岩石学报  2022, Vol. 38 Issue (1): 23-40, doi: 10.18654/1000-0569/2022.01.03   PDF    
胶北隆起中生代壳幔岩浆的混合反应是巨量金质来源的关键
田瑞聪1, 李大鹏2, 张文3, 田京祥2, 于晓卫3, 耿科2, 张岩2     
1. 中国地质大学(北京)地球科学与资源学院,北京 100083;
2. 自然资源部金矿成矿过程与资源利用重点实验室,山东省金属矿产成矿地质过程与资源利用重点实验室,山东省地质科学研究院,济南250013;
3. 山东省地质调查院,济南 250014
摘要: 胶东地区金矿巨量金质来源一直是学界争论的焦点,很难找到有说服力的直接证据。在没有其它更有效的直接证明巨量金质来源的情况下,本文通过胶北隆起主要地质体新鲜岩石大量微量元素地球化学数据的变化规律,间接得出中生代壳幔岩浆的混合反应是巨量金质来源的关键,即郭家岭和伟德山两期壳幔岩浆的混合反应和演化可能是巨量金质来源的主要形成机制,同时更是热量供给源,而玲珑花岗岩可能是少量金质的提供者和主要赋矿地质体。胶东地区金矿主要成矿时间(130~105Ma)与郭家岭(130~125Ma)和伟德山(126~108Ma)两期花岗岩浆演化结晶时间完全吻合,说明其关系密切,岩浆混合反应和冷凝期,岩浆热液上升运移沉淀成矿。该区中生代地质体对早前寒武纪的地球化学环境有一定的继承性,中生代地壳混合了大量地幔物质,Au丰度偏高,平均为1.31×10-9,为地球化学高背景场。
关键词: 胶北隆起    金矿    成矿物质来源    花岗岩    壳幔岩浆    混合反应    
The mixing of Mesozoic crust-mantle magma is the key to the source of large amounts of gold deposits in the Jiaobei uplift, China
TIAN RuiCong1, LI DaPeng2, ZHANG Wen3, TIAN JingXiang2, YU XiaoWei3, GENG Ke2, ZHANG Yan2     
1. School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China;
2. MNR Key Laboratory of Gold Mineralization Processes and Resources Utilization, Shandong Key Laboratory of Metallogenic Processes and Resource Utilization of Metallic Minerals, Shandong Institute of Geological Sciences, Jinan 250013, China;
3. Shandong Institute of Geological Survey, Jinan 250014, China
Abstract: The huge material source of gold deposits in Jiaodong area has always been the focus of academic debate, and it is difficult to find convincing evidence. In the absence of other more effective direct proof of the source of huge gold, this paper indirectly draws the conclusion that the huge gold comes from the mixing reaction of Mesozoic crust-mantle magmas based on the variation law of large amounts of trace elements geochemical data from fresh rocks of main geological bodies in Jiaobei area. The mixing reaction and evolution of the Guojialing and Weideshan crust-mantle magmatism may be the main mechanism for the formation of huge gold source, and it is also the source of heat supply. Linglong granite may be a small amount of gold supplier and the main ore-hosting geological body. The main metallogenic time of gold deposits in Jiaodong area (130~105Ma) is the same as the evolution and crystallization time of granite magma of Guojialing (130~125Ma) and Weideshan (126~108Ma) granites, which means they are closely related. During magma mixing reaction and condensation period, magmatic hydrothermal fluids ascending, migration, and precipitation mineralization. The Mesozoic geological bodies inherited geochemical environment of Early Precambrian in this area. The Mesozoic crust was mixed with a large amount of mantle materials, and the Au abundance was high, averaging 1.31×10-9, which was a geochemical high background.
Key words: Jiaobei area    Gold deposits    Source of ore-forming materials    Granite    Crustal and mantle magma    Mixing reaction    

胶东矿集区是世界著名的金矿资源基地,累计探明金矿资源量已达5480余吨,为继南非兰德金矿区和乌兹别克斯坦穆龙套金矿区后的世界第三大金矿区(陈玉民等, 2019),深部找矿潜力巨大。与找矿和成矿作用有关的研究工作一直是热点,很多重大问题也得到了很好地解决,为深部找矿提供了很好的技术支持(邓军等, 2001; 庞绪成, 2005; 李建威等, 2010; 杨立强等, 2014; 宋明春等, 2015),有些问题仍未解决或者存在争议,如金质来源和金元素丰度问题等。

许多学者开展了大量有关成矿物质来源与富集机制的专题研究(刘辅臣等, 1984; 刘连登等, 1984; 杨士望, 1986; 王鹤年, 1988; 孙丰月等, 1995; 杨忠芳, 1998; 孙景贵等, 1999; 邓军等, 1996, 1999; Yang et al., 2014; 陈玉民等, 2019; 田杰鹏, 2020; Tian et al., 2020; Wang et al., 2021),取得了丰硕成果,主要有3种观点:①与早前寒武纪地质体有关,来源于地壳(杨士望, 1986; 吕古贤, 1998; 王义文等, 2002; 郭春影, 2009);②来源于中生代花岗岩(Boyle, 1979; 王鹤年, 1988; Wang et al., 1998)。其中多数学者认为来源于玲珑花岗岩和郭家岭花岗岩(桑隆康等, 1992; Wang et al., 1998; 孙华山等, 2007; 于学峰等, 2012; 罗贤冬等, 2014; 田杰鹏等, 2016),仅有少数学者认为来源与伟德山花岗岩也有密切关系(宋明春等, 2015; Song et al., 2014);③来源于深部地幔(孙丰月等, 1995; 张连昌等, 2002; 毛景文等, 2002, 2005; 牛树银等, 2011; 丁正江, 2014; Goldfarb and Santosh, 2014; Li and Santosh, 2014; 朱日祥等, 2015; Wang et al., 2020; Deng et al., 2020a, b; Groves et al., 2020)。有学者更强调了岩脉对金矿成矿的作用,如地幔来源的煌斑岩与金矿化有成因联系(刘辅臣等, 1984; 孙景贵, 1999; 罗镇宽等, 2001; 刘燊, 2004; 龚庆杰等, 2012; 祝德成等, 2018)或为金矿成矿提供了部分成矿物质;深源基性脉岩活动及与其相伴生的大规模地幔流体参与是胶东金矿形成的主要原因(王登红等, 1999; 毛景文等, 2005)。

现在越来越多研究者更倾向于来源于中生代花岗岩或地幔,其主要证据主要得益于同位素示踪技术的大量应用,元素地球化学方面很难拿出有说服力的证据,虽然在Au等成矿元素丰度方面做了大量的研究,但由于不同年代实验室、仪器、测试精度不同,以及单次数据量少和系统误差等原因,很难数据集成形成共性认识。有学者认为Au丰度较高,如黎彤(1992)认为玲珑花岗岩的地壳丰度为3.4×10-9王鹤年等(1988)认为胶东群变质岩的原岩为玄武岩,岩石建造中Au丰度为地壳丰度的近5倍。然而,孙景贵(1999)认为,胶东变质岩和地层中金的丰度并非很高1.9×10-9~4.5×10-9,而与金矿有关的花岗岩金的量更低0.27×10-9~1.83×10-9Yan et al. (1997)研究了中国东部上地壳化学组成,其中Au元素丰度为0.77×10-9,华北板块上地壳为0.74×10-9。21世纪随着分析仪器精度的提高,对Au元素丰度的研究也逐步深入,迟清华(2002)统计了中国东部地区酸性岩平均为0.54×10-9,片麻岩类为0.66×10-9,沉积岩类变化较大,同时给出了地壳、出露岩石地壳、火成岩、沉积岩和变质岩中的Au丰度,分别为1.0×10-9、0.80×10-9、0.90×10-9、0.60×10-9、1.0×10-9史长义等(2005)给出了中国花岗岩Au元素丰度0.38×10-9李瑞红等(2019)提出胶东地区和中国东部变质岩Au丰度相当,莱阳群和青山群沉积岩中Au丰度普遍较低,侵入岩Au丰度为1.37×10-9陈玉民等(2019)认为胶东西北部玲珑花岗岩Au丰度为0.73×10-9,郭家岭花岗岩Au丰度为0.69×10-9,均低于华北地台大陆地壳丰度值(1.0×10-9),胶东金矿集区存在金的地球化学亏损场。Wang et al. (2021)用高灵敏度Element XR同位素稀释法和/或聚氨酯泡沫预处理后的石墨炉原子吸收光谱法(GFAAS),实现了低Au含量样品的可靠分析,得出胶东前寒武纪基底变质岩中金含量强烈亏损(Au < 0.5×10-9),很难成为胶东金矿床的主要金源。

上述Au丰度数据相差较大,对胶东地区Au丰度没有形成统一的认识,地质体不同的Au丰度说明了什么问题?与金质来源有无联系?基于这些问题,本文利用5529件Au等15种元素分析数据,对其进行统计分析,从不同地质体中的元素丰度变化、区域地球化学背景、元素变异系数、标准离差、正态分布等方面进行对照分析研究,试图寻找出胶东地区元素地球化学背景和可能的金矿成矿地球化学信息。根据不同地质单元特别是中生代不同期次侵入岩的元素丰度比较分析,探求与金矿成矿关系密切的地质体和可能的巨量金质来源或聚集迁移机制,为胶东地区巨量金质来源的研究提供一种新思路。

1 区域成矿地质背景

研究区位于中国东部,大地构造位置属华北板块之胶北隆起区和秦岭-大别-苏鲁造山带之胶南-威海隆起区(图 1)。新太古代、古元古代基底变质岩系和中生代多期次多成因岩浆活动以及NE向断裂构造为主的构造格架,构成本区金矿的基本成矿地质背景(邓军等, 2000; 于学峰等, 2012; 宋明春等, 2013; 杨立强等, 2014; 田杰鹏等, 2016)。

图 1 胶东地区地质矿产简图(据田杰鹏等, 2016修改) 1-第四系;2-晚白垩世-古近纪王氏群砂岩;3-早白垩世青山群火山沉积岩;4-早白垩世莱阳群砂岩、粉砂岩;5-新元古代蓬莱群浅变质岩;6-古元古代芝罘群变质岩;7-古元古代粉子山群黑云变粒岩、大理岩等;8-古元古代荆山群黑云片岩、变粒岩等;9-早白垩世崂山花岗岩;10-早白垩世伟德山花岗岩;11-早白垩世郭家岭花岗岩;12-晚侏罗世玲珑花岗岩;13-中侏罗世文登花岗岩;14-晚三叠世花岗岩;15-南华纪花岗质片麻岩;16-中元古代变辉长岩;17-新太古代TTG;18-中生代脉岩;19-金矿床 Fig. 1 Geology and deposit sketch map of Jiaodong area (modified from Tian et al., 2016) 1-Quaternary; 2-Late Cretaceous-Paleogene Wangshi Group sandstone; 3-Early Cretaceous Qingshan Group volcanic sedimentary rock; 4-Early Cretaceous Laiyang Group sandstone and siltstone; 5-Neoproterozoic Penglai Group epirock; 6-Paleoproterozoic Zhifu Group metamorphic rock; 7-Paleoproterozoic Fenzishan Group biotite granulite and marble; 8-Paleoproterozoic Jingshan Group biotite schist and granulite; 9-Early Cretaceous Laoshan granites; 10-Early Cretaceous Weideshan granites; 11-Early Cretaceous Guojialing granites; 12-Late Jurassic Linglong granites; 13-Middle Jurassic Wendeng granites; 14-Late Triassic granites; 15-Nanhuan granitic gneiss; 16-Mesoproterozoic metagabbro; 17-Neoarchean TTG; 18-Mesozoic dike rocks; 19-gold deposits

区内地层主要发育新太古代胶东岩群,古元古代荆山群、粉子山群,白垩纪莱阳群、青山群、王氏群。岩浆活动强烈,主要有新太古代马连庄序列变质基性-超基性岩、栖霞序列变质英云闪长岩、谭格庄序列变质奥长花岗岩、古元古代莱州序列变质基性-超基性岩、晚侏罗世玲珑花岗岩、早白垩世早期郭家岭花岗岩、早白垩世晚期伟德山花岗岩。侵入岩总体呈近东西或北东向展布的岩基、岩株、岩瘤状产出,具规模性的侵入体多聚集形成复式岩体,岩石类型齐全,中酸性岩规模大、分布广(张良等, 2014)。区内断裂构造发育,其中主要构造线是北北东向和北东向断裂构造,与金成矿休戚相关,控制了该区主要金矿床,北西和东西向断裂发育弱(宋明春等, 2015; 杨立强等, 2019)。以往地质勘查表明,胶东地区金矿床主要受三山岛断裂、焦家断裂、招远-平度断裂、台前-陡崖断裂、牟平-即墨断裂和金牛山断裂等6条NE向区域断裂构造带及其次级构造控制,共同构成了胶东金矿控矿断裂构造系统,控制着该区的主要金矿床(Deng et al., 2006; 张良等, 2013; 杨立强等, 2014; 图 1)。

2 样品采集、分析方法与结果 2.1 样品采集

研究区共采集各类岩石样品5529件,其中未蚀变样品3888件,蚀变样品1641件,采样点分布于胶北隆起区,涉及胶东地区主要地质体。取样时,在采样点周围均匀敲取3~5块同一岩性岩石碎块组成一件样品。在地质体中采集无矿化且较新鲜岩石,在构造带、蚀变带、矿化带则尽量采集矿化较好的岩石。详细记录岩石新鲜程度和是否蚀变等,进行严格区分。

2.2 分析方法及精度

分析测试由山东省第四地质矿产勘查院实验测试中心承担。分析测试元素为Au、Ag、Hg、Cu、Zn、Sn、Sb、Pb、Bi、As、Nb、Ta、Mo、W、Co计15种元素。工作标准为《地质矿产实验室测试质量管理规范》(DZ/T 0130—2006)、《地球化学普查规范》(DZ/T 0011—2015)。样品在60℃以下烘干后再进行加工。样品加工过程中先用配备高铝瓷的颚式破碎机粗碎,再采用高铝瓷的无污染化探样品自动粉碎机加工,样品经粗碎、中碎、细碎至0.074mm,符合粒度要求的试样质量不少于加工前试样质量的90%,不缩分,不过筛,直接装入样品袋待检测(重量>300g)。样品制备后,测试样由业务室流转到分析室进行分析测试。各元素检出限符合国家、行业标准,一级标准物质/重复样合格率均为100%,各元素分析报出率均为100%。样品测试分析方法及检出限见表 1

表 1 分析方法、检出限(×10-6,Au、Ag、Hg为×10-9) Table 1 Analysis method, detection limit (×10-6, Au, Ag, Hg are ×10-9)

分析质量监控包括5项内容,即国家Ⅰ级标准物质(GBW系列)监控、省级二级监控样监控、实验室内部检查、试样重复性密码分析、异常点的抽查检查。内检合格率均大于97%,质量符合要求。

2.3 分析结果及数据处理

5529件样品分析数据采用SPSS软件进行了分类数据处理和统计分析,按照一次剔除大于平均值加3倍标准离差的数据后,有2624件未蚀变样品、1243件蚀变样品参与数据统计分析(表 2)。元素丰度估计值的计算目前仍以算术平均值法为主。

表 2 研究区岩石地球化学参数统计表(×10-6,Au、Ag、Hg为×10-9) Table 2 Statistical table of petrogeochemical parameters in the study area (×10-6, Au, Ag, Hg are ×10-9)
3 讨论 3.1 胶北隆起不同地质体元素丰度特征

Au等15种元素丰度除Pb外,其他14元素均低于地壳丰度(黎彤, 1992)。中国花岗岩Au等元素丰度(史长义等, 2005)是大量实测数据统计结果,能很好的代表被测岩石的实际丰度(中值),胶北中生代花岗岩中多数元素丰度与中国花岗岩大致相当或偏低,只有Au大于中国花岗岩丰度3倍,Bi元素明显偏低1倍。胶北地区中生代基性脉岩中Au、W丰度比地区平均丰度明显偏高1倍,其它元素大致相当或稍微偏高。构造岩中Au、Ag、Pb、W、As、Bi比岩石丰度值明显偏高,Co明显偏低,其它元素相当或者稍偏高,说明构造是成矿元素富集的有利场所。Cu、Zn、Co在偏酸性侵入岩中含量明显偏低,在基性岩和胶东岩群中明显偏高,说明其在地壳深部较浅部富集,Pb在中生代酸性侵入体中明显偏高。

不同元素在各地质体中均值变化情况可分为3类(图 2):早前寒武纪地质体、中生代花岗岩和中生代基性脉岩。Ag、Cu、Pb、Zn、Co在中生代花岗岩和早前寒武纪地质体中含量有明显不同,早前寒武纪地质体Ag、Cu、Zn、Co含量高,Pb含量低;中生代花岗岩Ag、Cu、Zn、Co含量低,Pb含量高,W、Sn、Mo、Nb、Ta、As、Sb、Bi、Hg元素则没有明显变化。中生代基性脉岩与中生代花岗岩Ag含量相当,Cu含量处于中生代花岗岩和早前寒武纪地质体之间,Pb含量处于两类地质体之间,其它元素含量差别不明显。因此,中生代地球化学环境继承了早前寒武纪的地球化学环境,但中生代又与早前寒武纪的地球化学环境有明显不同,中生代地壳是混合了大量地幔物质的产物。玲珑花岗岩Au、Ag、Cu含量较郭家岭花岗岩和伟德山花岗岩高,郭家岭花岗岩比玲珑花岗岩和伟德山花岗岩中Pb、Zn、Co含量高、Nb、Ta含量低;伟德山花岗岩Au、Ag、Cu、Pb、Zn、Co元素含量比玲珑花岗岩和郭家岭花岗岩最低,其他元素含量大致相当。

图 2 元素均值在各地质单元中的变化曲线图 1-胶东岩群;2-荆山群;3-马连庄基性-超基性岩;4-栖霞英云闪长岩;5-谭格庄奥长花岗岩;6-莱州基性-超基性岩;7-玲珑花岗岩;8-郭家岭花岗岩;9-伟德山花岗岩;10-基性脉岩;11-中酸性脉岩 Fig. 2 A curve of the mean values of elements in each geological unit 1-Jiaodong Group; 2-Jingshan Group; 3-Malianzhuang basic-ultrabasic rocks; 4-Qixia tonalite; 5-Tangezhuang trondhjemite; 6-Laizhou basic-ultrabasic rocks; 7-Linglong granite; 8-Guojialing granite; 9-Weideshan granite; 10-basic vein rock; 11-intermediate-acidic vein rock
3.2 胶东地区Au元素地球化学背景

胶北隆起Au丰度的总平均值为1.31×10-9,与地壳估算值1.3×10-9(Rudnick and Gao, 2014)一致,侵入岩为1.37×10-9,中酸性侵入岩为1.22×10-9,中生代花岗岩为1.20×10-9(表 2)。Au在新太古代谭格庄英云闪长岩、晚侏罗世玲珑花岗岩和中生代基性脉岩中含量明显偏高,分别为1.74×10-9、1.7×10-9、2.65×10-9;新太古代谭格庄奥长花岗岩和早白垩世伟德山花岗岩Au含量明显偏低,分别为0.74×10-9,0.75×10-9;而郭家岭花岗岩丰度处于中间为1.17×10-9(图 3)。迟清华(2002)就中国东部火成岩、沉积岩和变质岩中Au含量原始数据经X±3S一次剔除后计算出的算术平均值分别为0.58×10-9、1.01×10-9和1.02×10-9,与本次数据处理方法相同,说明胶北地区变质岩和中国东部变质岩Au丰度相当,胶东地区莱阳群和青山群沉积岩中Au背景值普遍较低(李瑞红等, 2019),胶北隆起侵入岩Au丰度(1.37×10-9)明显偏高,与胶莱盆地东北缘Au丰度(1.40×10-9)基本一致(李勇等, 2018),是中国东部火成岩的2倍以上。另据史长义等(2005)的研究,中国东部花岗岩Au含量中值为0.38×10-9(为一次剔除X±2S),本研究区中生代玲珑花岗岩、郭家岭花岗岩和伟德山花岗岩按照一次剔除X±2S后的中值平均为0.85×10-9,胶北隆起中生代花岗岩Au丰度是中国东部花岗岩的2倍以上。中生代基性脉岩是深部地幔基性岩浆信息的真实反映,其平均Au含量(2.65×10-9)远远高出其他地质体平均含量(1.31×10-9),而同期中酸性脉岩的Au含量1.22×10-9,与胶北隆起中生代花岗岩平均含量接近,可以代表浅部地壳的Au含量。孙丰月等(1995)论证了金的上地幔源区的存在,由地幔C-H-O流体演化分异而来的煌斑岩中金平均丰度5.7×10-9赫英等(2004)对胶东半岛地幔岩包体的研究认为胶东地区岩石圈地幔金平均丰度大致等于或略低于8.78×10-9Wang et al. (2021)的新数据表明前寒武纪地壳基底中Au含量较低,<0.5×10-9,与其他地区的角闪岩相岩石相一致(Patten et al., 2020; Pitcairn et al., 2015)。前寒武纪变质基底含金量低可以解释为从可能富金的地壳基底提取后的残余结果(Chen et al., 2019)。

图 3 胶北隆起不同地质体Au丰度 1-胶东岩群;2-荆山群;3-马连庄基性-超基性岩;4-栖霞英云闪长岩;5-谭格庄奥长花岗岩;6-莱州基性-超基性岩;7-玲珑花岗岩;8-郭家岭花岗岩;9-伟德山花岗岩;10-基性脉岩;11-中酸性脉岩;12-地壳丰度(黎彤, 1992);13-中国花岗岩(史长义等, 2005) Fig. 3 Au abundance of different geological bodies in Jiaobei uplift 1-Jiaodong Group; 2-Jingshan Group; 3-Malianzhuang basic-ultrabasic rocks; 4-Qixia tonalite; 5-Tangezhuang trondhjemite; 6-Laizhou basic-ultrabasic rocks; 7-Linglong granite; 8-Guojialing granite; 9-Weideshan granite; 10-basic vein rock; 11-intermediate-acidic vein rock; 12-crustal abundance (Li, 1992); 13-Chinese granite (Shi et al., 2005)

2000年之前胶东地区Au丰度数据普遍偏高,特别是胶东岩群的Au丰度更高(Wang et al., 2021),主要原因是仪器分析精度不高、样品数量偏少和统计时未剔除奇异值。由于不同实验室可能存在系统误差,因此,不同实验室的测试数据的分析对比,仅作参考,同时由于没有足够多的样品,Au丰度仅仅作为一个大致的参考值,但是同一实验室同一时期不同地质体的分析结果完全可以对比。综上,胶北隆起地壳和地幔均具有较高的Au地球化学背景,Au丰度在1.31×10-9左右是可信的,且地幔金丰度高于地壳。

3.3 壳幔岩浆混合反应析出巨量金质

郭家岭花岗岩和伟德山花岗岩均为壳幔混合成因(曲晓明等, 2000; 杨进辉和周新华, 2000; 杨进辉等, 2003; 郭敬辉等, 2005; 周建波等, 2003; Goss et al., 2010; 宋明春等, 2015),从前述可知,地幔和地壳Au丰度均比郭家岭和伟德山花岗岩高,而混合后的郭家岭花岗岩和伟德山花岗岩Au含量均明显变低,最大的可能就是在地幔岩浆和地壳物质混合形成花岗岩浆演化过程中部分Au流失了。岩浆的结晶过程是一个结晶分异的过程,将岩浆中不能进入矿物晶格中的水分慢慢排出在矿物晶体之外,溶解在其中的不相容元素被带出,仅有很少形成流体包裹体被包裹在矿物中。据朱永峰和安芳(2010)的研究,花岗岩中93%以上的金赋存在硫化物中,在花岗质岩浆演化过程中,硅酸盐矿物的结晶或溶解不影响金的状态,热液就成了金活化迁移的主要载体,花岗岩浆的演化和结晶过程是一个明显的去金作用过程(孙景贵, 1999),正常情况下,花岗岩中Au丰度要低于其他地质体。硫化物易溶于富水流体(Huang and Keppler, 2015),铜与金等亲硫元素形成溶于水的络合物,形成富金流体(Sun et al., 2013)。从胶北隆起蚀变带中富含黄铁矿看,成矿热液含S、Fe特别高,说明壳幔岩浆反应演化过程中,从岩浆中析出大量的S、Fe,Au是亲S、Fe元素,Au较容易进入含S、Fe且含有大量Cl、CH4等高温强碱性热液中。很多研究者(朱日祥等, 2015; 杨立强等, 2014) 根据流体氢氧同位素落在岩浆水与大气降水之间,认为很可能与岩浆作用有关, 而氦-氩同位素落在地幔与地壳之间靠近地幔,正说明成矿流体以地幔来源为主,地壳为辅。根据前人碳氧同位素组成,大多数数据点投影在地幔多相体系和原始碳酸岩区外附近右上角花岗岩区内外,显示壳幔混源特征(杨立强等, 2014),也证实成矿流体是壳幔岩浆混合反应来源。

虽然很多学者认为成矿物质来源于地幔,但是迄今未发现成矿热液直接来源于深部地幔的通道,壳幔岩浆的混合反应恰好解决了地幔物质怎么上升到地壳浅部的问题。含矿热液的上升依附于岩体的演化和上升,此现象在斑岩铜矿中更为明显。壳幔岩浆反应的机制、反应前后物质成分变化、反应的物理化学条件变化等还需深入研究。

胶北隆起发育大范围的中生代花岗岩,分布广泛,侵入持续时间长,从晚侏罗世到晚白垩世晚期,长达近100Myr,伟德山花岗岩的分布面积大致在2500km2以上,地幔、地壳Au含量分别为2.6×10-9和1.3×10-9,郭家岭和伟德山花岗岩Au含量分别为1.17×10-9和0.75×10-9。两种花岗岩均比地壳和地幔含量低,那么壳幔物质充分混合形成两类花岗岩浆过程中,大部分金可能被溶解有大量S、Cl等阴离子的H2O-CO2-CH4热液体系捕获溶解,形成含矿热液,含金热液逐渐汇聚向上运移,在岩体上方合适的构造部位成矿。如中生代两种花岗岩平均厚度按5km、平均值与壳幔平均值差近1×10-9估算,那么将有33600t金被析出。

3.4 中生代玲珑、郭家岭和伟德山三期花岗岩岩浆演化与成矿的耦合

胶东地区金矿总体成矿时间区间在132~105Ma之间(图 4表 3),郭家岭花岗岩的形成时间为130~125Ma(关康等, 1998; 杨进辉等, 2000; Wang et al., 1998; Yang et al., 2012; 罗贤冬等, 2014; Song et al., 2020),伟德山花岗岩的形成时间为126~108Ma(周建波等, 2003; 郭敬辉等, 2005; 张田和张岳桥, 2008; Goss et al., 2010; 丁正江等, 2013; Song et al., 2020),成矿时间恰好与两期花岗岩浆的冷凝结晶时间吻合。早期成矿时间与郭家岭花岗岩浆开始活动的时间相对应,即130Ma左右,如招远市大尹格庄金矿成矿年龄为130±4Ma(杨立强等, 2014),显示该时期有明显的构造流体成矿活动,说明郭家岭花岗岩浆还未结晶时就对其上部地质构造和成矿有影响,郭家岭岩浆期的热液就已经开始上升成矿。而最晚的成矿时间为105Ma,比伟德山花岗岩最晚固结时间(108Ma)稍晚。这也间接说明郭家岭和伟德山花岗岩与成矿有一定的关系。

图 4 胶东地区金矿成矿年龄直方图 Fig. 4 Age histogram of gold deposits in Jiaodong area

表 3 胶东地区金矿成矿同位素年龄 Table 3 Metallogenic isotope ages of gold deposits in Jiaodong area

根据锆石年龄,玲珑花岗岩锆石结晶持续时间是24Myr,郭家岭花岗岩锆石结晶持续时间是5Myr,伟德山花岗岩锆石结晶持续时间是18Myr,从锆石结晶持续时间长短可以看出上述三类花岗岩岩浆冷凝结晶持续时间长短。这说明郭家岭花岗岩浆规模小,上升冷凝快,伟德山花岗岩浆规模大,上升冷却慢,能持续提供成矿热液。玲珑花岗岩中存在大量捕虏锆石,而郭家岭和伟德山花岗岩中存在很少量的捕虏锆石,说明壳源重熔的玲珑花岗岩熔融温度低,锆石等高温矿物没有被熔化,其持续时间长说明其规模大且上升缓慢。壳幔岩浆混合反应可能是岩浆结晶分异析出成矿物质的一种方式,也是地幔或下地壳成矿物质伴随岩浆上升到地壳浅部成矿的一种机制。大规模的地幔岩浆上升,才能携带大量深部成矿物质和热液一起上升。

胶东地区玲珑花岗岩分布范围广,赋存的金矿数量多。从成矿时间看,莱州市留村金矿成矿时间为151±3Ma(姜晓辉等, 2011),而此时正是玲珑花岗岩侵位时间164~140Ma(郭敬辉等, 2005; Hu et al., 1987; Ma et al., 2013; Miao et al., 1998; Wang et al., 1998; Yang et al., 2012; Zhang et al., 2010; Song et al., 2020),矿区发育玲珑花岗岩体,周围未见其它中生代侵入岩,显然这次成矿与玲珑花岗岩关系密切。据徐述平等(2008)的研究,玲珑花岗岩成岩过程中,在岩体的边缘相Au、Pb、Bi出现了明显富集,Au元素的初步富集为后期大规模成矿作用做好了物质上的准备,具备一定的矿源层特征,同时有小规模的金矿成矿。留村金矿虽然是一个孤证,由于其远离中生代其它岩体,足以说明玲珑花岗岩与成矿关系密切,其它地方尚未发现较早的成矿,也可能是早期的成矿被后期大规模的成矿叠加改造而难测其早期成矿时间。

综上所述,中生代玲珑、郭家岭和伟德山三期规模较大的花岗岩的形成和演化是形成巨型金矿的基础条件,玲珑花岗岩呈大致层状体,其原始金丰度偏高,特别是边部,有小规模石英脉型金矿成矿,具有一定的初始矿源层特征,是较好的赋矿地质体。后期壳幔混合反应形成的郭家岭和伟德山花岗岩浆的演化,为大规模成矿提供了巨量的金质来源。似层状玲珑花岗岩中的金矿成矿与层控矿床类似,有层控矿床的特征,可称为“内生层控矿床”或“类层控矿床”(田杰鹏等, 2016),是赋矿地质体为侵入岩的非标准层控矿床。

3.5 不同地质体对金矿成矿的有利度分析

从元素标准离差图上(图 5)看出,15种元素离差在新太古代马连庄基性-超基性岩和早白垩世伟德山花岗岩中普遍偏低。从变异系数图上(图 6)看出,15种元素中多数在新太古代马连庄基性-超基性岩、古元古代莱州基性-超基性岩、伟德山花岗岩中偏低,其中Au、Ag、Pb、Zn在上述地质体中均为较低变异系数。中生代花岗岩Au元素标准离差从高到低依次是玲珑花岗岩(2.38)、郭家岭花岗岩(0.75)、伟德山花岗岩(0.13,图 5);Au元素变异系数从高到低依次是玲珑花岗岩(1.40)、郭家岭花岗岩(0.65)、伟德山花岗岩(0.18);Au元素含量极差从大到小依次为玲珑花岗岩(19.89)、郭家岭花岗岩(5.21)、伟德山花岗岩(0.78)。从标准离差和变异系数来看,对金矿成矿有利地质体依次为玲珑花岗岩、郭家岭花岗岩、伟德山花岗岩。

图 5 地质体元素标准离差 1-胶东岩群;2-荆山群;3-马连庄基性-超基性岩;4-栖霞英云闪长岩;5-谭格庄奥长花岗岩;6-莱州基性-超基性岩;7-玲珑花岗岩;8-郭家岭花岗岩;9-伟德山花岗岩 Fig. 5 The standard deviation of the element in geological mass 1-Jiaodong Group; 2-Jingshan Group; 3-Malianzhuang mafic and ultrabasic rocks; 4-Qixia tonalite; 5-Tangezhuang trondhjemite; 6-Laizhou mafic and ultrabasic rocks; 7-Linglong granite; 8-Guojialing granite; 9-Weideshan granite

图 6 地质体元素变异系数 1-胶东岩群;2-荆山群;3-马连庄基性-超基性岩;4-栖霞英云闪长岩;5-谭格庄奥长花岗岩;6-莱州基性-超基性岩;7-玲珑花岗岩;8-郭家岭花岗岩;9-伟德山花岗岩 Fig. 6 Variation coefficient of elements in geological bodies 1-Jiaodong Group; 2-Jingshan Group; 3-Malianzhuang mafic and ultrabasic rocks; 4-Qixia tonalite; 5-Tangezhuang trondhjemite; 6-Laizhou mafic and ultrabasic rocks; 7-Linglong granite; 8-Guojialing granite; 9-Weideshan granite

通过前述中生代花岗岩演化与金矿成矿耦合关系分析,花岗岩岩浆形成后有成矿元素进入热液并上升到上覆地质体中,就会增高上覆地质体中Au元素丰度,同时也使其标准离差和变异系数增大。郭家岭花岗岩的上覆围岩以玲珑花岗岩为主,其形成演化过程中使玲珑花岗岩Au元素丰度增高、标准离差和变异系数增大;同样,伟德山花岗岩的上覆围岩以玲珑花岗岩和郭家岭花岗岩为主,其形成演化过程中使玲珑花岗岩Au元素丰度进一步增高、标准离差和变异系数进一步增大,使郭家岭花岗岩Au元素丰度增高、标准离差和变异系数增大。即深部后期的花岗岩浆含矿热液(包括从地幔带上来的含矿热液)使上部早期的地质体又经历了一次地球化学过程,使得其中很多元素含量不均匀增加,造成了其标准离差和变异系数的增大,使上覆地质体更容易成矿。这从成矿热液来源的角度解释了胶北隆起Au元素标准离差和变异系数的大小与赋矿的正相关关系,因此,标准离差和变异系数是判断赋矿地质体的有效参数,是化探找矿的很好指标。

Vistelius (1960)认为,单一地球化学过程所形成的地质体,元素含量服从正态分布,由数个地球化学作用过程叠加所形成的复合地质体中元素含量偏离正态分布,并且多为正偏分布(其中有些服从对数正态分布),他将这一结论称为“地球化学过程的基本定律”。一般来说,成矿作用总是出现在地质构造复杂,地球化学作用多次叠加的地区,因此,不服从正态分布的地质体,才具有找矿前景,地球化学作用叠加越多的地质体越是找矿有利的对象。

对元素进行正态性检验,是为了区别不同地质体对成矿的贡献大小。SPSS规定:当样本含量3≤n≤5000时,结果以Shapiro-Wilk(W检验)为准,当样本含量n>5000时,结果以Kolmogorov-Smirnov(D检验)为准,在SPSS软件统计结果中,P≥0.05时,认为是服从正态分布。同时再结合Q-Q图进一步确认,这是可以检验元素是否服从正态或对数正态分布的常用方法之一(成秋明, 2000),如基本在直线附近,可以认为服从正态分布。各地质单元分析数据量 < 5000,采用SPSS软件处理时,置信度采用95%,采用W检验,大部分元素不服从正态分布,仅新太古代谭格庄变质奥长花岗岩的Pb、Co、古元古代莱州基性-超基性岩的Cu、Co、Mo、伟德山花岗岩的Zn的P值≥0.05(表 4),相应的在Q-Q图上均在直线附近(图 7)。因此,上述元素在相应的地质体中可以认为是服从正态分布,而其他元素在各个地质单元中不服从正态分布,说明这3个地质体中的相应元素受后期地球化学影响较小。荆山群、新太古代栖霞英云闪长岩、新太古代马连庄基性-超基性岩、玲珑花岗岩、郭家岭花岗岩和构造岩无一元素服从正态分布,说明上述地质单元相对经历的地球化学影响较大,构造活动、岩浆活动都不同程度对其前期的地质体产生一定的地球化学影响。构造岩中也无一元素符合正态分布,其发生了热液蚀变,发生了大量元素的带入和带出,受地球化学影响是最大的。通过成矿元素和微量元素的标准离差、变异系数和正态性检验显示,中生代玲珑花岗岩和郭家岭花岗岩对金矿赋矿最为有利,伟德山花岗岩赋矿相对较差,但伟德山花岗岩提供了大量的金质,对成矿的贡献不容忽视。

表 4 服从正态分布的元素P值(置信度95%) Table 4 P values of elements subject to normal distribution (95% confidence)

图 7 部分元素的Q-Q正态分布图 1~2-谭格庄奥长花岗岩;3~5-莱州基性-超基性岩;6-伟德山花岗岩. 纵坐标为期望的坐标,横坐标为观测值 Fig. 7 Q-Q normal distribution of the partial elements 1~2-Tangezhuang trondhjemite-tonalite; 3~5-Laizhou mafic-ultramafic rocks; 6-Weideshan granite. The ordinate is standard of expectation, the abscissa is observed value
4 结论

(1) 胶北隆起壳幔岩浆混合反应是产生富含金质热液的主要形式,是巨量金质来源的主要机制,也是深部岩浆成矿物质上升的载体。首先壳幔混源的郭家岭花岗岩和伟德山花岗岩金丰度均低于地壳和地幔丰度的原因,可能是壳幔岩浆混合反应过程中,岩浆中的金质被高H2S-H2O-CO2-CH4的岩浆热液体系捕获带走所致。其次胶东金矿形成的主要成矿期为130~105Ma,与郭家岭(130~125Ma)和伟德山(126~108Ma)两期花岗岩岩浆演化侵位时间吻合,伴随该两期花岗岩岩浆演化和侵入全过程,其岩浆期含矿热液上升沉淀成矿。

(2) 胶北隆起具有较高的Au背景场,Au丰度为1.31×10-9,中生代花岗岩丰度为1.20×10-9,晚侏罗世玲珑花岗岩为1.7×10-9,早白垩世郭家岭花岗岩为1.17×10-9,早白垩世伟德山花岗岩为0.75×10-9。胶北隆起中生代继承了早前寒武纪地球化学环境,但又与其有明显不同,中生代地壳是混合了大量地幔物质的产物。

(3) 岩浆混合反应演化过程中形成的含矿热液上升到上覆早期地质体中,对部分元素丰度和地球化学参数会产生一定影响,造成元素丰度、标准离差和变异系数增大。胶北隆起玲珑花岗岩金丰度明显高于郭家岭和伟德山花岗岩,除其原始丰度高以外,与后期两种花岗岩的含矿热液上升“浸染”有很大关系。中生代玲珑花岗岩和郭家岭花岗岩对金矿赋矿有利,伟德山花岗岩赋矿相对较差,但对成矿提供了大量的金质和源源不断的热量。

参考文献
Bi SJ and Zhao XF. 2017. 40Ar/39Ar dating of the Jiehe gold deposit in the Jiaodong Peninsula, eastern North China Craton: Implications for regional gold metallogeny. Ore Geology Reviews, 86: 639-651 DOI:10.1016/j.oregeorev.2017.03.027
Boyle RW. 1979. The geochemistry of gold and its deposits. Geological Survey Canada Bulletin, 280: 584
Cai YC, Fan HR, Hu FF, Yang KF, Lan TG, Yu H and Liu YM. 2011. Ore-forming fluids, stable isotope and mineralizing age of the Hubazhuang gold deposit, Jiaodong Peninsula of eastern China. Acta Petrologica Sinica, 27(5): 1341-1351 (in Chinese with English abstract)
Chen BH. 2017. Gold mineralization geochemistry in Muping-Rushan gold belt, Jiaodong Peninsula, China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-157 (in Chinese with English abstract)
Chen YM, Zeng QD, Sun ZF, Wang ZK, Fan HR, Xiao FL and Chu SX. 2019. Study on geochemical background field of the gold deposits in Jiaodong, China. Gold Science and Technology, 27(6): 791-801 (in Chinese with English abstract)
Cheng QM. 2000. Multifractal theory and geochemical element distribution pattern. Earth Science (Journal of China University of Geosciences), 25(3): 311-318 (in Chinese with English abstract)
Chi QH. 2002. Abundance of gold in crust, rocks and sediments. Geochimica, 31(4): 347-353 (in Chinese with English abstract)
Deng J, Xu SL, Fang Y, Zhou XQ and Wan L. 1996. The Tectonic System and Gold Mineralization Dynamics in the Northwestern Jiaodong, China. Beijing: Geological Publishing House, 1-100 (in Chinese)
Deng J, Yang LQ, Zhai YS, Ding SJ, Chen CX, Han SQ, Sun ZS, Wang JP, Chen XM, Liang DC and Meng QF. 1999. Association of elements of geologic bodies and the consists and evolution of ore source system. Acta Geoscientia Sinica, 20(Suppl.1): 414-419 (in Chinese with English abstract)
Deng J, Yang LQ, Sun ZS, Ding SJ, Wang JP, Meng QF and Han SQ. 2000. Geological and geochemical study on ore source system of Jiaodong gold ore deposit cluster, Shandong, China. Geoscience, 14(2): 165-172 (in Chinese with English abstract)
Deng J, Yang LQ, Liu W, Sun ZS, Li XJ and Wang QF. 2001. Gold origin and fluid ore-forming effect of Zhao-Ye ore deposits concentrating area in Jiaodong, Shandong, China. Chinese Journal of Geology, 36(3): 257-268 (in Chinese with English abstract)
Deng J, Yang LQ, Ge LS, Wang QF, Zhang J, Gao BF, Zhou YH and Jiang SQ. 2006. Research advances in the Mesozoic tectonic regimes during the formation of Jiaodong ore cluster area. Progress in Natural Science, 16(8): 777-784 DOI:10.1080/10020070612330069
Deng J, Wang QF, Santosh M, Liu XF, Liang, Y Y, Yang LQ, Zhao R and Yang L. 2020a. Remobilization of metasomatized mantle lithosphere: A new model for the Jiaodong gold province, eastern China. Mineralium Deposita, 55(2): 257-274 DOI:10.1007/s00126-019-00925-0
Deng J, Yang LQ, Groves DI, Zhang L, Qiu KF and Wang QF. 2020b. An integrated mineral system model for the gold deposits of the giant Jiaodong province, eastern China. Earth-Science Reviews, 208: 103274 DOI:10.1016/j.earscirev.2020.103274
Ding ZJ, Sun FY, Liu FL, Liu JH, Liu DH, Zhang PJ, Du SX and Li B. 2013. U-Pb dating of zircons from the Weideshan molybdenum copper polymetallic deposits in Jiaodong Peninsula, China, and its geological significance. Acta Petrologica Sinica, 29(2): 607-618 (in Chinese with English abstract)
Ding ZJ. 2014. Study on metallogenic regularity of Mesozoic precious and non-ferrous deposits in Jiaodong Peninsula. Ph. D. Dissertation. Changchun: Jilin University, 1-194 (in Chinese with English abstract)
Du ZZ, Cheng ZZ, Yao XF, Yu XF, Sun HR, Bao XL and Li SH. 2020. 40Ar-39Ar age of altered potash feldspar of Xiejiagou gold deposit in Jiaodong and its geological significance. Journal of Jilin University (Earth Science Edition), 50(5): 1570-1581 (in Chinese with English abstract)
Feng K, Fan HR, Yang KF, Liu X, Cai YC and Ma WD. 2017. Study on metallogenic age and genesis of Majiayao gold deposit in Jiaodong. Nanchang: Acta Mineralogica Sinica, 557 (in Chinese)
Goldfarb RJ and Santosh M. 2014. The dilemma of the Jiaodong gold deposits: Are they unique?. Geoscience Frontiers, 5(2): 139-153 DOI:10.1016/j.gsf.2013.11.001
Gong QJ, Zhou LZ, Hu Y, Yan L, Zhang HQ and Jia YJ. 2012. Element transfer behaviors and its application during lamprophyre alteration in the Linglong gold deposit, Jiaodong Peninsula, China. Geoscience, 26(5): 1065-1077 (in Chinese with English abstract)
Goss SC, Wilde SA, Wu FY and Yang JH. 2010. The age, isotopic signature and significance of the youngest Mesozoic granitoids in the Jiaodong Terrane, Shandong Province, North China Craton. Lithos, 120(3-4): 309-326 DOI:10.1016/j.lithos.2010.08.019
Groves DI, Santosh M, Deng J, Wang QF, Yang LQ and Zhang L. 2020. A holistic model for the origin of orogenic gold deposits and its implications for exploration. Mineralium Deposita, 55(2): 275-292 DOI:10.1007/s00126-019-00877-5
Guan K, Luo ZK, Miao LC and Huang JZ. 1998. Shrimp in zircon chronology for Guojialing suite granite in Jiaodong Zhaoye district. Scientia Geologica Sinica, 33(3): 318-328 (in Chinese with English abstract)
Guo CY. 2009. Tectonic setting, magmatic sequence and fluid of gold metallogenic system of the Sanshandao-Cangshang fault in Jiaodong, China. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-187 (in Chinese with English abstract)
Guo JH, Chen FK, Zhang XM, Siebel W and Zhai MG. 2005. Evolution of syn- to post-collisional magmatism from north Sulu UHP belt, eastern China: Zircon U-Pb geochronology. Acta Petrologica Sinica, 21(4): 1281-1301 (in Chinese with English abstract)
He Y, Dong ZX, Yue KF, Zhang ZJ, Chen JW and Wang X. 2004. Content of mantle-derived xenoliths in eastern China and its metallogenic significance. Geological Review, 50(4): 418-425 (in Chinese with English abstract)
Hou ML, Jiang SY, Jiang YH and Ling HF. 2006. S-Pb isotope geochemistry and Rb-Sr geochronology of the Penglai gold field in the eastern Shangdong Province. Acta Petrologica Sinica, 22(10): 2525-2533 (in Chinese with English abstract)
Hu FF, Fan HR, Yang JH, Wan YS, Liu DY, Zhai MG and Jin CW. 2004. Mineralizing age of the Rushan lode gold deposit in the Jiaodong Peninsula: SHRIMP U-Pb dating on hydrothermal zircon. Chinese Science Bulletin, 49(15): 1629-1636 DOI:10.1007/BF03184134
Hu FF, Fan HR, Yang JH, Wang F and Zhai MG. 2006. The 40Ar/39Ar dating age of sericite from altered rocks in the Rushan lode gold deposit, Jiaodong Peninsula and its constraints on the gold mineralization. Bulletin of Mineralogy, Petrology and Geochemistry, 25(2): 109-114 (in Chinese with English abstract)
Hu FF, Fan HR, Jiang XH, Li XC, Yang KF and Mernagh T. 2013. Fluid inclusions at different depths in the Sanshandao gold deposit, Jiaodong Peninsula, China. Geofluids, 13(4): 528-541 DOI:10.1111/gfl.12065
Hu SL, Wang SS, Sang HQ, Qiu J and Zhang RG. 1987. Isotopic ages of Linglong and Guojialing batholiths in Shandong Province and their geological implication. Acta Petrologica Sinica, 3(3): 83-89 (in Chinese with English abstract)
Huang RF and Keppler H. 2015. Anhydrite stability and the effect of Ca on the behavior of sulfur in felsic magmas. American Mineralogist, 100(1): 257-266 DOI:10.2138/am-2015-4959
Jiang XH, Fan HR, Hu FF, Yang KF, Sun ZF and Sun ZF. 2011. Ore-forming fluids and genesis of Liucun gold deposit in northwestern Jiaodong Peninsula. Mineral Deposits, 30(3): 511-521 (in Chinese with English abstract)
Li HM, Mao JW, Shen YC, Liu TB and Zhang LC. 2003. Ar-Ar ages of K-feldspar and quartz from Dongji gold deposit, Northwest Jiaodong, and their significance. Mineral Deposits, 22(1): 72-77 (in Chinese with English abstract)
Li J, Zhang LP, Li CY and Jiang MY. 2020. Rb-Sr isochron age of the Guocheng gold deposit in the Jiaodong Peninsula, Shandong. Geology in China, 47(3): 894-895 (in Chinese with English abstract)
Li JW, Vasconcelos PM, Zhang J, Zhou MF, Zhang XJ and Yang FH. 2003. 40Ar/39Ar constraints on a temporal link between gold mineralization, magmatism, and continental margin transtension in the Jiaodong gold province, eastern China. The Journal of Geology, 111(6): 741-751 DOI:10.1086/378486
Li JW, Vasconcelos P, Zhou MF, Zhao XF and Ma CQ. 2006. Geochronology of the Pengjiakuang and Rushan gold deposits, eastern Jiaodong gold province, northeastern China: Implications for regional mineralization and geodynamic setting. Economic Geology, 101(5): 1023-1038 DOI:10.2113/gsecongeo.101.5.1023
Li JW, Bi SJ and Paulo V. 2010. Mineralization and genesis of the Fanjiabu gold deposit in the Sulu ultrahigh pressure metamorphic terrane, with a comparison to the gold mineralization in the Jiaobei Terrane. Geological Journal of China Universities, 16(2): 125-142 (in Chinese with English abstract)
Li JX. 2005. Study on the structural nature and minerlization of Zhaoping fault belt in northwestern Jiaodong Peninsula. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-115 (in Chinese with English abstract)
Li QL, Chen FK, Yang JH and Fan HR. 2008. Single grain pyrite Rb-Sr dating of the Linglong gold deposit, eastern China. Ore Geology Reviews, 34(3): 263-271 DOI:10.1016/j.oregeorev.2007.10.003
Li RH, Wang XQ, Chi QH, Zhang BM, Liu QQ and Liu HL. 2019. Distribution of geochemical anomaly of gold in drainage sediment in the Jiaodong Peninsula, China and its significance. Earth Science Frontiers, 26(4): 221-230 (in Chinese with English abstract)
Li SR and Santosh M. 2014. Metallogeny and craton destruction: Records from the North China Craton. Ore Geology Reviews, 56: 376-414 DOI:10.1016/j.oregeorev.2013.03.002
Li T. 1992. The statistical characteristics of the abundance of chemical elements in the earth's crust. Geology and Prospecting, 28(10): 1-7 (in Chinese with English abstract)
Li XH, Fan HR, Yang KF, Hollings P, Liu X, Hu FF and Cai YC. 2018. Pyrite textures and compositions from the Zhuangzi Au deposit, southeastern North China Craton: Implication for ore-forming processes. Contributions to Mineralogy and Petrology, 173(9): 73 DOI:10.1007/s00410-018-1501-2
Li XH, Fan HR, Hu FF, Hollings P, Yang KF and Liu X. 2019. Linking lithospheric thinning and magmatic evolution of Late Jurassic to Early Cretaceous granitoids in the Jiaobei terrane, southeastern North China craton. Lithos, 324-325: 280-296 DOI:10.1016/j.lithos.2018.11.022
Li Y, Ding ZJ, Bo JW, Song MC, Wu FP, Li GH and Li TT. 2018. Geochemical characteristics of ore-forming elements and metallogenic potentiality in the gold mineralization area of northeast margin of Jiaolai Basin. Gold, 39(8): 15-21 (in Chinese with English abstract)
Liu FC, Lu ZX, Fan YX, Kong QC and Gong RT. 1984. On the relation between intermediate-basic dykes and mineralization in Linglong gold ore field. Earth Science (Journal of Wuhan College of Geology), (4): 37-45 (in Chinese with English abstract)
Liu LD, Yao FL, Kong QC and Gong RT. 1984. The significance about the vein in studying the genesis of hydrothermal ore deposits. Journal of Changchun University of Earth Science, (4): 13-28 (in Chinese with English abstract)
Liu S. 2004. The Mesozoic magmatism and crustal extension in Shandong Province, China-additionally discussing the relationship between lamprophyres and gold mineralization. Ph. D. Dissertation. Guiyang: Institute of Geochemistry, Chinese Academy of Sciences, 1-105 (in Chinese with English abstract)
Luo XD, Yang XY, Duan LA and Sun WD. 2014. Geochemical and geochronological study of the gold-related Guojialing pluton and Shangzhuang pluton in Jiaobei block. Acta Geologica Sinica, 88(10): 1874-1888 (in Chinese with English abstract)
Luo ZK, Guan K and Miao LC. 2001. Discussion on relationship between lamprophyre veins and mineralization in the Linglong gold field, eastern Shandong. Gold Geology, 7(4): 15-21 (in Chinese with English abstract)
Lyu GX. 1998. Research on ore source series of the Linglong-Jiaojia-type gold deposits. Mineral Deposits, 17(Suppl.5): 935-938 (in Chinese)
Ma L, Jiang SY, Dai BZ, Jiang YH, Hou ML, Pu W and Xu B. 2013. Multiple sources for the origin of Late Jurassic Linglong adakitic granite in the Shandong Peninsula, eastern China: Zircon U-Pb geochronological, geochemical and Sr-Nd-Hf isotopic evidence. Lithos, 162-163: 251-263 DOI:10.1016/j.lithos.2013.01.009
Mao JW, He Y and Ding TP. 2002. Mantle fluids involved in metallogenesis of Jiaodong (East Shandong) gold district: Evidence of C, O and H isotopes. Mineral Deposits, 21(2): 121-128 (in Chinese with English abstract)
Mao JW, Li HM, Wang YT, Zhang CQ and Wang RT. 2005. The relationship between mantle-derived fluid and gold ore-formation in the eastern Shandong Peninsula: Evidences from D-O-C-S isotopes. Acta Geologica Sinica, 79(6): 839-857 (in Chinese with English abstract)
Miao LC, Luo ZK, Guan K and Huang JZ. 1998. The implication of the SHRIMP U-Pb age in zircon to the petrogenesis of the Linglong granite, East Shandong Province. Acta Petrologica Sinica, 14(2): 198-206 (in Chinese with English abstract)
Niu SY, Sun AQ, Zhang JZ, Ma BJ, Wang BD, Chen C, Zhang FX, Liu C and Zhang XF. 2011. Discussion on the deep dynamic mechanism of gold mineralization concentration area in northwestern Jiaodong. Acta Geologica Sinica, 85(7): 1094-1107 (in Chinese with English abstract)
Pang XC. 2005. Geochemistry and deep ore prediction of the Jiaojia gold deposit, Shandong. Ph. D. Dissertation. Chengdu: Chengdu University of Technology, 1-142 (in Chinese with English abstract)
Patten CGC, Pitcairn IK, Molnár F, Kolb J, Beaudoin G, Guilmette C and Peillod A. 2020. Gold mobilization during metamorphic devolatilization of Archean and Paleoproterozoic metavolcanic rocks. Geology, 48(11): 1110-1114 DOI:10.1130/G47658.1
Pitcairn IK, Craw D and Teagle DAH. 2015. Metabasalts as sources of metals in orogenic gold deposits. Mineralium Deposita, 50(3): 373-390 DOI:10.1007/s00126-014-0547-y
Qu XM, Wang HN and Rao B. 2000. Partial melting experiments of Jiaodong Group and their implication for the origin of the granties. Geochimica, 29(2): 153-161 (in Chinese with English abstract)
Rudnick RL and Gao S. 2014. Composition of the continental crust. In: Holland HD, Turekian HK (eds.). Treatise on Geochemistry. 2nd Edition. Amsterdam: Elsevier, 1-51
Sang LK and You ZD. 1992. Petrogenetic evolution of Linglong granites and their relationship to gold deposits in East Shandong Province. Earth Science (Journal of China University of Geosciences), 17(5): 521-529 (in Chinese with English abstract)
Shi CY, Yan MC, Liu CM, Chi QH, Hu SQ, Gu TX, Bu W and Yan WD. 2005. Abundances of chemical elements in granitoids of China and their characteristics. Geochimica, 34(5): 470-482 (in Chinese with English abstract)
Song MC, Song YX, Shen K, Jiang HL and Li SY. 2013. Geochemical features of deeply-seated gold deposit and discussions on some associated problems in Jiaojia gold ore field, Shandong Peninsula, China. Geochimica, 42(3): 274-289 (in Chinese with English abstract)
Song MC, Deng J, Yi PH, Yang LQ, Cui SX, Xu JX, Zhou ML, Huang TL, Song GZ and Song YX. 2014. The kiloton class Jiaojia gold deposit in eastern Shandong Province and its genesis. Acta Geologica Sinica, 88(3): 801-824 DOI:10.1111/1755-6724.12239
Song MC, Song YX, Li J and Li SY. 2015. Metallogenic series of gold and nonferrous metal deposits related to Cretaceous granites in eastern Shandong Peninsula, China. Geotectonica et Metallogenia, 39(5): 828-843 (in Chinese with English abstract)
Song MC, Zhou JB, Song YX, Wang B, Li SY, Li J and Wang SS. 2020. Mesozoic Weideshan granitoid suite and its relationship to large-scale gold mineralization in the Jiaodong Peninsula, China. Geological Journal, 55(8): 5703-5724 DOI:10.1002/gj.3607
Sun FY, Shi ZL and Feng BZ. 1995. Geology of Jiaodong Gold Deposit and C-H-O Fluid Differentiation and Mineralization of Mantle Source. Changchun: Jilin People's Press, 1-170 (in Chinese)
Sun HS, Sun L, Zhao XH, Yang KC, Cao XZ, Liu WS and Wang C. 2007. Ore-controlling evidence and ore prospecting significance of Guojialing granodiorite in Northwest Jiaodong Peninsula. Gold, 28(4): 14-18, 31 (in Chinese with English abstract)
Sun JG. 1999. Relations of gold abundance in geologic bodies to genesis of gold deposits, Jiaodong. Contributions to Geology and Mineral Resources Research, 14(2): 43-54 (in Chinese with English abstract)
Sun WD, Li S, Yang XY, Ling MX, Ding X, Duan LA, Zhan MZ, Zhang H and Fan WM. 2013. Large-scale gold mineralization in eastern China induced by an Early Cretaceous clockwise change in Pacific plate motions. International Geology Review, 55(3): 311-321 DOI:10.1080/00206814.2012.698920
Sun XL. 2014. Geological characteristics and genesis of the Xilaokou gold deposit in the margin of the Jiaolai basin, Jiaodong gold province. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-168 (in Chinese with English abstract)
Tan J, Wei JH, Audétat A and Pettke T. 2012. Source of metals in the Guocheng gold deposit, Jiaodong Peninsula, North China Craton: Link to Early Cretaceous mafic magmatism originating from Paleoproterozoic metasomatized lithospheric mantle. Ore Geology Reviews, 48: 70-87 DOI:10.1016/j.oregeorev.2012.02.008
Tian JP, Tian JX, Guo RP, Wei CS, Wang LG, Yu XW, Li XZ, Huang YB, Zhang CC, Liu HD and Zhu PG. 2016. Jiaodong-type gold deposit related to crust source remelting layered granite and crust-mantle mixed granodiorite. Acta Geologica Sinica, 90(5): 987-996 (in Chinese with English abstract)
Tian JP. 2020. The mesozoic gold polymetallic regional metallogeny in qipengfu ore concentration area, Jiaodong Peninsula. Ph. D. Dissertation. Beijing: China University of Geosciences (Beijing), 1-169 (in Chinese with English abstract)
Tian JP, Li JJ, Zhang PP, Li XZ, Liu WG, Tang WL, Fu C, Dang ZC and He JT. 2020. Formation of the Majiayao gold deposit, Jiaodong Peninsula, eastern China: Constraints from fluid inclusions, H-O-S-Pb isotopes, and pyrite Rb-Sr age. Geological Journal, 55(8): 5885-5902 DOI:10.1002/gj.3719
Vistelius AB. 1960. The skew frequency distributions and the fundamental law of the geochemical processes. The Journal of Geology, 68(1): 1-22 DOI:10.1086/626634
Wang CM, Deng J, Carranza EJM and Lai XR. 2014. Nature, diversity and temporal-spatial distributions of sediment-hosted Pb-Zn deposits in China. Ore Geology Reviews, 56: 327-351 DOI:10.1016/j.oregeorev.2013.06.004
Wang DH, Lin WW, Yang JM and Yan SH. 1999. Controlling effects of the mantle plume on the Jiaodong and Dian-Qian-Gui gold-concentration areas. Acta Geoscientia Sinica, 20(2): 157-162 (in Chinese with English abstract)
Wang HN, Chen J, Wang Y and Ding K. 1988. Geochemical studies of Au-bearing formation in Jiaodong Peninsula, Shandong Province. Geochimica, (3): 195-208 (in Chinese with English abstract)
Wang L. 2011. Study on the regional metallogenic model of lode gold deposits in the North China block. Ph. D. Dissertation. Changchun: Jilin University, 1-152 (in Chinese with English abstract)
Wang LG, Qiu YM, McNaughton NJ, Groves DI, Luo ZK, Huang JZ, Miao LC and Liu YK. 1998. Constraints on crustal evolution and gold metallogeny in the northwestern Jiaodong Peninsula, China, from SHRIMP U-Pb zircon studies of granitoids. Ore Geology Reviews, 13(1-5): 275-291 DOI:10.1016/S0169-1368(97)00022-X
Wang YW, Zhu FS and Gong RT. 2002. Study on the metallogenic chronology of gold deposits in Jiaodong gold concentration zone. Gold Geology, 8(4): 48-55 (in Chinese with English abstract)
Wang ZC, Cheng H, Zong KQ, Geng XL, Liu YS, Yang JH, Wu FY, Becker H, Foley S and Wang CY. 2020. Metasomatized lithospheric mantle for Mesozoic giant gold deposits in the North China craton. Geology, 48(2): 169-173 DOI:10.1130/G46662.1
Wang ZC, Xu Z, Cheng H, Zou Y, Guo JH, Liu YH, Yang JH, Zong KQ, Xiong L and Hu ZC. 2021. Precambrian metamorphic crustal basement cannot provide much gold to form giant gold deposits in the Jiaodong Peninsula, China. Precambrian Research, 354: 106045 DOI:10.1016/j.precamres.2020.106045
Xu SP, Deng J, Gao BF, Yang LQ and Jiang SQ. 2008. Traces elements characters and significance in ore prospecting in the Shanhou gold deposit, Jiaodong Peninsula. Geology and Prospecting, 44(5): 23-29 (in Chinese with English abstract)
Yan MC, Chi QH, Gu TX and Wang CS. 1997. Chemical composition of upper crust in eastern China. Science in China (Series D), 40(5): 530-539 DOI:10.1007/BF02877620
Yan MC, Chi QH, Gu TX and Wang CS. 1997. Chemical compositions of continental crust and rocks in eastern China. Geophysical & Geochemical Exploration, 21(6): 451-459 (in Chinese with English abstract)
Yang JH and Zhou XH. 2000. The Rb-Sr isochron of ore and pyrite sub-samples from Linglong gold deposit, Jiaodong Peninsula, eastern China and their geological significance. Chinese Science Bulletin, 45(14): 1547-1553 (in Chinese) DOI:10.1360/csb2000-45-14-1547
Yang JH, Zhou XH and Chen LH. 2000. Dating of gold mineralization for super-large altered tectonite-type gold deposits in northwestern Jiaodong Peninsula and its implications for gold metallogeny. Acta Petrologica Sinica, 16(3): 454-458 (in Chinese with English abstract)
Yang JH, Zhu MF, Liu W and Zhai MG. 2003. Geochemistry and petrogenesis of Guojialing granodiorites from the northwestern Jiaodong Peninsula, eastern China. Acta Petrologica Sinica, 19(4): 692-700 (in Chinese with English abstract)
Yang KF, Fan HR, Santosh M, Hu FF, Wilde SA, Lan TG, Lu LN and Liu YS. 2012. Reactivation of the Archean lower crust: Implications for zircon geochronology, elemental and Sr-Nd-Hf isotopic geochemistry of Late Mesozoic granitoids from northwestern Jiaodong Terrane, the North China Craton. Lithos, 146-147: 112-127 DOI:10.1016/j.lithos.2012.04.035
Yang KF, Jiang P, Fan HR, Zuo YB and Yang YH. 2018. Tectonic transition from a compressional to extensional metallogenic environment at ~120Ma revealed in the Hushan gold deposit, Jiaodong, North China Craton. Journal of Asian Earth Sciences, 160: 408-425 DOI:10.1016/j.jseaes.2017.08.014
Yang LQ, Deng J, Goldfarb RJ, Zhang J, Gao BF and Wang ZL. 2014. 40Ar/39Ar geochronological constraints on the formation of the Dayingezhuang gold deposit: New implications for timing and duration of hydrothermal activity in the Jiaodong gold province, China. Gondwana Research, 25(4): 1469-1483 DOI:10.1016/j.gr.2013.07.001
Yang LQ, Deng J, Wang ZL, Zhang L, Guo LN, Song MC and Zheng XL. 2014. Mesozoic gold metallogenic system of the Jiaodong gold province, eastern China. Acta Petrologica Sinica, 30(9): 2447-2467 (in Chinese with English abstract)
Yang LQ, Deng J, Song MC, Yu XF, Wang ZL, Li RH and Wang SR. 2019. Structure control on formation and localization of giant deposits: An example of Jiaodong gold deposits in China. Geotectonica et Metallogenia, 43(3): 431-446 (in Chinese with English abstract)
Yang QY. 2013. Mesozoic magmatism and metalogeny geodynamics of Linglong gold deposit in Jiaodong Peninsula, eastern North China craton. Master Degree Thesis. Beijing: China University of Geosciences (Beijing), 1-143 (in Chinese with English abstract)
Yang SW. 1986. A discussion on the Jiaodong Group strata, the source-bed of gold and the stratabound features of gold ore deposits in northwestern part of Jiaodong Peninsula. Contributions to Geology and Mineral Resources Research, 1(2): 1-12 (in Chinese)
Yang ZF. 1998. The Evolution of Regional Crust and the Geochemistry on Gold Mineralization in Jiaodong. Beijing: Geological Publishing House, 1-152 (in Chinese)
Yang ZY, Yu XW, Zhang W, Wang LG, Wang QY and Guo RP. 2020. 40Ar/39Ar age and its significance of sericite in pyrite sericite in Sanshandao gold deposit in northwest of Shandong Province. Shandong Land and Resources, 36(7): 1-8 (in Chinese with English abstract)
Yu XF, Li HK and Shan W. 2012. Study on coupling between Yanshannian tectonic thermal events and gold mineralization in Jiaodong ore concentrating area in Shandong Province. Acta Geologica Sinica, 86(12): 1946-1956 (in Chinese with English abstract)
Zhang J, Zhao ZF, Zheng YF and Dai MN. 2010. Postcollisional magmatism: Geochemical constraints on the petrogenesis of Mesozoic granitoids in the Sulu orogen, China. Lithos, 119(3-4): 512-536 DOI:10.1016/j.lithos.2010.08.005
Zhang L, Yang LQ, Wang ZL and Liu Y. 2013. Numerical simulation of ore-controlling tectonic stress field in Jiaojia gold belt. Geological Journal of China Universities, 19(Suppl.1): 406 (in Chinese)
Zhang L, Liu Y, Li RH, Huang T, Zhang RZ, Chen BH and Li JK. 2014. Lead isotope geochemistry of Dayingezhuang gold deposit, Jiaodong Peninsula, China. Acta Petrologica Sinica, 30(9): 2468-2480 (in Chinese with English abstract)
Zhang LC, Shen YC, Liu TB, Zeng QD, Li GM and Li HM. 2002. 40Ar/39Ar and Rb-Sr isochron dating of the gold deposits on northern margin of the Jiaolai Basin, Shandong, China. Science in China (Series D), 46(7): 708-718
Zhang T and Zhang YQ. 2008. Late Mesozoic tectono-magmatic evolution history of the Jiaobei uplift, Shandong Peninsula. Acta Geologica Sinica, 82(9): 1210-1228 (in Chinese with English abstract)
Zhang XO, Cawood PA, Wilde SA, Liu RQ, Song HL, Li W and Snee LW. 2003. Geology and timing of mineralization at the Cangshang gold deposit, north-western Jiaodong Peninsula, China. Mineralium Deposita, 38(2): 141-153 DOI:10.1007/s00126-002-0290-7
Zhou JB, Zheng YF and Zhao ZF. 2003. Zircon U-Pb dating on Mesozoic granitoids at Wulian, Shangdong Province. Geological Journal of China Universities, 9(2): 185-194 (in Chinese with English abstract)
Zhou Y, Zheng PX, Wang TF and Zhang YJ. 2007. Isotope geochemistry of fluid inclusions within quartz vines of gold deposits in the hanging wall for Zhaoping fault. Acta Petrologica Sinica, 23(9): 2274-2278 (in Chinese with English abstract)
Zhu DC, Xu QL, Lyu DW, Yang SP, Yang ZY, Yang Q and Shen XL. 2018. The Relationship between lamprophyre and gold mineralization in the Denggezhuang gold deposit along the Northern section of the Mouping-Rushan metallogenic belt. Acta Geoscientia Sinica, 39(3): 319-328 (in Chinese with English abstract)
Zhu RX, Fan HR, Li JW, Meng QR, Li SR and Zeng QD. 2015. Decratonic gold deposits. Science China (Earth Sciences), 58(9): 1523-1537 DOI:10.1007/s11430-015-5139-x
Zhu YF and An F. 2010. Geochemistry of hydrothermal mineralization: Taking gold deposit as an example. Earth Science Frontiers, 17(2): 45-52 (in Chinese with English abstract)
蔡亚春, 范宏瑞, 胡芳芳, 杨奎峰, 蓝廷广, 于虎, 柳玉明. 2011. 胶东胡八庄金矿成矿流体、稳定同位素及成矿时代研究. 岩石学报, 27(5): 1341-1351.
陈炳翰. 2017. 牟乳金矿带成矿作用地球化学. 博士学位论文. 北京: 中国地质大学(北京), 1-157
陈玉民, 曾庆栋, 孙之夫, 王昭坤, 范宏瑞, 肖风利, 褚少雄. 2019. 胶东金地球化学背景研究. 黄金科学技术, 27(6): 791-801.
成秋明. 2000. 多维分形理论和地球化学元素分布规律. 地球科学(中国地质大学学报), 25(3): 311-318.
迟清华. 2002. 金在地壳、岩石和沉积物中的丰度. 地球化学, 31(4): 347-353. DOI:10.3321/j.issn:0379-1726.2002.04.006
邓军, 徐守礼, 方云, 周显强, 万丽. 1996. 胶东西北部构造体系及金成矿动力学. 北京: 地质出版社, 1-100.
邓军, 杨立强, 翟裕生, 丁式江, 陈从喜, 韩淑琴, 孙忠实, 王建平, 陈学明, 梁德超, 孟庆芬. 1999. 地质体元素组合与矿源系统组成及演化. 地球学报, 20(增1): 414-419.
邓军, 杨立强, 孙忠实, 丁式江, 王建平, 孟庆芬, 韩淑琴. 2000. 矿源系统地质-地球化学例析. 现代地质, 14(2): 165-172. DOI:10.3969/j.issn.1000-8527.2000.02.008
邓军, 杨立强, 刘伟, 孙忠实, 李新俊, 王庆飞. 2001. 胶东招掖矿集区巨量金质来源和流体成矿效应. 地质科学, 36(3): 257-268. DOI:10.3321/j.issn:0563-5020.2001.03.001
丁正江, 孙丰月, 刘福来, 刘建辉, 刘殿浩, 张丕建, 杜圣贤, 李兵. 2013. 胶东伟德山地区铜钼多金属矿锆石U-Pb法测年及其地质意义. 岩石学报, 29(2): 607-618.
丁正江. 2014. 胶东中生代贵金属及有色金属矿床成矿规律研究. 博士学位论文. 长春: 吉林大学, 1-194
杜泽忠, 程志中, 姚晓峰, 于晓飞, 孙海瑞, 鲍兴隆, 李少华. 2020. 胶东谢家沟金矿床蚀变钾长石40Ar-39Ar年龄及地质意义. 吉林大学学报(地球科学版), 50(5): 1570-1581.
冯凯, 范宏瑞, 杨奎锋, 刘玄, 蔡亚春, 马伟东. 2017. 胶东马家窑金矿成矿年龄及矿床成因研究. 见: 第八届全国成矿理论与找矿方法学术讨论会论文集. 南昌: 《矿物学报》编辑部, 557
龚庆杰, 周连壮, 胡杨, 闫磊, 张翰奇, 贾玉杰. 2012. 胶东玲珑金矿田煌斑岩蚀变过程元素迁移行为及其意义. 现代地质, 26(5): 1065-1077. DOI:10.3969/j.issn.1000-8527.2012.05.028
关康, 罗镇宽, 苗来成, 黄佳展. 1998. 胶东招掖郭家岭型花岗岩锆石SHRIMP年代学研究. 地质科学, 33(3): 318-328.
郭春影. 2009. 胶东三山岛-仓上金矿带构造-岩浆-流体金成矿系统. 博士学位论文. 北京: 中国地质大学(北京), 1-187
郭敬辉, 陈福坤, 张晓曼, Siebel W, 翟明国. 2005. 苏鲁超高压带北部中生代岩浆侵入活动与同碰撞-碰撞后构造过程: 锆石U-Pb年代学. 岩石学报, 21(4): 1281-1301.
赫英, 董振信, 岳可芬, 张战军, 陈金武, 王新. 2004. 中国东部地幔岩包体中的金含量及其成矿学意义. 地质论评, 50(4): 418-425. DOI:10.3321/j.issn:0371-5736.2004.04.013
侯明兰, 蒋少涌, 姜耀辉, 凌洪飞. 2006. 胶东蓬莱金成矿区的S-Pb同位素地球化学和Rb-Sr同位素年代学研究. 岩石学报, 22(10): 2525-2533.
胡芳芳, 范宏瑞, 杨进辉, 万渝生, 刘敦一, 翟明国, 金成伟. 2004. 胶东乳山含金石英脉型金矿的成矿年龄: 热液锆石SHRIMP法U-Pb测定. 科学通报, 49(12): 1191-1198. DOI:10.3321/j.issn:0023-074X.2004.12.014
胡芳芳, 范宏瑞, 杨进辉, 王非, 翟明国. 2006. 胶东乳山金矿蚀变岩中绢云母40Ar/39Ar年龄及其对金成矿事件的制约. 矿物岩石地球化学通报, 25(2): 109-114. DOI:10.3969/j.issn.1007-2802.2006.02.001
胡世玲, 王松山, 桑海清, 裘冀, 张任祜. 1987. 山东玲珑和郭家岭岩体的同位素年龄及其地质意义. 岩石学报, 3(3): 85-91.
姜晓辉, 范宏瑞, 胡芳芳, 杨奎锋, 孙宗锋, 孙之夫. 2011. 胶西北留村金矿成矿流体特征与矿床成因. 矿床地质, 30(3): 511-521. DOI:10.3969/j.issn.0258-7106.2011.03.013
李厚民, 毛景文, 沈远超, 刘铁兵, 张连昌. 2003. 胶西北东季金矿床钾长石和石英的Ar-Ar年龄及其意义. 矿床地质, 22(1): 72-77. DOI:10.3969/j.issn.0258-7106.2003.01.008
李建威, 毕诗健, Paulo V. 2010. 胶东苏鲁地体范家埠金矿成矿作用与矿床成因浅析: 兼与胶北地体金矿对比. 高校地质学报, 16(2): 125-142. DOI:10.3969/j.issn.1006-7493.2010.02.001
李杰, 张丽鹏, 李聪颖, 姜梦瑶. 2020. 胶东郭城金矿床黄铁矿Rb-Sr等时线年龄. 中国地质, 47(3): 894-895.
李金祥. 2005. 胶东西北部招平断裂带构造特征与成矿. 博士学位论文. 北京: 中国地质大学(北京), 1-115
李瑞红, 王学求, 迟清华, 张必敏, 柳青青, 刘汉粮. 2019. 胶东水系沉积物金地球化学异常分布规律及其意义. 地学前缘, 26(4): 221-230.
黎彤. 1992. 地壳元素丰度的若干统计特征. 地质与勘探, 28(10): 1-7.
李勇, 丁正江, 薄军委, 宋明春, 吴凤萍, 李国华, 李婷婷. 2018. 胶莱盆地东北缘地区成矿元素地球化学特征及成矿潜力分析. 黄金, 39(8): 15-21.
刘辅臣, 卢作祥, 范永香, 孔庆存, 宫润潭. 1984. 玲珑金矿中基性脉岩与矿化关系探讨. 地球科学(武汉地质学院学报), (4): 37-45.
刘连登, 姚凤良, 孔庆存, 宫润谭. 1984. 岩脉在热液矿床成因研究中的意义——以胶东西北部金矿床为例. 长春地质学院学报, (4): 13-28.
刘燊. 2004. 山东地区中生代岩浆作用与地壳拉张-兼论煌斑岩与金成矿的关系. 博士学位论文. 贵阳: 中国科学院地球化学研究所, 1-96
罗贤冬, 杨晓勇, 段留安, 孙卫东. 2014. 胶北地块与金成矿有关的郭家岭岩体和上庄岩体年代学及地球化学研究. 地质学报, 88(10): 1874-1888.
罗镇宽, 关康, 苗来成. 2001. 胶东玲珑金矿田煌斑岩脉与成矿关系的讨论. 黄金地质, 7(4): 15-21.
吕古贤. 1998. 胶东玲珑-焦家式金矿床矿源岩系系列研究. 矿床地质, 17(增5): 935-938.
毛景文, 赫英, 丁悌平. 2002. 胶东金矿形成期间地幔流体参与成矿过程的碳氧氢同位素证据. 矿床地质, 21(2): 121-128. DOI:10.3969/j.issn.0258-7106.2002.02.004
毛景文, 李厚民, 王义天, 张长青, 王瑞廷. 2005. 地幔流体参与胶东金矿成矿作用的氢氧碳硫同位素证据. 地质学报, 79(6): 839-857. DOI:10.3321/j.issn:0001-5717.2005.06.013
苗来成, 罗镇宽, 关康, 黄佳展. 1998. 玲珑花岗岩中锆石的离子质谱U-Pb年龄及其岩石学意义. 岩石学报, 14(2): 71-79.
牛树银, 孙爱群, 张建珍, 马宝军, 王宝德, 陈超, 张福祥, 刘成, 张晓飞. 2011. 胶东西北部金矿集中区深部控矿构造探讨. 地质学报, 85(7): 1094-1107.
庞绪成. 2005. 山东焦家金矿矿床地球化学特征及深部矿体预测研究. 博士学位论文. 成都: 成都理工大学, 1-142
曲晓明, 王鹤年, 饶冰. 2000. 胶东群部分熔化实验及其对花岗岩成因的指示. 地球化学, 29(2): 153-161. DOI:10.3321/j.issn:0379-1726.2000.02.007
桑隆康, 游振东. 1992. 玲珑花岗岩的成因演化及其与鲁东金矿的关系. 地球科学(中国地质大学学报), 17(5): 521-529.
史长义, 鄢明才, 刘崇民, 迟清华, 胡树起, 顾铁新, 卜维, 鄢卫东. 2005. 中国花岗岩类化学元素丰度及特征. 地球化学, 34(5): 470-482. DOI:10.3321/j.issn:0379-1726.2005.05.005
宋明春, 宋英昕, 沈昆, 姜洪利, 李世勇. 2013. 胶东焦家深部金矿矿床地球化学特征及有关问题讨论. 地球化学, 42(3): 274-289. DOI:10.3969/j.issn.0379-1726.2013.03.009
宋明春, 宋英昕, 李杰, 李世勇. 2015. 胶东与白垩纪花岗岩有关的金及有色金属矿床成矿系列. 大地构造与成矿学, 39(5): 828-843.
孙丰月, 石准立, 冯本智. 1995. 胶东金矿地质及幔源C-H-O流体分异成岩成矿. 长春: 吉林人民出版社, 1-170.
孙华山, 孙林, 赵显辉, 杨开春, 曹新志, 刘文胜, 王超. 2007. 招掖地区郭家岭花岗岩控矿的几点证据及找矿指示意义. 黄金, 28(4): 14-18, 31. DOI:10.3969/j.issn.1001-1277.2007.04.004
孙景贵. 1999. 胶东地区地质体的含金性与金成矿关系. 地质找矿论丛, 14(2): 43-54. DOI:10.3969/j.issn.1001-1412.1999.02.007
孙兴丽. 2014. 山东胶莱盆地西涝口金矿床的特征和成因. 博士学位论文. 北京: 中国地质大学(北京), 1-168
田杰鹏, 田京祥, 郭瑞朋, 韦昌山, 王立功, 于晓卫, 李秀章, 黄永波, 张春池, 刘汉栋, 祝培刚. 2016. 胶东型金矿: 与壳源重熔层状花岗岩和壳幔混合花岗闪长岩有关的金矿. 地质学报, 90(5): 987-996. DOI:10.3969/j.issn.0001-5717.2016.05.011
田杰鹏. 2020. 胶东栖蓬福矿集区中生代金多金属矿区域成矿作用. 博士学位论文. 北京: 中国地质大学(北京), 1-169
王登红, 林文蔚, 杨建民, 阎升好. 1999. 试论地幔柱对于我国两大金矿集中区的控制意义. 地球学报, 20(2): 157-162. DOI:10.3321/j.issn:1006-3021.1999.02.007
王鹤年, 陈骏, 汪耀, 丁抗. 1988. 胶东金矿含金建造的地球化学研究. 地球化学, (3): 195-208. DOI:10.3321/j.issn:0379-1726.1988.03.001
王力. 2011. 华北地块脉状金矿床区域成矿模式研究. 博士学位论文. 长春: 吉林大学, 1-152
王义文, 朱奉三, 宫润潭. 2002. 胶东金矿集中区金矿成矿年代学研究. 黄金地质, 8(4): 48-55.
徐述平, 邓军, 高帮飞, 杨立强, 江少卿. 2008. 胶东山后金矿床地质体微量元素特征及找矿意义. 地质与勘探, 44(5): 23-29.
鄢明才, 迟清华, 顾铁新, 王春书. 1997. 中国东部地壳元素丰度与岩石平均化学组成研究. 物探与化探, 21(6): 451-459.
杨进辉, 周新华. 2000. 胶东地区玲珑金矿矿石和载金矿物Rb-Sr等时线年龄与成矿时代. 科学通报, 45(14): 1547-1553. DOI:10.3321/j.issn:0023-074X.2000.14.018
杨进辉, 周新华, 陈立辉. 2000. 胶东地区破碎带蚀变岩型金矿时代的测定及其地质意义. 岩石学报, 16(3): 454-458.
杨进辉, 朱美妃, 刘伟, 翟明国. 2003. 胶东地区郭家岭花岗闪长岩的地球化学特征及成因. 岩石学报, 19(4): 692-700.
杨立强, 邓军, 王中亮, 张良, 郭林楠, 宋明春, 郑小礼. 2014. 胶东中生代金成矿系统. 岩石学报, 30(9): 2447-2467.
杨立强, 邓军, 宋明春, 于学峰, 王中亮, 李瑞红, 王偲瑞. 2019. 巨型矿床形成与定位的构造控制: 胶东金矿集区剖析. 大地构造与成矿学, 43(3): 431-446.
阳琼艳. 2013. 胶东玲珑金矿中生代岩浆作用与金成矿动力学研究. 硕士学位论文. 北京: 中国地质大学(北京), 1-133
杨士望. 1986. 论胶东半岛西北部胶东群地层、金的矿源层和金矿床的层控性质. 地质找矿论丛, 1(2): 1-12.
杨振毅, 于晓卫, 张文, 王立功, 王巧云, 郭瑞朋. 2020. 胶西北三山岛金矿黄铁绢英岩绢云母40Ar/39Ar年龄及其意义. 山东国土资源, 36(7): 1-8.
杨忠芳. 1998. 胶东区域地壳演化与金成矿作用地球化学. 北京: 地质出版社, 1-152.
于学峰, 李洪奎, 单伟. 2012. 山东胶东矿集区燕山期构造热事件与金矿成矿耦合探讨. 地质学报, 86(12): 1946-1956. DOI:10.3969/j.issn.0001-5717.2012.12.007
张连昌, 沈远超, 刘铁兵, 曾庆栋, 李光明, 李厚民. 2002. 山东胶莱盆地北缘金矿Ar-Ar法和Rb-Sr等时线年龄与成矿时代. 中国科学(D辑), 32(9): 727-734.
张良, 杨立强, 王中亮, 刘跃. 2013. 焦家金矿带控矿构造应力场数值模拟. 高校地质学报, 19(增1): 406.
张良, 刘跃, 李瑞红, 黄涛, 张瑞忠, 陈炳翰, 李金奎. 2014. 胶东大尹格庄金矿床铅同位素地球化学. 岩石学报, 30(9): 2468-2480.
张田, 张岳桥. 2008. 胶北隆起晚中生代构造-岩浆演化历史. 地质学报, 82(9): 1210-1228. DOI:10.3321/j.issn:0001-5717.2008.09.006
周建波, 郑永飞, 赵子福. 2003. 山东五莲中生代岩浆岩的锆石U-Pb年龄. 高校地质学报, 9(2): 185-194. DOI:10.3969/j.issn.1006-7493.2003.02.004
周燕, 郑培玺, 王铁夫, 张延洁. 2007. 招平断裂带上盘金矿床石英流体包裹体同位素组成特征及地质意义. 岩石学报, 23(9): 2274-2278. DOI:10.3969/j.issn.1000-0569.2007.09.025
祝德成, 许庆林, 吕大炜, 杨仕鹏, 杨振毅, 杨庆, 沈晓丽. 2018. 牟乳成矿带北段邓格庄金矿煌斑岩与金矿成矿关系. 地球学报, 39(3): 319-328.
朱日祥, 范宏瑞, 李建威, 孟庆任, 李胜荣, 曾庆栋. 2015. 克拉通破坏型金矿床. 中国科学(地球科学), 45(8): 1153-1168.
朱永峰, 安芳. 2010. 热液成矿作用地球化学: 以金矿为例. 地学前缘, 17(2): 45-52.