012; Doucet et al., 2018; Xu et al., 2019)、碳酸盐岩(Zhou et al., 2014a, b; Zhang et al., 2019a; 何承真等, 2016)、海底热液流体(John et al., 2008)、海水(Samanta et al., 2017; Zhao et al., 2014; Little et al., 2014) Fig. 7 Histograms of Zn isotopic compositions of sphalerites from Laochang deposit and various geological reservoirs OIB (Herzog et al., 2009; Chen et al., 2013; Wang et al., 2017), granite (Telus et al., 2012; Doucet et al., 2018; Xu et al., 2019), Carbonate (Zhou et al., 2014a, b; Zhang et al., 2019a; He et al., 2016), Submarine hydrothermal fluid (John et al., 2008), sea water (Samanta et al., 2017; Zhao et al., 2014; Little et al., 2014)

目前在大多数矿床中,闪锌矿沉淀过程中的瑞利分馏被认为是造成闪锌矿Zn同位素组成变化的主要原因。这一过程使得矿床中闪锌矿的Zn同位素组成从早期到晚期逐渐富集Zn的重同位素。造成这一变化的原因被认为是闪锌矿从流体中沉淀时会优先富集Zn的轻同位素,随着闪锌矿不断沉淀,流体逐渐富集Zn的重同位素,使得晚期沉淀的闪锌矿富集Zn的重同位素,这一解释也被实验所证实(Archer and Vance, 2004; Veeramani et al., 2015)。目前由瑞利分馏造成的闪锌矿Zn同位素组成变化在区域尺度、矿床尺度以及手标本尺度均能被观测到,在单个矿床内,Zn同位素分馏值达到0.6‰~0.8‰(Kelley et al., 2009; Gagnevin et al., 2012)。本次测试所获得的老厂矿床闪锌矿的Zn同位素组成无论在单个矿体内,还是在不同矿体之间都表现的十分均一(图 8),总体集中在0.17‰~0.25‰范围内,说明老厂矿床Ag-Pb-Zn矿体的闪锌矿在沉淀过程中受瑞利分馏的影响极其有限,这种因为缺乏瑞利分馏的影响而产生均一的闪锌矿Zn同位素组成的现象在滇东北茂租矿床和爱尔兰Navan矿床也有报道(Zhang et al., 2019a; Gagnevin et al., 2012)。

图 8 老厂矿床Ⅰ、Ⅱ、Ⅳ号矿体群闪锌矿Zn同位素组成 Fig. 8 Zn isotopic compositions of sphalerites from No.Ⅰ, Ⅱ, Ⅳ ore bodies of Laochang deposit

Mason et al. (2005)通过对俄罗斯乌拉尔地区Alexandrinka VMS型矿床的古代硫化物烟囱进行Zn同位素分析,发现从烟囱的核部到边缘δ66Zn呈递增趋势,Mason et al. (2005)提出这可能是由温度控制的闪锌矿和流体之间的分馏引起的。类似的,John et al. (2008)在研究东太平洋洋脊热液喷口流体的Zn同位素组成时,发现温度与流体的Zn同位素组成呈负相关,其中EPR 9°N处的K-vent喷口(203℃)的δ66Zn为0.98‰~1.04‰,明显高于Bio 9″喷口(383℃)的δ66Zn(0.18‰~0.23‰),说明温度可以使热液流体Zn同位素组成产生较大的变化。老厂矿床流体包裹体测温显示老厂矿床成矿流体的温度跨度很大,如在Ⅰ号矿体群中,流体包裹体的均一温度为110~371℃(张鹏飞等, 2017),然而,在4件采自Ⅰ号矿体群闪锌矿样品中,δ66Zn介于0.18‰~0.21‰之间,几乎没有变化(变化处于误差范围之内),因此可以认为温度对老厂矿床Ag-Pb-Zn矿体的Zn同位素分馏几乎没有影响。Li et al. (2019)通过对金顶MVT型矿床进行Zn-Cd-S同位素分析发现生物活动造成闪锌矿的Zn同位素组成呈现极低的负值(δ66Zn低至-0.69‰),而老厂Ag-Pb-Zn矿体的δ66Zn没有负值,且闪锌矿中未见生物成因结构,表明生物活动对老厂闪锌矿的Zn同位素组成也没有影响。综上所述,老厂矿床Ag-Pb-Zn矿体均一的Zn同位素组成意味着在闪锌矿形成过程中,Zn同位素组成几乎未受到分馏的影响,直接反映了成矿金属源区的Zn同位素组成。此外,均一的Zn同位素组成同时也寓示老厂矿床Ag-Pb-Zn矿体可能具有均一的Zn来源。

4.3 对Ag-Pb-Zn矿体中Zn的来源的启示

老厂方解石C-O同位素组成揭示了岩浆碳和围岩碳对矿床不同类型矿体形成的贡献。同时,老厂矿床Ag-Pb-Zn矿体的闪锌矿Zn同位素组成与中酸性岩浆热液矿床(图 6中矽卡岩型矿床和图 7中花岗岩)存在差异,而与海底热液流体的峰值基本吻合(图 6),且落在现代海底烟囱硫化物的范围之内(图 6)。同时,考虑到老厂矿床Ag-Pb-Zn矿体的Zn同位素组成基本不受瑞利分馏、流体温度和微生物作用的影响,表明老厂矿床Ag-Pb-Zn矿体中的Zn主要来自于海底火山喷流沉积(VMS)成矿作用。根据VMS型矿床的典型成矿模型,VMS型矿床的金属来源于对下伏火山岩地层的淋滤,表明成矿的Zn主要来自于依柳组OIB型火山岩。结合老厂Ag-Pb-Zn矿体顺层产出特征,赋矿围岩主要为下石炭统玄武岩、玄武质凝灰岩和粗面安山质凝灰岩,且具有明显的熔岩-凝灰岩-沉积岩火山沉积旋回,进一步证实老厂Ag-Pb-Zn矿体为海底火山喷流沉积成因。虽然老厂矿床后期又经历了与中酸性侵入岩有关的斑岩-矽卡岩矿化,但是,根据前人研究结果,OIB火山岩的δ66Zn为0.21‰~0.41‰,平均0.31‰(Herzog et al., 2009; Chen et al., 2013; Wang et al., 2017),而花岗岩的δ66Zn比OIB型火山岩稍高,为0.23‰~0.48‰,平均0.38‰(Telus et al., 2012; Doucet et al., 2018; Xu et al., 2019),两者混合不可能形成老厂矿床Ag-Pb-Zn矿体中闪锌矿的Zn同位素组成(0.17‰~0.25‰)。Zhou et al.(2014a, b)获得扬子板块西南缘石炭统灰岩和白云岩的δ66Zn为-0.12‰~0.17‰,表明老厂矿床Ag-Pb-Zn矿体的Zn同位素组成很可能是下石炭统火山岩与海相灰岩、白云岩共同作用的结果,指示成矿金属主要来自于下石炭统火山岩,海相碳酸盐围岩也贡献了少量金属。

5 结论

(1) 老厂矿床Ag-Pb-Zn矿体中网脉状矿体(化)方解石δ13CPDB的范围为-2.18‰~3.87‰,δ18OPDB的范围为-22.10‰~-16.21‰,块状矿体方解石δ13CPDB的范围为-6.17‰~2.71‰,δ18OPDB的范围为-19.57‰~-17.23‰,通过与岩浆CO2和围岩灰岩的δ13C对比,表明老厂矿床Ag-Pb-Zn矿体成矿流体中碳为岩浆和地层的混合来源。其中,块状矿体相关流体中的碳主要来自于岩浆,而网脉状矿体中的碳为岩浆和围岩通过水岩反应共同贡献。

(2) 老厂矿床Ag-Pb-Zn矿体的闪锌矿的δ66Zn为0.17‰~0.25‰,与海底火山喷流沉积作用形成矿床的δ66Zn一致,且不同标高均一的Zn同位素组成寓示老厂矿床Ag-Pb-Zn矿体闪锌矿形成过程中几乎未受到温度、瑞利分馏和微生物作用的影响,可以直接反映金属源区的Zn同位素组成,揭示老厂Ag-Pb-Zn矿体为VMS成因,成矿金属主要来自于下石炭统海底火山作用。

致谢      野外工作得到了云南澜沧铅矿有限公司老厂矿山相关人员的大力支持;室内工作得到了中国地质大学(北京)邓军教授、王庆飞教授的悉心指导;两位审稿专家提出的建设性修改意见对完善本文有重要帮助;在此一并表示衷心的感谢!

参考文献
Albarède F. 2004. The stable isotope geochemistry of copper and zinc. Reviews in Mineralogy and Geochemistry, 55(1): 409-427 DOI:10.2138/gsrmg.55.1.409
Archer C and Vance D. 2004. Mass discrimination correction in multiple-collector plasma source mass spectrometry: An example using Cu and Zn isotopes. Journal of Analytical Atomic Spectrometry, 19(5): 656-665 DOI:10.1039/b315853e
Chen BY, Wang ZR, Peng SL, Zhang YX and Chen W. 2002. A discussion about the genesis of Laochang polymetallic deposit, Yunnan. Yunnan Geology, 21(2): 134-144 (in Chinese with English abstract)
Chen H, Savage PS, Teng FZ, Helz RT and Moynier F. 2013. Zinc isotope fractionation during magmatic differentiation and the isotopic composition of the bulk Earth. Earth and Planetary Science Letters, 369-370: 34-42 DOI:10.1016/j.epsl.2013.02.037
Chen M, Huang ZL, Luo TY, Yan ZF and Long HS. 2010. SHRIMP dating and its geological significance of zircon in volcanic from Laochang large silver-lead-zinc deposit in western Yunnan Province, China. Acta Mineralogica Sinica, 30(4): 456-462 (in Chinese with English abstract)
Chen M, Huang ZL, Luo TY, Yan ZF and Long HS. 2011. Petrogenesis and tectonic significance of the Laochang basalt in western Yunnan Province, China. Acta Mineralogica Sinica, 31(1): 55-61 (in Chinese with English abstract) DOI:10.1016/j.chnaes.2010.11.009
Coplen TB, Kendall C and Hopple J. 1983. Comparison of stable isotope reference samples. Nature, 302(5905): 236-238 DOI:10.1038/302236a0
Deines P and Gold DP. 1973. The isotopic composition of carbonatite and kimberlite carbonates and their bearing on the isotopic composition of deep-seated carbon. Geochimica et Cosmochimica Acta, 37(7): 1709-1733 DOI:10.1016/0016-7037(73)90158-0
Deng J, Wang CM and Li GJ. 2012. Style and process of the superimposed mineralization in the Sanjiang Tethys. Acta Petrologica Sinica, 28(5): 1349-1361 (in Chinese with English abstract)
Deng J, Wang QF, Li GJ and Santosh M. 2014a. Cenozoic tectono-magmatic and metallogenic processes in the Sanjiang region, southwestern China. Earth-Science Reviews, 138: 268-299 DOI:10.1016/j.earscirev.2014.05.015
Deng J, Wang QF, Li GJ, Li CS and Wang CM. 2014b. Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region, SW China. Gondwana Research, 26(2): 419-437 DOI:10.1016/j.gr.2013.08.002
Deng J, Wang QF, Gao L, He WY, Yang ZY, Zhang SH, Chang LJ, Li GJ, Sun X and Zhou DQ. 2021. Differential crustal rotation and its control on giant ore clusters along the eastern margin of Tibet. Geology, 49(4): 428-432 DOI:10.1130/G47855.1
Deng XD, Li JW, Zhao XF, Wang HQ and Qi L. 2016. Re-Os and U-Pb geochronology of the Laochang Pb-Zn-Ag and concealed porphyry Mo mineralization along the Changning-Menglian suture, SW China: Implications for ore genesis and porphyry Cu-Mo exploration. Mineralium Deposita, 51(2): 237-248 DOI:10.1007/s00126-015-0606-z
Deng XH, Mathur R, Li Y, Mao QG, Wu YS, Yang LY, Chen X and Xu J. 2019. Copper and zinc isotope variation of the VMS mineralization in the Kalatag district, eastern Tianshan, NW China. Journal of Geochemical Exploration, 196: 8-19 DOI:10.1016/j.gexplo.2018.09.010
Dong GC, Mo XX, Zhao ZD, Zhu DC, Goodman RC, Kong HL and Wang S. 2013. Zircon U-Pb dating and the petrological and geochemical constraints on Lincang granite in western Yunnan, China: Implications for the closure of the Paleo-Tethys Ocean. Journal of Asian Earth Sciences, 62: 282-294 DOI:10.1016/j.jseaes.2012.10.003
Doucet LS, Laurent O, Mattielli N and Debouge W. 2018. Zn isotope heterogeneity in the continental lithosphere: New evidence from Archean granitoids of the northern Kaapvaal craton, South Africa. Chemical Geology, 476: 260-271 DOI:10.1016/j.chemgeo.2017.11.022
Duan XD, Li J, Zeng WT and Feng WJ. 2006. The discovery of Ganlongtang tectonic melange in the middle section of Changning-Menglian zone. Yunnan Geology, 25(1): 53-62 (in Chinese with English abstract)
Duan XD, Liu GC and Feng QL. 2012. Ladinian radiolarian fauna from the Changning-Menglian belt and its tectonic significance. Earth Science (Journal of China University of Geosciences), 37(Suppl.2): 67-72 (in Chinese with English abstract)
Feng QL and Ye M. 1996. Radiolarian stratigraphy of Devonian through Middle Triassic in southwestern Yunnan. In: Fang NQ and Feng QL (eds). Devonian to Triassic Tethys in Western Yunnan, China: Sedimentologic, Stratigraphic and Micropalaeontologic Studies on Changning-Menglian Orogenic Belt. Wuhan: China University of Geosciences Press, 15-22
Feng QL. 2002. Stratigraphy of volcanic rocks in the Changning-Menglian Belt in southwestern Yunnan, China. Journal of Asian Earth Sciences, 20(6): 657-664 DOI:10.1016/S1367-9120(02)00006-8
Gagnevin D, Boyce AJ, Barrie CD, Menuge JF and Blakeman RJ. 2012. Zn, Fe and S isotope fractionation in a large hydrothermal system. Geochimica et Cosmochimica Acta, 88: 183-198 DOI:10.1016/j.gca.2012.04.031
Gao Y, Liu J, Li TG, Zhang DD, Yang YC, Han SJ, Ding QF and Zhang S. 2021. Multiple isotope (He-Ar-Zn-Sr-Nd-Pb) constraints on the genesis of the Jiawula Pb-Zn-Ag deposit, NE China. Ore Geology Reviews, 134: 104142 DOI:10.1016/j.oregeorev.2021.104142
Gao ZF, Zhu XK, Sun J, Luo ZH, Bao C, Tang C and Ma JX. 2018. Spatial evolution of Zn-Fe-Pb isotopes of sphalerite within a single ore body: A case study from the Dongshengmiao ore deposit, Inner Mongolia, China. Mineralium Deposita, 53(1): 55-65 DOI:10.1007/s00126-017-0724-x
He CZ, Xiao CY, Wen HJ, Zhou T, Zhu CW and Fan HF. 2016. Zb-S isotopic compositions of the Tianbaoshan carbonate-hosted Pb-Zn deposit in Sichuan, China: Implications for source of ore components. Acta Petrologica Sinica, 32(11): 3394-3406 (in Chinese with English abstract)
He FX and Liu BP. 1993. Recognition of ancient oceanic island in Paleo-Tethys, western Yunnan. Journal of China University of Geosciences, 4: 23-29
Hennig D, Lehmann B, Frei D, Belyatsky B, Zhao XF, Cabral AR, Zeng PS, Zhou MF and Schmidt K. 2009. Early Permian seafloor to continental arc magmatism in the eastern Paleo-Tethys: U-Pb age and Nd-Sr isotope data from the southern Lancangjiang zone, Yunnan, China. Lithos, 113(3-4): 408-422 DOI:10.1016/j.lithos.2009.04.031
Herzog GF, Moynier F, Albarède F and Berezhnoy AA. 2009. Isotopic and elemental abundances of copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt. Geochimica et Cosmochimica Acta, 73(19): 5884-5904 DOI:10.1016/j.gca.2009.05.067
Hou ZQ, Zeng PS, Gao YF, Du AD and Fu DM. 2006. Himalayan Cu-Mo-Au mineralization in the eastern Indo-Asian collision zone: Constraints from Re-Os dating of molybdenite. Mineralium Deposita, 41(1): 33-45 DOI:10.1007/s00126-005-0038-2
Huang YH, Deng J, Li GJ, Meng FQ, Mao FX and Zhang PF. 2017. Metallization process and metallogenic sources of concealed porphyry-skarn Mo deposit, Laochang, western Yunnan. Acta Petrologica Sinica, 33(7): 2099-2114 (in Chinese with English abstract)
Huang YH. 2018. Eocene metallogeny in southwestern Changning-Menglian tectonic belt: Insights from Laochang and Nanla deposit. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-187 (in Chinese with English abstract)
Jian P, Liu DY, Kröner A, Zhang Q, Wang YZ, Sun XM and Zhang W. 2009. Devonian to Permian plate tectonic cycle of the Paleo-Tethys Orogen in Southwest China (Ⅱ): Insights from zircon ages of ophiolites, arc/back-arc assemblages and within-plate igneous rocks and generation of the Emeishan CFB province. Lithos, 113(3-4): 767-784 DOI:10.1016/j.lithos.2009.04.006
John SG, Rouxel OJ, Craddock PR, Engwall AM and Boyle EA. 2008. Zinc stable isotopes in seafloor hydrothermal vent fluids and chimneys. Earth and Planetary Science Letters, 269(1-2): 17-28 DOI:10.1016/j.epsl.2007.12.011
Kelley KD, Wilkinson JJ, Chapman JB, Crowther HL and Weiss DJ. 2009. Zinc isotopes in sphalerite from base metal deposits in the Red Dog district, Northern Alaska. Economic Geology, 104(6): 767-773 DOI:10.2113/gsecongeo.104.6.767
Lai SC, Qin JF, Li XJ and Zang WJ. 2010. Geochemistry and Sr-Nd-Pb istopic features of the Ganlongtang-Nongba ophiolite from the Changning-Menglian suture zone. Acta Petrologica Sinica, 26(11): 3195-3205 (in Chinese with English abstract)
Li F, Lu WJ, Yang YZ, Chen H, Shi ZL, Liu SW, Xin R and Luo SL. 2009. Mineralizing texture and metallogenic model of the Laochang polymetailic deposit in Lancang, Yunnan. Geology and Exploration, 45(5): 516-523 (in Chinese with English abstract)
Li F, Lu WJ, Yang YZ, Tang XP, Shi ZL, Shi JX, Chen H, Luo SL, Jian RT, Li GD, Li JB, Meng FQ, Yang F, Li HK and Liu SX. 2010a. The Research of Crisis Miners Ore-Forming Regularity and Prospecting: Taking the Laochang Deposit as An Example. Kunming: Yunnan Science and Technology Press, 1-198 (in Chinese)
Li F, Chen H, Lu WJ and Luo SL. 2010b. Rock-forming ages of the Laochang granite-porphyry, Lancang, Yunnan and their geological significance. Geotectonica et Metallogenia, 34(1): 84-91 (in Chinese with English abstract)
Li GJ, Deng J, Wang QF and Liang K. 2015. Metallogenic model for the Laochang Pb-Zn-Ag-Cu volcanogenic massive sulfide deposit related to a Paleo-Tethys OIB-like volcanic center, SW China. Ore Geology Reviews, 70: 578-594 DOI:10.1016/j.oregeorev.2015.01.012
Li GZ, Li CS, Ripley EM, Kamo S and Su SG. 2012. Geochronology, petrology and geochemistry of the Nanlinshan and Banpo mafic-ultramafic intrusions: Implications for subduction initiation in the eastern Paleo-Tethys. Contributions to Mineralogy and Petrology, 164(5): 773-788 DOI:10.1007/s00410-012-0770-4
Li HJ and Tian X. 1995. Fluid inclusion and physical-chemical conditions research of Lancang Pb-Zn-Ag-Cu deposit. Mineral Resources and Geology, 9(2): 107-111 (in Chinese)
Li ML, Liu SA, Xue CJ and Li DD. 2019. Zinc, cadmium and sulfur isotope fractionation in a supergiant MVT deposit with bacteria. Geochimica et Cosmochimica Acta, 265: 1-18 DOI:10.1016/j.gca.2019.08.018
Little SH, Vance D, Walker-Brown C and Landing WM. 2014. The oceanic mass balance of copper and zinc isotopes, investigated by analysis of their inputs, and outputs to ferromanganese oxide sediments. Geochimica et Cosmochimica Acta, 125: 673-693 DOI:10.1016/j.gca.2013.07.046
Liu BP, Feng QL and Fang NQ. 1991. Tectonic evolution of the Palaeo-Tethys in Changning-Menglian belt and adjacent regions, western Yunnan. Journal of China University of Geosciences, 2(1): 18-28
Liu GC, Sun ZB, Zeng WT, Feng QL, Huang L and Zhang H. 2017. The age of Wanhe ophiolitic mélange from Mengku area, Shuangjiang County, western Yunnan Province, and its geological significance. Acta Petrologica et Mineralogica, 36(2): 163-174 (in Chinese with English abstract)
Liu SA, Li DD, Li SG, Teng FZ, Ke S, He YS and Lu YH. 2014. High-precision copper and iron isotope analysis of igneous rock standards by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 29(1): 122-133 DOI:10.1039/C3JA50232E
Liu YY, Qi L, Gao JF, Ye L, Huang ZL and Zhou JX. 2015. Re-Os dating of galena and sphalerite from lead-zinc sulfide deposits in Yunnan Province, SW China. Journal of Earth Science, 26(3): 343-351 DOI:10.1007/s12583-015-0539-6
Long HS, Jiang SP, Shi ZL, Huang ZL and Luo TY. 2007. Geological and geochemical characteristics of the Laochang large-scale Ag-Pb-Zn polymetallic deposit in Lancang, Yunnan. Acta Mineralogica Sinica, 27(3-4): 360-365 (in Chinese with English abstract)
Long HS, Luo TY, Huang ZL, Zhou MZ, Yang Y and Qian ZK. 2009. Carbon and oxygen isotopic geochemistry of Laochang large-sized Ag polymetallic deposit in Lancang, Yunnan Province and its significance. Mineral Deposits, 28(5): 687-695 (in Chinese with English abstract)
Lü YW, Liu SA, Zhu JM and Li SG. 2016. Copper and zinc isotope fractionation during deposition and weathering of highly metalliferous black shales in central China. Chemical Geology, 445: 24-35 DOI:10.1016/j.chemgeo.2016.01.016
Maréchal CN, Télouk P and Albarède F. 1999. Precise analysis of copper and zinc isotopic compositions by plasma-source mass spectrometry. Chemical Geology, 156(1-4): 251-273 DOI:10.1016/S0009-2541(98)00191-0
Mason TFD, Weiss DJ, Chapman JB, Wilkinson JJ, Tessalina SG, Spiro B, Horstwood MSA, Spratt J and Coles BJ. 2005. Zn and Cu isotopic variability in the Alexandrinka volcanic-hosted massive sulphide (VHMS) ore deposit, Urals, Russia. Chemical Geology, 221(3-4): 170-187 DOI:10.1016/j.chemgeo.2005.04.011
Meng YM, Hu RZ, Huang XW, Gao JF, Qi L and Lyu C. 2018. The relationship between stratabound Pb-Zn-Ag and porphyry-skarn Mo mineralization in the Laochang deposit, southwestern China: Constraints from pyrite Re-Os isotope, sulfur isotope, and trace element data. Journal of Geochemical Exploration, 194: 218-238 DOI:10.1016/j.gexplo.2018.08.008
Metcalfe I. 2013. Gondwana dispersion and Asian accretion: Tectonic and palaeogeographic evolution of eastern Tethys. Journal of Asian Earth Sciences, 66: 1-33 DOI:10.1016/j.jseaes.2012.12.020
Mo XX, Shen SY, Zhu QW, Xu TR, Wei QR, Tan J, Zhang SQ and Cheng HL. 1998. Volcanic-Ophiolite and Mineralization in the Middle-South Section of the Sanjiang District. Beijing: Geological Publishing House, 1-128 (in Chinese)
Ohmoto H and Rye RD. 1979. Isotopes of sulfur and carbon. In: Barnes HL (ed. ). Geochemistry of Hydrothermal Ore Deposits. New York: John Wiley and Sons, 509-567
Ohmoto H. 1986. Stable isotope geochemistry of ore deposits. Reviews in Mineralogy and Geochemistry, 16(1): 491-559
O'Neil JR, Clayton RN and Mayeda TK. 1969. Oxygen isotope fractionation in divalent metal carbonates. The Journal of Chemical Physics, 51(12): 5547-5558 DOI:10.1063/1.1671982
Ouyang CF and Xu CM. 1991. Geochemical features and genesis of the Laochang Diwa-type silver-lead ore deposit in Langchang, Yunnan, China. Geotectonica et Metallogenia, 15(4): 317-326 (in Chinese with English abstract)
Pašava J, Tornos F and Chrastny V. 2014. Zinc and sulfur isotope variation in sphalerite from carbonate-hosted zinc deposits, Cantabria, Spain. Mineralium Deposita, 49(7): 797-807 DOI:10.1007/s00126-014-0535-2
Samanta M, Ellwood MJ, Sinoir M and Hassler CS. 2017. Dissolved zinc isotope cycling in the Tasman Sea, SW Pacific Ocean. Marine Chemistry, 192: 1-12 DOI:10.1016/j.marchem.2017.03.004
Shen SY, Feng QL, Liu BP and Mo XX. 2002. Study on ocean ridge, ocean island volcanic rocks of Changning-Menglian belt. Geological Science and Technology Information, 21(3): 13-17 (in Chinese with English abstract)
Sone M and Metcalfe I. 2008. Parallel Tethyan sutures in mainland Southeast Asia: New insights for Palaeo-Tethys closure and implications for the Indosinian orogeny. Comptes Rendus Geoscience, 340(2-3): 166-179 DOI:10.1016/j.crte.2007.09.008
Sun ZB, Zeng WT, Zhou K, Wu JL, Li GJ, Huang L and Zhao JT. 2017. Identification of Ordovician oceanic island basalt in the Changning-Menglian suture zone and its tectonic implications: Evidence from geochemical and geochronological data. Geological Bulletin of China, 36(10): 1760-1771 (in Chinese with English abstract)
Telus M, Dauphas N, Moynier F, Tissot FLH, Teng FZ, Nabelek PI, Craddock PR and Groat LA. 2012. Iron, zinc, magnesium and uranium isotopic fractionation during continental crust differentiation: The tale from migmatites, granitoids, and pegmatites. Geochimica et Cosmochimica Acta, 97: 247-265 DOI:10.1016/j.gca.2012.08.024
Ueno K, Wang YJ and Wang XD. 2003. Fusulinoidean faunal succession of a Paleo-Tethyan oceanic seamount in the Changning-Menglian Belt, West Yunnan, Southwest China: An overview. Island Arc, 12(2): 145-161 DOI:10.1046/j.1440-1738.2003.00387.x
Veeramani H, Eagling J, Jamieson-Hanes JH, Kong LY, Ptacek CJ and Blowes DW. 2015. Zinc isotope fractionation as an indicator of geochemical attenuation processes. Environmental Science and Technology Letters, 2(11): 314-319 DOI:10.1021/acs.estlett.5b00273
Wang BD, Wang LQ, Pan GT, Yin FG, Wang DB and Tang Y. 2013. U-Pb zircon dating of Early Paleozoic gabbro from the Nantinghe ophiolite in the Changning-Menglian suture zone and its geological implication. Chinese Science Bulletin, 58(8): 920-930 DOI:10.1007/s11434-012-5481-8
Wang BD, Wang LQ, Wang DB, Yin FG, He J, Peng ZM and Yan GC. 2018. Tectonic evolution of the Changning-Menglian Proto-Paleo Tethys Ocean in the Sanjiang area, southwestern China. Earth Science, 43(8): 2527-2550 (in Chinese with English abstract)
Wang D, Ryan M, Wu HJ, Ren H and Ni JH. 2020. The application of Fe-Cu-Zn isotopes in ore deposit research and prospecting exploration. Acta Petrologica Sinica, 36(6): 1684-1704 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.03
Wang DB, Luo L, Tang Y, Yin FG, Wang BD and Wang LQ. 2016. Zircon U-Pb dating and petrogenesis of Early Paleozoic adakites from the Niujingshan ophiolitic mélange in the Changning-Menglian suture zone and its geological implications. Acta Petrologica Sinica, 32(8): 2317-2329 (in Chinese with English abstract)
Wang HN. 2020. Petrology and metamorphic evolution of the eclogites, blueschists, and metasedimentary rocks in the Changning-menglian Orogenic belt and their implications on the subduction and orogeny of the Paleo-tethys. Ph. D. Dissertation. Beijing: Chinese Academy of Geological Sciences, 1-266 (in Chinese with English abstract)
Wang Y and Zhu XK. 2010. Application of Zn isotopes to study of mineral deposits: A review. Mineral Deposits, 29(5): 843-852 (in Chinese with English abstract)
Wang ZZ, Liu SA, Liu JG, Huang J, Xiao Y, Chu ZY, Zhao XM and Tang LM. 2017. Zinc isotope fractionation during mantle melting and constraints on the Zn isotope composition of Earth's upper mantle. Geochimica et Cosmochimica Acta, 198: 151-167 DOI:10.1016/j.gca.2016.11.014
Wei C, Ye L, Huang ZL, Gao W, Hu YS, Li ZL and Zhang JW. 2018. Ore genesis and geodynamic setting of Laochang Ag-Pb-Zn-Cu deposit, southern Sanjiang Tethys metallogenic belt, China: Constraints from whole rock geochemistry, trace elements in sphalerite, zircon U-Pb dating and Pb isotopes. Minerals, 8(11): 516 DOI:10.3390/min8110516
Wilkinson JJ, Weiss DJ, Mason TFD and Coles BJ. 2005. Zinc isotope variation in hydrothermal systems: Preliminary evidence from the Irish Midlands ore field. Economic Geology, 100(3): 583-590 DOI:10.2113/gsecongeo.100.3.583
Wu FY, Wan B, Zhao L, Xiao WJ and Zhu RX. 2020. Tethyan geodynamics. Acta Petrologica Sinica, 36(6): 1627-1674 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.06.01
Wu T, Huang ZL, He YF, Yang M, Fan HF, Wei C, Ye L, Hu YS, Xiang ZZ and Lai C. 2021. Metal source and ore-forming process of the Maoping carbonate-hosted Pb-Zn deposit in Yunnan, SW China: Evidence from deposit geology and sphalerite Pb-Zn-Cd isotopes. Ore Geology Reviews, 135: 104214 DOI:10.1016/j.oregeorev.2021.104214
Xu C, Zhong H, Hu RZ, Wen HJ, Zhu WG, Bai ZJ, Fan HF, Li FF and Zhou T. 2020. Sources and ore-forming fluid pathways of carbonate-hosted Pb-Zn deposits in Southwest China: Implications of Pb-Zn-S-Cd isotopic compositions. Mineralium Deposita, 55(3): 491-513 DOI:10.1007/s00126-019-00893-5
Xu CM and Ouyang CF. 1991. A study on the genesis of the Ag-Pb-Zn deposit in Laochang, Lancang, Yunnan. Journal of Guilin College of Geology, 11(3): 245-252 (in Chinese with English abstract)
Xu LJ, Liu SA, Wang ZZ, Liu CY and Li SG. 2019. Zinc isotopic compositions of migmatites and granitoids from the Dabie Orogen, central China: Implications for zinc isotopic fractionation during differentiation of the continental crust. Lithos, 324-325: 454-465 DOI:10.1016/j.lithos.2018.11.028
Xue BG. 1998. Mineralization characteristics of the Laochang Ag-Pb polymetallic deposit, Lanchang. Mineral Resources and Geology, 12(1): 26-32 (in Chinese with English abstract)
Yang KH and Mo XX. 1993. Main features and genetical type of the Laochang volcanogenic massive sulfide deposit, Yunnan Province. Bulletin of the Chinese Academy of Geological Sciences, 14(1): 79-96 (in Chinese with English abstract)
Yang Z, Song WR, Wen HJ, Zhang YX, Fan HF, Wang F, Li QK, Yang T, Zhou ZB, Liao AL and Zhu CW. 2022. Zinc, cadmium and sulphur isotopic compositions reveal biological activity during formation of a volcanic-hosted massive sulphide deposit. Gondwana Research, 101: 103-113 DOI:10.1016/j.gr.2021.07.024
Ye QT, Hu YZ and Yang YQ. 1992. Regional Geochemical Background and Gold-silver-lead-zinc Mineralization in Sanjiang Area. Beijing: Geological Publishing House, 191-217 (in Chinese)
Zhang HJ, Xiao CY, Wen HJ, Zhu XK, Ye L, Huang ZL, Zhou JX and Fan HF. 2019a. Homogeneous Zn isotopic compositions in the Maozu Zn-Pb ore deposit in Yunnan Province, southwestern China. Ore Geology Reviews, 109: 1-10 DOI:10.1016/j.oregeorev.2019.04.004
Zhang PF, Li GJ, Huang YH, Liang K, Yang JB, Liu YC, Mao FX and Zhao F. 2017. Metallogenic process of Laochang Pb-Zn polymetallic VMS deposit in Sanjiang orogenic belt, SW China: Evidenced from fluid inclusion and sulfur isotope. Acta Petrologica Sinica, 33(7): 2129-2142 (in Chinese with English abstract)
Zhang Q, Zhou DJ, Zhao DS, Peng XJ, Luo WL and Liu XP. 1996. Wilson cycle of the paleo-Tethyan orogenic belt in western Yunnan: Record of magmatism and discussion on mantle processes. Acta Petrologica Sinica, 12(1): 17-28 (in Chinese with English abstract)
Zhang X, Zhai SK, Yu ZH, Yang ZF and Xu J. 2019b. Zinc and lead isotope variation in hydrothermal deposits from the Okinawa Trough. Ore Geology Reviews, 111: 102944 DOI:10.1016/j.oregeorev.2019.102944
Zhao Y, Vance D, Abouchami W and de Baar HJW. 2014. Biogeochemical cycling of zinc and its isotopes in the Southern Ocean. Geochimica et Cosmochimica Acta, 125: 653-672 DOI:10.1016/j.gca.2013.07.045
Zhou JX, Huang ZL, Lv ZC, Zhu XK, Gao JG and Mirnejad H. 2014a. Geology, isotope geochemistry and ore genesis of the Shanshulin carbonate-hosted Pb-Zn deposit, Southwest China. Ore Geology Reviews, 63: 209-225 DOI:10.1016/j.oregeorev.2014.05.012
Zhou JX, Huang ZL, Zhou MF, Zhu XK and Muchez P. 2014b. Zinc, sulfur and lead isotopic variations in carbonate-hosted Pb-Zn sulfide deposits, Southwest China. Ore Geology Reviews, 58: 41-54 DOI:10.1016/j.oregeorev.2013.10.009
陈百友, 王增润, 彭省临, 张映旭, 陈伟. 2002. 澜沧老厂银铅锌铜多金属矿床成因探讨. 云南地质, 21(2): 134-144. DOI:10.3969/j.issn.1004-1885.2002.02.003
陈觅, 黄智龙, 罗泰义, 严再飞, 龙汉生. 2010. 滇西澜沧老厂大型银铅锌多金属矿床火山岩锆石SHRIMP定年及其地质意义. 矿物学报, 30(4): 456-462.
陈觅, 黄智龙, 罗泰义, 严再飞, 龙汉生. 2011. 滇西澜沧老厂地区玄武岩岩石成因与构造意义. 矿物学报, 31(1): 55-61.
邓军, 王长明, 李龚健. 2012. 三江特提斯叠加成矿作用样式及过程. 岩石学报, 28(5): 1349-1361.
段向东, 李静, 曾文涛, 冯文杰. 2006. 昌宁-孟连带中段干龙塘构造混杂岩的发现. 云南地质, 25(1): 53-62. DOI:10.3969/j.issn.1004-1885.2006.01.008
段向东, 刘桂春, 冯庆来. 2012. 昌宁孟连构造带拉丁期放射虫动物群及构造演化意义. 地球科学(中国地质大学学报), 37(增2): 67-72.
何承真, 肖朝益, 温汉捷, 周汀, 朱传威, 樊海峰. 2016. 四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源. 岩石学报, 32(11): 3394-3406.
黄钰涵, 邓军, 李龚健, 蒙福清, 毛富祥, 张鹏飞. 2017. 滇西老厂隐伏斑岩-矽卡岩型钼矿床成矿过程与物质来源. 岩石学报, 33(7): 2099-2114.
黄钰涵. 2018. 昌宁-孟连构造带西南部始新世斑岩成矿作用——以老厂与南腊矿床为例. 博士学位论文. 北京: 中国地质大学(北京), 1-187
赖绍聪, 秦江锋, 李学军, 臧文娟. 2010. 昌宁-孟连缝合带干龙塘-弄巴蛇绿岩地球化学及Sr-Nd-Pb同位素组成研究. 岩石学报, 26(11): 3195-3205.
李峰, 鲁文举, 杨映忠, 陈珲, 石增龙, 刘世维, 辛荣, 罗思亮. 2009. 云南澜沧老厂多金属矿床矿化结构及成矿模式. 地质与勘探, 45(5): 516-523.
李峰, 鲁文举, 杨映忠, 唐兴平, 石增龙, 施加锌, 陈晖, 罗思亮, 坚润唐, 李光斗, 李建兵, 蒙福清, 杨帆, 李宏坤, 刘世雄. 2010a. 危机矿山成矿规律与找矿研究: 以云南澜沧老厂矿床为例. 昆明: 云南科技出版社, 1-194.
李峰, 陈珲, 鲁文举, 罗思亮. 2010b. 云南澜沧老厂花岗斑岩形成年龄及地质意义. 大地构造与成矿学, 34(1): 84-91.
李虎杰, 田煦. 1995. 澜沧铅锌银铜矿床矿物包裹体及成矿物化条件的研究. 矿产与地质, 9(2): 107-111.
刘桂春, 孙载波, 曾文涛, 冯庆来, 黄亮, 张虎. 2017. 滇西双江县勐库地区湾河蛇绿混杂岩的形成时代、岩石地球化学特征及地质意义. 岩石矿物学杂志, 36(2): 163-174. DOI:10.3969/j.issn.1000-6524.2017.02.003
龙汉生, 蒋绍平, 石增龙, 黄智龙, 罗泰义. 2007. 云南澜沧老厂大型银铅锌多金属矿床地质地球化学特征. 矿物学报, 27(3-4): 360-365.
龙汉生, 罗泰义, 黄智龙, 周明忠, 杨勇, 钱志宽. 2009. 云南澜沧老厂大型银多金属矿床碳、氧同位素组成及其意义. 矿床地质, 28(5): 687-695. DOI:10.3969/j.issn.0258-7106.2009.05.014
莫宣学, 沈上越, 朱勤文, 须同瑞, 魏启荣, 谭劲, 张双全, 程蕙兰. 1998. 三江中南段火山岩-蛇绿岩与成矿. 北京: 地质出版社, 1-128.
欧阳成甫, 徐楚明. 1991. 云南澜沧老厂地洼型银铅矿床的地球化学特征及成因. 大地构造与成矿学, 15(4): 317-326.
沈上越, 冯庆来, 刘本培, 莫宣学. 2002. 昌宁-孟连带洋脊、洋岛型火山岩研究. 地质科技情报, 21(3): 13-17. DOI:10.3969/j.issn.1000-7849.2002.03.003
孙载波, 曾文涛, 周坤, 吴嘉琳, 李龚健, 黄亮, 赵江泰. 2017. 昌宁-孟连结合带奥陶纪洋岛玄武岩的识别及其构造意义——来自地球化学和锆石U-Pb年龄的证据. 地质通报, 36(10): 1760-1771. DOI:10.3969/j.issn.1671-2552.2017.10.008
王保弟, 王立全, 潘桂棠, 尹福光, 王冬兵, 唐渊. 2013. 昌宁-孟连结合带南汀河早古生代辉长岩锆石年代学及地质意义. 科学通报, 58(4): 344-354.
王保弟, 王立全, 王冬兵, 尹福光, 贺娟, 彭智敏, 闫国川. 2018. 三江昌宁-孟连带原-古特提斯构造演化. 地球科学, 43(8): 2527-2550.
王达, Ryan M, 吴洪杰, 任欢, 倪金海. 2020. Fe-Cu-Zn同位素在矿床学和找矿勘查中的应用. 岩石学报, 36(6): 1684-1704.
王冬兵, 罗亮, 唐渊, 尹福光, 王保弟, 王立全. 2016. 昌宁-孟连结合带牛井山早古生代埃达克岩锆石U-Pb年龄、岩石成因及其地质意义. 岩石学报, 32(8): 2317-2329.
王慧宁. 2020. 昌宁-孟连造山带榴辉岩、蓝片岩和变沉积岩的岩石学、变质演化及其对古特提斯洋-陆俯冲造山的制约. 博士学位论文. 北京: 中国地质科学院, 1-266
王跃, 朱祥坤. 2010. 锌同位素在矿床学中的应用: 认识与进展. 矿床地质, 29(5): 843-852. DOI:10.3969/j.issn.0258-7106.2010.05.007
吴福元, 万博, 赵亮, 肖文交, 朱日祥. 2020. 特提斯地球动力学. 岩石学报, 36(6): 1627-1674.
徐楚明, 欧阳成甫. 1991. 云南澜沧老厂银铅锌矿床成因研究. 桂林冶金地质学院学报, 11(3): 245-252.
薛步高. 1998. 论澜沧老厂银铅多金属矿床成矿特征. 矿产与地质, 12(1): 26-32.
杨开辉, 莫宣学. 1993. 云南澜沧老厂火山成因块状铅锌铜硫化物矿床的基本特征及其成因类型. 地球学报, 14(1): 79-96.
叶庆同, 胡云中, 杨岳清. 1992. 三江地区区域地球化学背景和金银铅锌成矿作用. 北京: 地质出版社, 191-217.
张鹏飞, 李龚健, 黄钰涵, 梁坤, 杨金彪, 柳云成, 毛富祥, 赵枫. 2017. 西南三江老厂VMS型Pb-Zn多金属矿床成矿作用: 流体包裹体和硫同位素证据. 岩石学报, 33(7): 2129-2142.
张旗, 周德进, 赵大升, 彭兴阶, 罗万林, 刘祥品. 1996. 滇西古特提斯造山带的威尔逊旋回: 岩浆活动记录和深部过程讨论. 岩石学报, 12(1): 17-28. DOI:10.3321/j.issn:1000-0569.1996.01.002