岩石学报  2021, Vol. 37 Issue (11): 3377-3398, doi: 10.18654/1000-0569/2021.11.08   PDF    
俯冲带变质作用与构造机制
张泽明1,2, 丁慧霞2, 董昕1, 田作林1, 杜瑾雪2     
1. 中国地质科学院地质研究所, 北京 100037;
2. 中国地质大学(北京)地球科学与资源学院, 北京 100083
摘要: 形成在汇聚板块边缘的俯冲带由俯冲岩石圈板块和上部岩石圈板块组成,具有不对称的热结构。俯冲岩石圈板块具有冷的地温梯度,而上部岩石圈板块具有热的地温梯度。俯冲板块的变质作用发生在5~15℃/km地温梯度下,可进一步划分为冷俯冲板块型(5~10℃/km)和热俯冲板块型(10~15℃/km),即西阿尔卑斯型和古巴型。俯冲带上板块的变质作用发生15~50℃/km地温梯度下,可进一步划为冷地壳型(15~25℃/km)和热地壳型(25~50℃/km),统称为科迪勒拉型。冷俯冲板块的变质作用是以大洋和大陆地壳岩石深俯冲到地幔,发生低温/高压及超高压变质作用为特征。所形成的低温/高压和超高压变质岩具有顺时针型P-T轨迹,其折返过程是以近等温或升温降压和部分熔融为特征。热俯冲板块型变质作用发生在年轻板块的正常俯冲和古老板块的平缓俯冲过程中。从大洋岩石圈初始俯冲到成熟俯冲,俯冲板块的地温梯度由热到冷,从热俯冲型转变成冷俯冲型。热俯冲板块的变质岩可具有顺时针型,也可具有逆时针型P-T轨迹,可以发生高温和高压下的部分熔融,形成埃达克质岩浆岩。俯冲带上板块的冷地壳型变质作用发生在构造挤压导致的加厚地壳环境,加厚的下地壳发生高温、高压麻粒岩相和榴辉岩相变质作用,可具有顺时针和逆时针型P-T轨迹。加厚新生下地壳的部分熔融形成埃达克质岩浆和高密度的基性残留体(弧榴辉岩)。热地壳型变质作用发生在构造伸展导致的减薄地壳环境。由于强烈的幔源岩浆增生和软流圈上涌,下地壳发生高温或超高温麻粒岩相变质作用和部分熔融,所形成的变质岩可具有顺时针型或逆时针型P-T轨迹。在岩浆弧加厚地壳的伸展过程中,早先形成的高温和高压变质岩可以叠加超高温变质作用。俯冲带上板块的岩浆弧可能是超高温变质岩形成的最主要构造环境。上板块下地壳的部分熔融可以形成大体积的花岗岩,由此导致新生地壳组成和成分的分异,是大陆地壳生长和成熟的重要机制。大陆碰撞造山带的加厚下地壳具有冷的地温梯度,可以发生高压麻粒岩和榴辉岩相变质作用。这些高级变质岩具有顺时针型P-T轨迹,在其折返过程中叠加中压、高温,甚至超高温变质作用。碰撞造山带下地壳的长期部分熔融可以形成不同成分的壳源花岗岩。
关键词: 俯冲带    变质作用    P-T轨迹    部分熔融    构造机制    
Metamorphism and tectonic mechanisms of subduction zones
ZHANG ZeMing1,2, DING DING HuiXia2, DONG Xin1, TIAN ZuoLin1, DU JinXue2     
1. Institute of Geology, Chinese Academy of Geological Sciences, Beijing 100037, China;
2. School of Earth Sciences and Resources, Chinese University of Geosciences, Beijing 100083, China
Abstract: Subduction zones at the convergent plate margins consist of the subducting and upper lithosphere plates, and have an asymmetric thermal structure. The subducting lithosphere plate has a clod thermal gradient (5~15℃/km), and the upper lithosphere plate has a hot thermal gradient (15~50℃/km). Metamorphism in the subducting plate can be divided into the cold subducting plate (5~10℃/km), and hot subducting plate (10~15℃/km) types, called the Western Alpine and Cuban types, respectively. The upper plate metamorphism is generally called the Cordilleran type, and further divided into the cold crust (15~25℃/km) and hot crust (25~50℃/km) types. Metamorphism of the cold subducting plate is characterized by oceanic and continental crustal rocks subducting into the deep mantle, and experiencing ultrahigh-pressure (UHP) metamorphism. The generated UHP rocks have clockwise pressure (P)-temperature (T) paths, and experienced isothermal or temperature-increasing and decompressional metamorphism and partial melting during their exhumation. Metamorphism of the hot subducting plate occurred during normal subduction of young lithosphere and spreading mid-oceanic ridge, and shallow or flat subduction of old lithosphere. From the initial to mature subduction of oceanic lithosphere, the subducting plate has increasing thermal gradient, and transforming from a hot subduction to a clod subduction. Metamorphic rocks in the hot subducting plate have clockwise and counterclockwise P-T paths, and experienced high-temperature (HT) and high-pressure (HP) metamorphism and partial melting to generate adakitic melts during their burial. The cold crust type of metamorphism occurred at a thickened crustal environment that resulted from of the upper plate compression. The thickened lower crustal rocks have clockwise and counterclockwise P-T paths, experienced HT and HP granulite-facies to eclogite-facies metamorphism and partial melting to generate adakitic melts and dense residues of arclogite. The hot crust type of metamorphism occurred at the thinning crustal environment that was induced by the upper plate extension. The lower crustal rocks undergone HT to ultra-high temperature (UHT) granulite-facies metamorphism and partial melting due to accretion of mantle-derived magma, and upper welling of asthenosphere, and with clockwise and counterclockwise P-T paths. During the extension of thickened crust of the upper plate, the early-generated HT and HP metamorphic rocks commonly overprinted UHT metamorphism. Therefore, the magmatic arcs of subduction zone upper plates were probably main tectonic environment of UHT metamorphism. The partial melting of lower crust of upper plate can produces a large volume of granites, and in turn results in differentiation of component and composition of juvenile crusts, forming a key mechanism of growth and maturation of continental crust. The thickened lower crust of continental collisional orogens has a cold thermal gradient, and is characterized by HP granulite-and eclogite-facies metamorphism. The HP rocks have clockwise P-T paths, and commonly overprinted medium-pressure and HT to UHT metamorphism. The prolonged partial melting of the thickened lower crust of collisional orogens resulted in formation of crust-derived granites with variable geochemical compositions.
Key words: Subduction zone    Metamorphism    P-T paths    Partial melting    Tectonic mechanism    

变质岩形成的压力(P)、温度(T)条件和P-T轨迹与变质作用发生时的构造环境和动力学过程相关。都城秋穗(Miyashiro, 1961, 1972, 1973)最早将变质岩的形成条件与发生的构造环境关联起来,提出了变质相系的概念。按照地温(热)梯度的不同,他把区域变质作用划分为低压、中压和高压相系。低压相系又称低压型,或红柱石-矽线石型,以泥质变质岩中出现红柱石(低级)和夕线石(高级)为特征,地温梯度大于35℃/km。中压相系又称中压型,或蓝晶石-夕线石型,地温梯度在35~25℃/km之间,相当于Barrovian(巴洛)变质带。高压相系又称高压型,或蓝闪石型,以基性岩中出现硬玉+石英、蓝闪石和硬柱石等矿物为特征,地温梯度于小15℃/km。Miyashiro (1961)提出了双变质带(paired metamorphic belt)的概念。他发现在环太平洋火山弧带高压型和中压型变质带成对出现,在大洋一侧(俯冲板块)出现高压型变质带,而在火山弧或大陆一侧(上板块)出现中压型变质带。变质相系和双变质带是通过变质作用发生时的地温梯度,把变质作用P-T条件与大地构造环境结合起来,对变质岩石学的发展起到了重要作用。而且,它不仅为变质地质学理论的形成奠定了基础,也为板块构造理论提供了岩石学证据(Miyashiro, 1961, 1972; Dewey and Bird, 1970; Oxburgh and Turcotte, 1971; Ernst, 1971, 1972; Katz, 1972)。后来的研究多认为,低压型变质作用多发生在岩浆弧、洋中脊和接触变质晕,中压型变质作用发生在大陆碰撞造山带,而高压型变质作用形成在俯冲带(Dasgupta and Bhowmik, 2021)。

超高压和超高温地壳变质岩的发现不仅大大地拓展了地壳岩石变质作用的温度与压力条件范围(Chopin, 1984, 2003; Smith, 1984; Sobolev and Shatsky, 1990; O'Brien et al., 2001; Harley, 1998, 2008; Liu et al., 2018),开启了变质岩石学与变质地质学研究的新时代,也发展了板块构造与地球动力学理论,并由此使变质地质学成为地球科学的重大前沿研究方向(Brown, 2006, 2007a, 2014; Agard et al., 2009; Zheng et al., 2011; Kelsey and Hand, 2015; Zheng and Chen, 2016, 2017; Brown and Johnson, 2018, 2019; Holder et al., 2019; Zheng and Zhao, 2020)。但是,随着研究的深入,我们发现导致变质作用发生的构造环境与动力学过程不仅存在多样性,也存在明显的时间与空间变化。因此,不能简单地将地温梯度或变质相系与构造环境关联起来。

俯冲带形成于汇聚板块边缘,由俯冲岩石圈板块(subducting lithosphere plate)和上部(驮)岩石圈板块(upper plate或overriding lithosphere plate)组成(图 1)。俯冲岩石圈板块包括俯冲隧道,上部岩石圈板块包括增生楔、火山(岩浆)弧、弧地壳和地幔楔。俯冲带是以岩石圈的水平和垂(斜)向运动、地幔(软流圈)对流、强烈的幔源与壳源岩浆作用、弧地壳的加厚与减薄,即以物质(包括流体)与热的强烈交换(循环或再循环)为特征。因此,处于俯冲带中的地壳岩石会因为强烈的温度、压力和流体变化而发生变质作用和部分熔融。俯冲带是地壳变质作用最为强烈的构造位置。由板块汇聚形成的增生和碰撞造山带核部主要由中、高级变质岩和相关的岩浆岩组成。

图 1 俯冲带的板块组成、热结构、变质作用与部分熔融特征 俯冲带由俯冲岩石圈板块(subducting lithosphere plate)和上(驮)岩石圈板块(upper plate或overriding lithosphere plate)构成.由于岩石圈的单边斜向俯冲,俯冲带具有不对称的热结构,俯冲板块具有低的地温梯度,以发生低温、高压蓝片岩相和榴辉岩相变质作用为特征;而上板块具有高的地温梯度,以发生高温、中-高压角闪岩相和麻粒岩相变质作用为特征. 两个同时代、不同类型变质带构成双变质带. 水化的地幔楔发生部分熔融形成基性岩浆,火山弧下地壳部分熔融形成花岗岩浆. 图中表示有600℃和1000℃等温线的大致位置 Fig. 1 Plate architecture, thermal structure, metamorphism and partial melting of subduction zone HP-high pressure; HT-high temperature; LT-low temperature; MP-medium pressure

以前的研究大多认为,俯冲板块以发生低温、高压(超高压)变质作用为特征,而上板块(岩浆弧)以发生高温、低压变质作用为特征。但是,在俯冲带的长期和复杂演化过程中,其变质作用特征不仅存在空间上的差异性,也随时间不断变化。本文第一次对俯冲带变质作用类型进行了划分,对俯冲板块和上板块变质作用的基本特征、变质作用P-T轨迹、部分熔融,以及变质作用发生的构造机制进行了初步总结。我们以前所称的俯冲带变质作用实际上就是俯冲板块的变质作用,其一直是变质岩石学与变质地质学研究的重点,为大家所熟知。与其相比,俯冲带上板块的变质作用,特别是上板块与俯冲板块变质作用的相互关系,研究相对较少,关注程度较低。因此,本文重点是对俯冲带上板块变质作用进行总结,并探讨其与俯冲带构造演化、大陆地壳生长和再造的关系。

1 俯冲带变质作用的类型划分

俯冲带是以一个岩石圈板块斜向俯冲到另一个岩石圈板块之下为特征,所以俯冲带具有不对称的热结构,即俯冲的岩石圈板块具有低的地温梯度,以发生蓝片岩相和榴辉岩相高压变质作用为特征,而上部岩石圈板块具有高的地温梯度,出现角闪岩相、麻粒岩相,甚至榴辉岩相变质岩(图 1图 2)。在俯冲板块形成的高压变质带与在上板块形成的中压变质带可以同时存在,构成空间上并置的双变质带。因此,在俯冲带形成的变质岩具有双峰式的地温梯度特征。这被认为是地球上存在板块构造的重要标志(Brown, 2010a, b; Brown and Johnson, 2018, 2019; Holder et al., 2019; Zheng, 2021; Zheng and Zhao, 2020)。

图 2 俯冲带变质相分布图(据Winter, 2014修改) 从浅部到深部,俯冲洋壳发生浊沸石相、葡萄石-绿纤石相、蓝片岩相到榴辉岩相变质作用,上板块(火山弧加厚地壳)发生浊沸石相、葡萄石-绿纤石相、绿片岩相、绿帘角闪岩相、角闪岩相、麻粒岩相和榴辉岩相变质作用和部分熔融 Fig. 2 Metamorphic facies distribution of subduction zone (modified after Winter, 2014)

大量的研究结果显示,俯冲带变质岩形成的温度和压力条件变化很大,可以覆盖所有已知变质岩的温度与压力条件范围(图 3)。在温度与压力图上,俯冲板块岩石的变质条件大多在5~15℃/km地温梯度线之间区域,而上板块岩石的变质条件多在大于15℃/km地温梯度线区域(图 3)。所以,我们将15℃/km地温梯度线作为俯冲板块与上板块变质作用条件的分界线。俯冲板块的变质作用主要发生在蓝片岩相、高压榴辉岩相和超高压榴辉岩相条件下,少部分发生在低温的绿片岩相和绿帘-角闪岩相条件下。上板块的变质作用主要发在角闪岩相、麻粒岩相、高压麻粒岩相和超高温麻粒岩相条件下,个别可达高压榴辉岩相变质条件(图 3)。

图 3 俯冲带变质作用的类型划分 俯冲带的变质作用可划分俯冲板块和上板块两个大类. 俯冲板块的变质作用可进一步划分为冷俯冲板块与热俯冲板块型,即西阿尔卑斯型(Western Alpine)和古巴型(Cuban). 上板块的变质作用可进一步划分为冷地壳型(Cold crust)与热地壳型(Hot crust),统称为科迪勒拉型(Cordilleran). 俯冲板块变质岩的形成条件来自于Penniston-Dorland et al., 2015; 上板块变质岩的形成条件据Pickett and Saleeby, 1993; Searle et al., 1989; Yoshino et al., 1998; Daczko et al., 2001; Rolland et al., 2001, 2006; Kidder et al., 2003; Valley et al., 2003; Yoshino and Okudaira, 2004; Hacker et al., 2008, 2011a; De Paoli et al., 2009; Miller and Snoke, 2009; Scott et al., 2009; 王金丽等, 2009; Stowell and Crawford, 2000; Stowell et al., 2010, 2014; Zhang et al., 2010a, b, 2013, 2014a, 2015a; Chapman et al., 2012, 2021; Dong et al., 2010, 2014, 2018b; 董昕等, 2012; Gordon et al., 2012; Otamendi et al., 2012; Tibaldi et al., 2013; Guo et al., 2012a, 2013; Palin et al., 2012, 2014; Pownall et al., 2014; 康东艳等, 2019; 牛志祥等, 2019; 秦圣凯等, 2019; Cipar et al., 2020; Ma et al., 2021; Ganade et al., 2021; 江媛媛等, 2020; Jiang et al., 2021; Wang et al., 2021a Fig. 3 Classification of metamorphic type in subduction zones WBS-wet basalt solidus; Metamorphic facies abbreviations: A-amphibolite facies, BS-Blueschist facies, EA-epidote-amphibolite facies, G-granulite facies; GS-greenschist facies, HP-E-high-pressure eclogite facies, HP-G-high-pressure granulite facies, PP-prehnite-pumpellyite facies, UHP-E-ultrahigh-pressure eclogite facies, UHT-G-ultrahigh-temperature granulite facies, Z-zeolite facies

尽管俯冲板块的变质岩形成在低的地温梯度下,但也有较大的温度和压力条件变化。基于现有研究成果,我们以10℃/km地温梯度线为界,可将俯冲板块的变质作用进一步划分成冷俯冲板块型(Cold subducting plate)与热俯冲板块型(Hot subducting plate),分别命名为西阿尔卑斯型(Western Alpine)和古巴型(Cuban;图 3)。

俯冲带上板块的中、高级变质作用主要发生在正常或加厚的下地壳(图 1图 2)。无论是在增生,还是在碰撞造山过程中,上板块构造体制、幔源岩浆作用和岩石圈厚度的变化等都会导致地壳的热结构发生明显变化。我们将上板块的变质作用进一步划分成冷地壳型(Cold crust)和热地壳型(Hot crust;图 3)。冷地壳型具有相对较低的地温梯度(15~25℃/km),发生在构造挤压和逆冲推覆导致的加厚地壳体制,缺少强烈的幔源岩浆作用,加厚下地壳以发生高温、高压麻粒岩相和榴辉岩相变质作用为特征(图 2图 3)。热地壳型变质作用发生在伸展导致的正常或减薄弧地壳体制,具有高的地温梯度(25~50℃/km),其下地壳以发生高温或超高温、中压变质作用为特征,形成角闪岩相、麻粒岩相或超高温麻粒岩相变质岩(图 3)。俯冲带上板块形成的各种变质岩在南美和北美板块西部的中、新生代科迪勒拉造山带广泛分布,因此,我们将这种类型的变质作用统称为科迪勒拉型(Cordilleran;图 3)。在俯冲带上板块岩浆弧地壳浅部,岩浆侵入导致的高温、低压变质作用为Buchan(巴肯)型变质作用,在正常下地壳发生的高温、中压变质作用为Barrovian型变质作用。

2 俯冲板块的变质作用

由于俯冲板块的变质作用具有重要的构造意义,一直是主要研究对象,为大家所熟知,这里只做简单介绍。冷俯冲板块(西阿尔卑斯型)的变质作用发生在低于10℃/km地温梯度条件下,有的甚至接近5℃/km的变质作用地温梯度极限。这种在极低温、高压和超高压条件下发生的变质作用是显生宙成熟板块构造体制的标志,以大洋和大陆地壳深俯冲到地幔形成含柯石英或含金刚石的超高压变质岩为特征。自从1984年发现含柯石英榴辉岩以来,超高压变质岩已经被广泛发现在显生宙的大陆俯冲/碰撞造山带中(Liou et al., 2009)。但是,由洋壳深俯冲形成的超高压变质岩仅在西阿尔卑斯造山带、西南天山和西天山造山带有发现(Reinecke, 1991, 1998; Tagiri et al., 1995; Zhang et al., 2002, 2005a; Lü et al., 2008; Wei et al., 2009)。新生代的西阿尔卑斯造山带即发育有陆壳物质,也发育有洋壳物质深俯冲形成的超高压变质岩,所以我们将冷俯冲板块的变质作用称之为西阿尔卑斯型。大洋岩石圈冷俯冲是以俯冲的洋壳基性岩变质形成含硬柱石的蓝片岩和榴辉岩为特征(Chen et al., 2013; Zhang et al., 2019)。如中国的晚古生代祁连山造山带普遍出现含硬柱石的高压变质岩,其峰期变质压力可达26kbar,而温度 < 550℃(Song et al., 2007; Zhang et al., 2007, 2009a)。

热俯冲板块变质作用的地温梯度多在10~15℃/km之间(图 3),所形成的古巴型高压变质岩在俯冲增生杂岩和蛇绿混杂岩中广泛产出。如在古巴的Sierra del Covento和La Corea(García-Casco et al., 2007; Blanco-Quintero et al., 2010, 2011),美国的Catalina(García-Casco et al., 2007; Blanco-Quintero et al., 2010),新卡里多尼亚的Pam半岛(Fitzherbert et al., 2003),日本Osayama(Tsujimori and Liou, 2005),多米尼加的Samaná半岛(Escuder-Viruete et al., 2011),东阿尔卑斯的Koralpe(Tenczer and Stüwe, 2003)和印度的Nagland(Bhowmik and Ao, 2016)。这种类型的变质岩是古巴La Corea蛇绿混杂岩的主要组成,其形成在原加勒比海(大西洋)岩石圈向加勒比板块之下的初始俯冲过程中。由洋中脊玄武岩变质形成的高压角闪岩记录了580~700℃和14~16kbar的变质条件,以及在热俯冲带隧道中经历的多期埋藏与折返过程(Blanco-Quintero et al., 2010, 2011)。这种类型的变质岩也是智利晚古生代至早中生代俯冲增生杂岩的重要组成。该杂岩形成在冈瓦纳大陆西南缘大洋岩石圈的初始俯冲过程中,在智利中北部产出长达1200km(Kato et al., 2008; Hyppolito et al., 2014)。该杂岩由东、西两部分组成,东部为低压变质的陆缘沉积岩,而西部为高温、高压变质岩,包括陆缘的变质沉积岩和由洋壳变质形成的高压蓝片岩(Willner et al., 2004, 2005; Willner, 2005; Kato et al., 2008; Hyppolito et al., 2014)。这两个部分构成了一个典型的双变质带(Willner, 2005; Willner et al., 2005; Hyppolito et al., 2014)。

现代的环太平洋俯冲带可以划分为两个端元类型,即马里亚纳型和智利型(Stern, 2002; Zheng and Zhao, 2017)。马里亚纳型位于太平洋板块西北边缘,俯冲的大洋岩石圈具有古老、厚、冷和密度大的特征。这样的岩石圈易发生快速俯冲,俯冲板块具有陡的俯冲角度和极低的地温梯度,发生西阿尔卑斯型的低温、高压或超高压变质作用。智利型俯冲带位于南美板块边缘,俯冲的大洋岩石圈具有年轻、薄、热和轻的特征。这样的岩石圈不易俯冲,板块以较慢的速度和低的角度发生平缓俯冲,因此具有较高的地温梯度,在俯冲带深部发生高温和高压变质作用。

古巴型变质作用不仅可以发生在年轻板块的俯冲过程中,也可以发生在太古代热板块陡俯冲、古老板块平缓俯冲,以及大洋岩石圈初始俯冲过程中。有研究表明,在古元古代的洋壳正常俯冲过程中也可以形成具有热俯冲板块特征的超高温高压变质岩(Ota et al., 2004; Wan et al., 2015)。近年来的研究揭示,大洋岩石圈板块从初始俯冲到成熟(稳定)俯冲期,地温梯度会发生由高到低的变化(图 4; Hyppolito et al., 2014; Agard et al., 2018, 2020)。在初始俯冲期(< 2Myr),俯冲板块发生高温变质作用,形成变质底板(Metamorphic sole)。这些高温变质岩形成在角闪岩相和麻粒岩相变质条件下,具有大于20℃/km的地温梯度;当俯冲持续到2~5Myr,俯冲板块发生高温、高压榴辉岩相变质岩作用,其地温梯度降低到10~20℃/km之间;当俯冲时间超过5Myr,俯冲板块发生低温、高压或超高压榴辉岩相变质作用,其地温梯度降低到10℃/km以下,进入到稳定的成熟俯冲阶段(图 4; Agard et al., 2018, 2020)。

图 4 俯冲板片变质条件与俯冲时间关系图(据Agard et al., 2018修改) 在大洋板块俯冲初始期(< 2Myr)形成的变质底板发生高温角闪相和麻粒岩相变质作用,当俯冲持续到2~5Myr形成高温榴辉岩,当俯冲持续到>5Myr形成低温榴辉岩. 图中的圈越大表示相应变质岩的形成时间(距俯冲开始的时间)越长. 总体上看,随着俯冲作用的进行,俯冲板块的地温梯度变低 Fig. 4 Metamorphic conditions and times of subducting plate rocks (modified after Agard et al., 2018)

在一个长期持续的俯冲带,无论是俯冲板块,还是上板块的热结构都会是变化的,而且这种变化不仅仅发生在初始俯冲过程中。当活动(扩张)的洋中脊发生俯冲时,软流圈沿板片窗上涌,俯冲板块边缘和上板块都具有高的地温梯度,因此,发生高温,甚至超高温变质作用(Breitsprecher et al., 2003; Cole and Stewart, 2009; Zhang et al., 2010a; Xiang et al., 2012; Thorkelson, 2021)。此外,当大规模的洋底高原发生俯冲时,大洋岩石圈会发生平缓俯冲,俯冲板块具有高的地温梯度,进而发生高温和高压变质作用(Gutscher et al., 2000)。

俯冲带的热结构受多种因素影响,如俯冲速率和角度、俯冲板片的年龄、厚度和宽度、上板块的运动速度和厚度,以及俯冲板片与地幔的耦合程度(Syracuse et al., 2010; Zheng and Chen, 2016)。汇聚速率是控制俯冲带热结构的重要因素,汇聚速率降低,俯冲板片与上覆地幔界面的温度增加,汇聚速率加快,俯冲板片与地幔界面的温度降低。一般情况下,大陆俯冲带是冷体制,而大洋俯冲带可以是冷的,也可以是热体制。有研究认为,在一个长期持续的俯冲带,板块的俯冲角度是周期性变化的,即平缓俯冲与陡俯冲交替进行(Collins, 2002)。因此,俯冲板块的地温梯度也可能是交替变化的,热俯冲和冷俯冲板块型变质岩交替出现。

喜马拉雅造山带中东段是典型的大陆碰撞造山带,碰撞导致加厚下地壳形成了高压麻粒岩和高压榴辉岩。这些高压变质岩具有与热俯冲板块和冷地壳型变质作用相当的地温梯度,在它们的折返过程普遍叠加了中压、高温或超高温麻粒岩相退变质作用(Groppo et al., 2007; Guilmette et al., 2011; Zhang et al., 2015a, 2018, 2021; Wang et al., 2017a, 2021b; Li et al., 2019; Kang et al., 2020)。在某些碰撞造山带,高压和中压型变质岩共存,如古元古的华北中央造山带(Zhao et al., 2001),东南极的晚中元古至早新元古、晚新元古至寒武纪碰撞造山带(Liu et al., 2013, 2014a),以及古生代的敦煌造山带(Wang et al., 2016)。这有可能说明,碰撞造山带的不同构造层次具有不同的地温梯度。

3 俯冲带上板块的变质作用

研究表明,在洋-陆岩石圈汇聚边缘,俯冲带上板块的构造体制和热结构受俯冲板片的俯冲角度、俯冲速率和幔源岩浆岩作用等因素控制(Stern, 2002; Ducea et al., 2015)。当古老的大洋岩石圈发生正常(陡)俯冲时,上板块处于伸展构造环境,软流圈上涌,岩浆弧地壳减薄,并形成弧后盆地(图 5a)。在这样的构造体制下,被俯冲洋壳和地幔脱水交代的上板块地幔楔(包括软流圈)发生强烈部分熔融,导致大体积基性岩浆增生到岩浆弧中下地壳,或喷出到地表形成火山岩盆地(图 5a)。因此,减薄的岩浆弧下地壳具有很高的地温梯度(25~50℃/km),进而发生高温,甚至超高温、中压变质作用,即热地壳型变质作用(图 3图 5a)。相反,当年轻的大洋岩石圈或大洋高原俯冲时,板块发生低角度或平俯冲,上板块地壳(岩浆弧)处于挤压环境,地壳加厚(图 5b)。在这种构造体制下,俯冲板块与上板块之间的地幔楔(包括软流圈)变小,甚至消失,幔源岩浆活动变弱或停止。因此,加厚的下地壳具有相对低的地温梯度(15~25℃/km),进而发生高温和高压变质作用,即冷地壳型变质作用(图 3图 5b)。由图 5b可以看出,在板块平缓俯冲导致岩浆弧地壳强烈加厚环境下,加厚的弧下地壳可以发生高温和高压变质作用与部分熔融,这与同等深度下俯冲板块的变质作用条件相近。这表明,在岩石圈平缓俯冲和地壳加厚环境下,在俯冲带形成的变质岩并不具有明显的双峰式地温梯度特征。

图 5 俯冲带的两个端元类型和它们的变质作用与部分熔融特征 (a)大洋岩石圈正常(陡)俯冲,俯冲洋壳发生低温、高压变质作用;上板块伸展,地壳减薄,软流圈上涌,幔源基性岩浆增生形成新生地壳,新生下地壳发生高温、超高温/中压变质和部分熔融,形成上地壳的花岗岩;(b)大洋岩石圈平缓俯冲,上板块挤压,地壳加厚,俯冲的洋壳和加厚的新生下地壳发生高温、高压变质与部分熔融,形成在上地壳产出的埃达克质花岗岩,新生地壳组成与化学成分发生分异 Fig. 5 Two types of subduction zones, and their metamorphic and anatectic characteristics MP-medium pressure, UHT-ultrahigh temperature

北美科迪勒拉造山带,Farallon大洋板块在Laramide造山期(80~40Ma)平俯冲到美洲大陆板块之下,导致上板块地壳明显加厚,并形成高原。基于同时期岩浆岩的地球化学研究,当时的地壳厚度在45~72km之间,平均57km(Chapman et al., 2018, 2019, 2020)。加厚的中、下地壳经历了高温变质和部分熔融,形成了中、高压变质的角闪岩相至麻粒岩相混合岩。在40~15Ma,平俯冲的Farallon板块回转和陡俯冲,导致上板块地壳伸展减薄,早期形成的变质岩被部分剥露到地表(Chapman et al., 2018)。这些变质岩(片麻岩和混合岩)呈穹窿状分布,构成了一条长达3000km的变质核杂岩带(Coney and Harms, 1984; Dickinson, 2004; Chapman et al., 2018, 2021)。

美北科迪勒拉造山带地壳加厚的直接证据是大型岩基底部形成的石榴石辉石岩,以及在晚渐新世玄武岩中捕获的石榴石辉石岩包体(Saleeby, 1990; Saleeby et al., 2003; Ducea and Saleeby, 1996; Lee et al., 2006; Lee and Anderson, 2015; Butcher et al., 2017)。这些石榴石辉石岩也被称之为弧榴辉岩(Arclogite),主要由单斜辉石-石榴石-角闪石-铁钛氧化物组成,其形成在800~1000℃和10~20kbar条件下,代表岩浆弧加厚地壳的最下部,即弧根物质(Lee et al., 2006; Lee and Anderson, 2015; Butcher et al., 2017; Ducea et al., 2021a, b)。这些弧榴辉岩或者是幔源基性岩浆在高压下分离结晶形成的堆晶岩,或是基性岩浆岩在加厚下地壳高压条件下发生再熔融的残余(Ducea and Saleeby, 1998; Ducea, 2001, 2002; Ducea et al., 2021a)。在南美科迪勒拉造山带,Nazca板块中大洋高原(洋脊)向南美大陆板块之下的平俯冲导致现在的安底斯岩浆弧具有60~70km的厚地壳。这些地区正在发生高温、高压麻粒岩相或榴辉岩相变质作用。另外,弧榴辉岩具有比下覆地幔更大的密度,可以拆沉到地幔中去,导致深地幔的成分不均性,很可能是某些板内热点岩浆岩的源区(Currie et al., 2015; Erdman et al., 2016; Lee et al., 2000; Lee and Anderson, 2015; Ducea et al., 2021a, b)。

许多研究表明,岩浆弧会经历周期性的岩浆-变质-构造演化(Collins, 2002; DeCelles et al., 2009, 2015; Ducea et al., 2015)。如图 6所示,北美科迪勒拉造山带经历了一个以25~50Myr为周期的演化过程(DeCelles et al., 2009)。大洋板块的平缓俯冲和大体积的幔源岩浆增生导致岩浆弧地壳加厚,加厚的下地壳发生高温、高压变质作用,形成高密度的石榴石辉石岩或榴辉岩(图 6a, b)。高密度的榴辉岩拆沉进地幔,并导致软流圈上涌和强烈的幔源岩浆作用,弧地壳伸展和减薄,下地壳发生高温、超高温麻粒岩相变质作用和部分熔融(图 6c)。大洋板块的又一期平俯冲导致弧地壳再次加厚,以及加厚下地壳的高压变质和榴辉岩的形成(图 6d)。俯冲板片再次发生回转、榴辉岩质下地壳拆沉和软流圈上涌,又一期的地壳伸展与减薄、强烈幔源岩浆作用,以及下地壳的高温或超高温变质作用(图 6e)。

图 6 北美科迪勒拉造山带的周期性构造演化(据DeCelles et al., 2009修改) 从(a)到(e)为北美科迪勒拉造山带两个周期性的构造演化过程: (a)板块平缓俯冲、地壳逆冲加厚;(b)加厚新生下地壳高温高压变质,榴辉岩化和部分熔融;(c)地壳伸展,榴辉岩拆沉,软流圈上涌,下地壳高温、超高温变质和部分熔融;(d)板块平俯冲,地壳加厚,加厚下地壳高温和高压变质,榴辉岩化和部分熔融;(e)俯冲板块回转,榴辉岩拆沉,软流圈上涌,地壳伸展减薄,高温、超高温变质和部分熔融 Fig. 6 Cyclical tectonic evolution of Cordilleran orogen (modified after DeCelles et al., 2009) Ec-eclogite, HFE-high-flux magmatic episode

除了板块平缓俯冲引起上板块地壳挤压缩短外,大体积幔源岩浆的底垫和增生也是弧地壳加厚和加厚下地壳高压变质的重要机制(Brown, 1996; Karlstrom et al., 2014)。Cao et al. (2016)认为幔源岩浆增生和地壳缩短导致Sierra Nevada岩基根曾经深到~85km。位于喜马拉雅造山带西构造结的Kohistan弧形成在新特提斯大洋岩石圈汇聚的岛弧环境,幔源岩浆的不断增生形成了一个近50km厚的新生地壳。该地壳上部为中、酸性岩浆岩,中部为基性岩浆岩,下部由高压麻粒岩相变质的基性岩组成,是一个完整的大陆地壳剖面(Garrido et al., 2006; Jagoutz, 2014; Jagoutz and Kelemen, 2015)。在新西兰Fiordland,形成在活动大陆边缘的早白垩纪弧地壳主要由幔源岩浆岩组成,其具有60km的古深度。这个新生地壳剖面的下部主要由麻粒岩相变质的中、基性岩浆岩(也被称之为正片麻岩)组成,含少量变质表壳岩。剖面的最下部(弧根)由高压榴辉岩和含绿辉石的高压麻粒岩组成,形成在850~920℃和15~18kbar条件下(Clarke et al., 2000, 2013; Hollis et al., 2003, 2004; De Paoli et al., 2009; Stowell et al., 2010, 2014)。Ganade et al. (2021)对非洲多哥新元古代(670~620Ma)岩浆弧的研究显示,蛇纹岩化地幔俯冲过程中的强烈脱水引发了强烈的幔源岩浆作用,大体积基性岩浆的底垫和增生导致弧地壳加厚到65~70km(图 7)。而且,加厚的下地壳经历了近同侵入期(~620Ma)的高温(800~900℃)和高压(15~20kbar)麻粒岩相至榴辉岩相变质作用。相关的其他研究也表明,主要由幔源基性岩组成的岩浆弧下地壳大多经历了近同侵入期或稍晚期的角闪岩相到麻粒岩相变质作用,进一步证明大体积幔源岩浆岩的增生是弧地壳加厚的重要机制之一(Ducea, 2002; Yoshino et al., 1998; Yoshino and Okudaira, 2004; Berger et al., 2009; Stowell et al., 2010; Zhang et al., 2014a)。

图 7 多哥新元古代岩浆弧地壳加厚和弧根高压变质机制图(据Ganade et al., 2021修改) 新元古代(670~620Ma)基性岩浆岩的不断底垫导致岩浆弧地壳的生长与加厚,加厚的基性下地壳(弧根)发生了近同侵入期(620Ma)的高压榴辉岩相变质作用 Fig. 7 Crustal thickening and high-pressure eclogite-facies metamorphism in the Neoproterozoic magmatic arc of the Kabyé massif, Togo (modified after Ganade et al., 2021)

在大陆与大陆岩石圈汇聚过程中,板块的俯冲/碰撞可以导致俯冲带上板块地壳强烈加厚。青藏高原是印度与亚洲大陆岩石圈在新生代俯冲/碰撞作用的产物,具有60~80km的巨厚地壳(图 8)。晚新生代幔源火山岩捕获的地壳岩石包体可以揭示青藏高原巨厚地壳的热结构和变质作用特征(Hacker et al., 2000; Ducea et al., 2003; Gordon et al., 2012)。青藏高原中部北羌塘地区~3Ma火山岩中的地壳包体为麻粒岩相变质岩,变质温度在800~1000℃,压力为7~14kbar,相应的地温梯度为~17℃/km(Hacker et al., 2000)。在青藏高原西缘帕米尔地区,渐新世火山岩中的壳源包体有高压麻粒岩相和榴辉岩相变质岩,其变质温度为810~1050℃,压力为18~22kbar,地温梯度为约12~13℃/km(Hacker et al., 2005; Gordon et al., 2012)。这些结果表明,尽管青藏高原的加厚下地壳正在经历高温、超高温和高压变质作用,但其总体上具有与冷地壳,甚至与冷俯冲板块相当的较低地温梯度。以前的研究普遍认为青藏高原是典型的大型热造山带(Beaumont et al., 2006, 2010),但较低的地温梯度与其是大型热造山带的结论并不一致。张建新等(2009)对中国西部南阿尔金、柴北缘及中部北秦岭造山带的研究表明,大陆俯冲/碰撞导致俯冲带之上增厚的大陆地壳根部发生了高压麻粒岩相变质作用,而且这些高压麻粒岩与形成在俯冲带中的榴辉岩同时出现,构成了碰撞造山带的双变质带。

图 8 青藏高原和喜马拉雅造山带岩石圈结构图(据Faccenna et al., 2021; Guillot and Replumaz, 2013修改) Fig. 8 Lithospheric architecture of the Tibetan Plateau and Himalayan orogen (modified after Faccenna et al., 2021; Guillot and Replumaz, 2013)

岩浆弧的正常或减薄下地壳是热地壳,具有较高的地温梯度,以高温,甚至超高温麻粒岩相变质为特征(图 3)。除了幔源岩浆的底侵可以提供热源以外,加厚岩浆弧根和岩石圈地幔的拆沉,俯冲板块回转或断离、活动洋中脊俯冲所导致的软流圈上涌也可以为弧地壳高温、超高温变质提供热源。因此,有板块构造以来发生的超高温变质岩很可能大多形成在岩浆弧下地壳。如Dumond et al. (2017)研究显示,加拿大西部新太古代Athabasca地体中的超高温榴辉岩(或超高温、高压麻粒岩)是弧后盆地的沉积岩和基性火山岩被构造埋藏到岩浆弧根部变质作用的产物。在北美科迪勒拉造山带,Cipar et al. (2020)对Rio Grande裂谷带火山岩捕获的中、下地壳和上地幔岩包体的研究表明,30Ma以来形成的下地壳麻粒岩经历了870~960℃和8~10kbar变质作用,表明岩浆弧地壳的最下部(~33km)经历了超高温变质作用。这期事件发生在科迪勒拉造山带的构造伸展期,先期加厚的岩石圈地幔的拆沉(或重力垮塌)导致了岩石圈变薄和软流圈上涌,弧地壳根部因此发生了超高温变质作用。东昆仑造山带的超高温麻粒岩也是形成在先期加厚的弧地壳发生伸展和强烈基性岩浆底垫的构造环境(Bi et al., 2021)。上述两个地区的超高温麻粒岩都具有顺时针型P-T轨迹,并以升温降压退变质为特征(图 9)。基于岩浆弧超高温麻粒岩与其它超高温麻粒岩在变质作用P-T轨迹上的相似性,Cipar et al. (2020)认为加厚弧岩石圈的垮塌是形成大规模超高温麻粒岩的构造机制。研究表明,华北克拉通的古元古代超高温麻粒岩也经历了减压升温退变质过程,早期的构造挤压导致了地壳加厚和加厚下地壳的高温、高压变质,随后的岩石圈伸展和软流圈上涌导致高压变质岩叠加了超高温变质作用(Guo et al., 2012b; Jiao et al., 2017; Jiao and Guo, 2020)。因此,华北克拉通的古元古代超高温麻粒岩有可能形成在岩浆弧构造环境。Collins (2002)Clark et al. (2011)认为,许多麻粒岩地体具有很高的变质温度和地温梯度,不太可能是形成在具有较低地温梯度的碰撞造山带,而是形成在岩浆弧地壳的伸展过程中。如上所述,碰撞造山形成的青藏高原巨厚地壳的地温梯度是12~17℃/km,只有在加厚下地壳的底部(>60km)才有能可发生超高温(>900℃)变质作用。我们认为,大洋岩石圈陡俯冲或断离导致的上板块伸展、软流圈上涌和强烈幔源岩浆作用是岩浆弧下地壳发生超高温变质作用的最有利环境(图 5a图 6c, d)。

图 9 俯冲带岩石变质作用P-T轨迹 Fig. 9 Metamorphic P-T paths of subduction zone rocks Cold subducting plate: 1, Sulu, Eastern China, Zhang et al., 2009b; 2, Dora Maira, Western Alps, Hermann and Rubatto, 2014; 3, Western Himalaya, Palin et al., 2017; 4, Western Tianshan, Zhang et al., 2019; 5, Western Alps, Le Bayon et al., 2006; Hot subducting plate: 6, Naga Hills, India, Chatterjee and Ghose, 2010; 7, Zagros, Agard et al., 2006; 8, Taiwan, China, Keyser et al., 2016; 9, Nagaland, India, Ao and Bhowmik, 2014; 10, Chilenia terrane, Hyppolito et al., 2014; 11, La Corea, Cuba, Blanco-Quintero et al., 2010; 12, Central Himalaya, Wang et al., 2021b; 13, Eastern Himalaya, Zhang et al., 2015a; 14, Hainan Island, Southern China, Liu et al., 2020; 15, South Altyn Tagh, China, Zhang et al., 2005b, 2014b; 16, North China Craton, Wan et al., 2015; Cold crust: 17, Fiordland, New Zealand, Daczko et al., 2002, Klepeis et al., 2004; 18, North American Cordillera, Chapman et al., 2021; 19, Athabasca granulite terrane, Canadia, Dumond et al., 2017; Hot crust: 20, East Kunlun, Western China, Bi et al., 2021; 21, NW Argerntina, Gallien et al., 2010; 22, Hidaka, Japan, Kemp et al., 2007
4 俯冲带变质作用的P-T轨迹

板块俯冲形成的变质岩是造山带核部的主要组成,其变质作用P-T轨迹已经进行了广泛研究。现有结果表明,冷俯冲板块变质作用的P-T轨迹多为顺时针型,其进变质P-T轨迹处于低地温梯度下(< 10℃/km),但退变质P-T轨迹多以近等温降压,甚至升温降压为特征(图 9)。因此,这些形成在低、中温和高压、超高压条件下的变质岩经常叠加中压条件下的绿帘角闪岩相、角闪岩相或麻粒岩相退变质作用(图 9)。如在西阿尔卑斯、阿尔金、柴北缘、秦岭、苏鲁和西喜马拉雅造山带的超高压变质岩都具有顺时针型P-T轨迹,退变质过程中叠加了角闪岩相或麻粒岩相变质作用(Zhang et al., 2009b, 2017; Hermann and Rubbatto, 2014; Liu et al., 2016; Palin et al., 2017)。

热俯冲板块形成的高压变质岩可具有顺时针型P-T轨迹(图 9)。如在伊朗Zagros造山带的蓝片岩、中国台湾玉里带的蓝片岩相变质岩石和中国敦煌地体的高压麻粒岩都具有顺时针型P-T轨迹(Agard et al., 2006; Keyser et al., 2016; Wang et al., 2017b)。在大陆碰撞造山带形成的中、高压变质岩普遍发育顺时针型的P-T轨迹,而且大多记录一个近等温或升温、降压退变质作用过程(图 9; Zhao et al., 2001; Liu et al., 2013, 2014a, 2020; Zhang et al., 2015a, 2021; Wang et al., 2021b)。

板块初始俯冲期形成的高压变质岩具有逆时针型P-T轨迹(Hyppolito et al., 2014; Bhowmik and Ao, 2016)。这是由于在初始俯冲期,俯冲板块具有较高的温度,但随着俯冲作用的进行,俯冲板块变冷,地温梯度降低,由热俯冲转变成冷俯冲。在南美智利地体,中生代(~340Ma)的高压变质岩形成在初始俯冲期,其具有逆时针型的变质作用P-T轨迹,退变质作用早期为近等压降温过程,晚期是近等温降压过程(图 9; Willner et al., 2004; Willner, 2005; Kato et al., 2008; Hyppolito et al., 2014)。

板片俯冲形成的高压变质岩也可以具有发卡状的P-T轨迹,即进变质与退变质P-T轨迹近于平行(图 9; Ernst, 1988; Krebs et al., 2011; Chatterjee and Ghose, 2010; Bhowmik and Ao, 2016)。这很可能是由于高压变质岩的俯冲和折返发生在成熟的俯冲隧道中,在相同深度下的地温梯度基本保持不变。

以前的研究多认为,俯冲带上板块的岩浆弧以幔源岩浆增生和伴随的地壳加厚,以及后期的岩浆结晶冷却为特征。所以,形成在岩浆弧环境的高温变质岩具有逆时针型的P-T轨迹(Bohlen, 1987, 1991; Zhao et al., 2001)。在新西兰的Fiordland岩浆弧,加厚下地壳形成的高压麻粒岩具有逆时针型P-T轨迹(图 9; Daczko et al., 2002; Klepeis et al., 2004),其构造机制是:约126~120Ma的幔源岩浆增生导致地壳加厚,加厚下地壳发生麻粒岩相变质,约120~105Ma降温过程,约105~90Ma的地壳伸展和降压抬升。阿根廷西北部的古生代混合岩化片麻岩形成在岩浆弧环境,大体积幔源岩浆的增生导致其经历了一个快速升温变质过程,以及随着岩浆结晶而发生的近等压冷却过程,因此具有发卡状的逆时针型P-T轨迹(Gallien et al., 2010)。Dumond et al. (2017)研究表明,加拿大地盾新太古代麻粒岩的原岩是形成在弧后盆地的玄武岩,弧地壳的强烈缩短和加厚导致玄武岩被埋藏到岩浆弧根,经历了>950℃和>14kbar的超高温、高压变质作用,然后经历了明显降温过程,其总体上具有逆时针型P-T轨迹(图 9)。

实际上,俯冲带上板块的变质作用P-T轨迹比较复杂。在岩浆弧下地壳形成的变质岩也可以具有顺时针型P-T轨迹。如日本Hidaka的早中新世麻粒岩形成于弧地壳伸展导致的强烈幔源岩浆增生环境,先期埋藏到下地壳的表壳岩经历了近等压和增温条件下的麻粒岩相变质作用,然后经历了缓慢的抬升过程,因此具有顺时针型P-T轨迹(Kemp et al., 2007)。在北美科迪勒拉造山带,由于弧地壳构造加厚,被埋藏的表壳岩经历了高压麻粒岩相变质作用,之后的地壳伸展使这些高级变质岩剥露到上地壳形成变质核杂岩。这种形成在地壳挤压加厚和后续伸展减薄环境下的高级变质岩普遍具有顺时针型P-T轨迹(图 9; Chapman et al., 2021)。

俯冲带变质岩石可以经历多期变质作用,其整个P-T轨迹并不是简单的顺时针或逆时针型(图 10)。西阿尔卑斯Gran Paradiso地体中的石榴石硬绿泥石云母片岩形成在大陆碰撞造山环境,其经历了两期变质作用,记录了两个顺时针型P-T轨迹。第一期为发生在前阿尔卑斯期相对高地温梯度条件下的中压变质作用,第二期为发生在阿尔卑斯期低地温梯度下的高压进变质和中压退变质作用(图 10; Le Bayon et al., 2006)。日本Sanbagawa榴辉岩经历了三期变质作用,第一期发生在117~116Ma的热俯冲过程中,具有一个逆时针型P-T轨迹,第二期发生在116~89Ma的冷俯冲过程中,所形成的低温、高压榴辉岩具有一个顺时针型P-T轨迹,第三期发生在89~85Ma的热俯冲过程中,使高压榴辉岩叠加了高地温梯度条件下的退变质作用。三期变质作用的P-T轨迹连在一起似“8”字型(图 10; Endo et al., 2012)。奥地利东阿尔卑斯Saualpe榴辉岩经历了两期变质作用,记录了两个顺时针型的变质作用P-T轨迹,第一期为石炭至二叠纪(>320~250Ma)的中压变质作用(峰期条件为650℃和6~8kbar),第二期为白垩纪(>104~86Ma)的高压变质作用(峰期条件为750℃和14kbar;图 10; Schulz, 2017)。

图 10 俯冲板片岩石多期变质作用P-T轨迹 Fig. 10 P-T paths of polyphase metamorphism of subducting plate rocks P-T paths: 1, Gran Paradiso nappe, Western Alps, Le Bayon et al., 2006; 2, Sanbagawa, Japan, Endo et al., 2012; 3, Eastern Alps, Austria, Schulz, 2017; 4, Nagaland, India, Bhowmik and Ao (2016); 5, Eastern Cuba, Blanco-Quintero et al., 2011

俯冲隧道中的变质岩可经历多次埋藏与折返,具有复杂的螺旋状P-T轨迹(Blanco-Quintero et al., 2011; Rubatto et al., 2011; Li et al., 2016)。如印度Nagaland蛇绿岩中的角闪岩(角闪石榴辉岩)在新特提斯洋俯冲隧道中经历了反复的俯冲与折返。在初始俯冲期,角闪石榴辉岩记录了第一个具有热俯冲板片特征的逆时针P-T轨迹,而后来的再埋藏和折返,使其记录了第二个具有成熟冷俯冲板片特征的逆时针型P-T轨迹(图 10; Bhowmik and Ao, 2016)。另外,俯冲隧道中的变质岩石可以具有不同的变质条件,变质时间和P-T轨迹(Federico et al., 2007; Zheng et al., 2013; Li et al., 2015; Zhang, 2020)。

5 俯冲带的部分熔融

汇聚板块边缘是以强烈的岩浆作用为特征。在大洋岩石圈的正常俯冲过程中,俯冲板块具有较陡的俯冲角度和低的温度,是冷俯冲。俯冲的地壳岩石经历低温、高压到超高压变质作用和逐渐脱水,但不发生部分熔融。俯冲板块脱出的水(流体)会交代上板块地幔楔的超基性岩,使其发生部分熔融,形成广泛分布的弧岩浆岩。但是,对于热俯冲板块,即当年轻和热的大洋岩石圈发生俯冲时、扩张的洋中脊发生俯冲时,深俯冲的地壳岩石会具有超过饱和水固相线的变质温度,可以发生部分熔融(图 3; 张泽明等,2020)。

在年轻的(< 20Ma)大洋岩石圈俯冲过程中,俯冲的洋壳具有相对高的温度和地温梯度,俯冲到弧前和弧下深度时发生脱水熔融(Peacock et al., 1994; Martin, 1999)。在这样的高压条件下,石榴石和角闪石是部分熔融的主要残留相,所形成的熔体具有亏损重稀土元素、高La/Yb比和高Sr/Y比的埃达克岩成分(Kay, 1978; Defant and Drummond, 1990; Rapp and Watson, 1995)。目前世界上有多个年轻洋壳俯冲过程中发生部分熔融形成埃达克岩的报道(Sorensen and Barton, 1987; García-Casco et al., 2007; Lázaro and García-Casco, 2008; Blanco-Quintero et al., 2010, 2011; Lázaro et al., 2011; Rossetti et al., 2010, 2014; Angiboust et al., 2017)。

太古代是否存在板块构造还存在争议,但组成太古代大陆地壳的TTG岩石具有与弧岩浆岩相似的地球化学特征。由于太古代的地幔比现在的地幔更热,如果存在板块构造,太古代的俯冲带应该是热俯冲带(Herzberg et al., 2010)。此外,太古代的板块很可能发生平缓俯冲(Smithies et al., 2003; Van Hunen and Moyen, 2012; Fischer and Gerya, 2016),热的俯冲洋壳更容易发生部分熔融形成TTG岩石(Palin et al., 2016; Ganade et al., 2017)。

尽管新生代的埃达克岩可形成于俯冲的年轻板片部分熔融。但是,世界上已知的某些新生代埃达克岩却是形成在较古老(>20Ma)大洋岩石圈板块的俯冲过程中。Gutscher et al. (2000)认为平俯冲大洋高原的部分熔融形成了这些新生代埃达克岩。模拟结果表明,与正常俯冲板片表面具有较低的温度不同,当较老的板片平缓俯冲时,在弧下深度会经历了一个近等压升温过程,由冷俯冲变成热俯冲,由此发生部分熔融形成埃达克质岩浆。在现代的环太平洋俯冲带,有约10%的区域正在发生大洋高原的平俯冲作用,在相应的上板块岩浆弧区大多有同时代的埃达克岩形成(Gutscher et al., 2000)。有研究认为,俯冲的大洋高原部分熔融有可能在较短的地质时期内形成大量的TTG岩石,这与大陆地壳的幕式生长特征相一致(Condie, 1998, 2005; Martin et al., 2014)。

在大洋岩石圈板块俯冲和消亡过程中必然发生扩张洋中脊的俯冲,而活动的洋中脊发生俯冲会导致强烈的弧岩浆作用。这是由于活动的洋中脊发生俯冲时软流圈沿板片窗上涌,形成一个高热流环境(Thorkelson, 2021)。在这样的条件下,上板块的地壳与地幔楔、俯冲洋壳的边缘,以及上涌的软流圈都会发生部分熔融,形成多种不同成分的岩浆岩(Breitsprecher et al., 2003; Cole and Stewart, 2009; Zhang et al., 2010a; Thorkelson, 2021)。

大陆岩石圈可以被俯冲到>80km的地幔深处,但与大洋岩石圈相比,大陆岩石圈更古老和更冷,且具有较低的水含量。因此,深俯冲的大陆地壳难以发生部分熔融。目前,只有Kokchetav和Erzgebirge地块中的含金刚石长英质超高压变质岩有可能在深俯冲过程中发生过部分熔融(Massonne and Fockenberg, 2012; Stepanov et al., 2016)。但是,在陆壳超高压变质岩的折返过程中,由于经历了近等温或增温降压变质作用,可以发生含水矿物(多硅白云母等)脱水导致的部分熔融(Wallis et al., 2005; Xia et al., 2008; Liu et al., 2012, 2014b; Gao et al., 2012; Wang et al., 2014; Song et al., 2014, 2015; Zhang et al., 2015b; Chen et al., 2017)。在南阿尔金碰撞造山带,深俯冲的大陆地壳岩石经历了超高压和超高温(约950~1050℃)变质作用,但这些岩石的部分熔融也只发生在近等温降压过程中(Dong et al., 2018a, 2019, 2021)。

大陆板块碰撞形成的青藏高原巨厚地壳经历了新生代的高温、高压变质和部分熔融(图 8)。在青藏高原南缘的喜马拉雅造山带,构成造山带加厚下地壳的印度大陆地壳岩石经历了从中始新世到渐新世(45~15Ma)的长期部分熔融,形成了多期不同成分的花岗岩,构成了一条近2500km长的壳源花岗岩带(Yin and Harrison, 2000; Kohn, 2014; 吴福元等, 2015; Ding et al., 2021a, b; Zhang et al., 2021)。大多数花岗岩为片岩和片麻岩部分熔融形成的过铝质淡色花岗岩,而少量埃达克质花岗岩起源于加厚下地壳基性岩的部分熔融(Guo and Wilson, 2012; Hou et al., 2012; Zeng et al., 2011; Gou et al., 2016; Gao et al., 2017; 张泽明等, 2017, 2018; Zhang et al., 2018; 曾令森和高利娥, 2017; Wu et al., 2020)。同样,在柴北缘碰撞造山带,辉长岩在加厚下地壳发生了高压、高温至超高温条件下的部分熔融,形成了埃达克质花岗岩(Yu et al., 2019)。

俯冲带上板块的岩浆弧是以长期和幕式的幔源基性岩浆作用为特征,但是,在岩浆弧广泛分布的却是花岗岩。这些花岗岩主要有两种成因:即形成于幔源岩浆的分离结晶,或新生基性下地壳的部分熔融(再熔融; Brown and Rushmer, 2006; Brown, 2007b, 2010a; Hacker et al., 2011b; Jagoutz et al., 2013; Jagoutz, 2014; Jagoutz and Kelemen, 2015)。研究表明,岩浆弧根部大多是由高温、超高温变质和深熔的基性麻粒岩或榴辉岩组成(Schröter et al., 2004; Otamendi et al., 2009; Gordon et al., 2010; Zhang et al., 2014a, 2020; Ducea et al., 2015; Schwindinger and Weinberg, 2017; Wolfram et al., 2019; Bi et al., 2021; Chapman et al., 2021)。这说明岩浆弧的新生下地壳发生了部分熔融,而且,所形成的长英质熔体上升到中、上地壳,基性残留体保留在下地壳。这不仅形成了大体积的花岗岩,也导致了岩浆弧地壳组成和化学成分的分异。例如,在马里Amalaoulaou的新元古代弧岛块体中,弧根辉长岩经历了1050℃和>10kbar条件下的部分熔融,形成了在上地壳的英云闪长岩和残留在弧根的含金红石石榴石辉石岩(Berger et al., 2009)。这是岛弧地壳成熟化和早期大陆地壳生长的典型实例。

如上所述,俯冲带上板块的下地壳,无论是在伸展,还是在挤压构造环境下,都具有高的地温梯度,所形成的变质岩都可以具有超过基性岩饱和水固相线的变质温度,都可以发生部分熔融,形成广泛分布的壳源花岗岩(图 3图 5)。在减薄的下地壳,高温、超高温条件下的部分熔融形成正常的花岗质岩石(图 5a)。而在加厚的下地壳,高温和高压条件下的部分熔融形成埃达克质花岗岩(图 5b)。此外,部分熔融形成的高密度残留体可以拆沉进地幔,由此改变新生地壳的组成和化学成分,使其从总体上的基性成分转变成中性成分(Zandt et al., 2004; Hacker et al., 2011b, 2015; Jagoutz and Behn, 2013; Jagoutz and Schmidt, 2013)。因此,岩浆弧下地壳的部分熔融可以导致新生地壳的再造,是大陆地壳生长的重要机制(Hacker et al., 2011b, 2015)。

北美科迪勒拉造山带经历了从侏罗纪到早始新世的多期岩浆作用,形成了Idaho、Sierra Nevada、Coast Mountains和Peninsular Range岩基。这些岩基主要由幔源岩浆岩组成,但也含有下地壳深熔形成的壳源花岗岩。如Peninsular Range岩基由早白垩世(130~100Ma)低Sr/Y比的辉长石-闪长岩-花岗岩和晚白垩世(100~85Ma)高Sr/Y比的花岗岩组成。这些高Sr/Y花岗岩是基性岩浆岩在加厚下地壳(高压麻粒岩相)条件下部分熔融的产物(Tulloch and Kimbrough, 2003; Collins et al., 2016)。科迪勒拉造山带发育一条近3000km长的深熔带,其由晚白垩世到始新世(90~40Ma)下地壳深熔形成的侵入岩和混合岩构成(Hallett and Spear, 2014, 2015; Chapman et al., 2021)。这些侵入岩主要是白云母脱水熔融形成的过铝质淡色花岗岩。在深熔带的南段,深熔作用时间与造山带地壳加厚的时间一致。因此,地壳深熔发生在地壳加厚引起的高温和高压变质过程中。而在科迪勒拉深熔带的北段,深熔作用与加厚地壳的伸展同时发生,表明深熔作用发生在高温和高压变质岩的折返过程中,即部分熔融发生在近等温降压过程中。此外,Cipar et al. (2020)认为科迪勒拉造山带30Ma以来的构造伸展导致减薄的下地壳发生了高温、超高温麻粒岩相变质和部分熔融,由此导致了造山带地壳组成与化学成分的分异。

新西兰Fiordland岩浆弧的新生下地壳经历了高温和高压条件下的部分熔融(Daczko et al., 2001; Schröter et al., 2004; Clarke et al., 2005; Flowers et al., 2005; Stowell et al., 2014; Stuart et al., 2017)。所以,该岩浆弧不仅发育三叠世至早白垩世(230~135Ma)的弧岩浆岩,也广泛发育有加厚的新生下地壳部分熔融形成的早白垩世(128~105Ma)埃达克质花岗岩(Tulloch and Kimbrough, 2003; Stevenson et al., 2005; Schwartz et al., 2017)。这是部分熔融导致新生地壳再造的又一个实例。

青藏高原南部的冈底斯岩浆弧形成在中生代的新特提斯洋岩石圈俯冲过程中,并在新生代叠加了碰撞造山作用(Yin and Harrison, 2000; Ding et al., 2003; Chung et al., 2005, 2009; Guo et al., 2011; Zhu et al., 2011, 2018; 张泽明等, 2019)。冈底斯弧广泛发育中生代和早新生代的幔源和俯冲洋壳起源的岩浆岩,导致了大体积新生地壳的生长(Mo et al., 2007, 2008; Ji et al., 2009; Zhu et al., 2011; Niu et al., 2013; Hou et al., 2015a; Zhang et al., 2020)。冈底斯弧在晚中生代经历了地壳加厚,加厚的新生地壳发生了高压麻粒岩相条件下的部分熔融,形成了高Sr/Y比花岗岩(Ji et al., 2014; Tang et al., 2020)。冈底斯弧下地壳也经历了早新生代的高温变质和深熔,形成了广泛分布I型和S型花岗岩。而且,冈底斯弧在渐新世发生了明显的地壳加厚,新生的基性下地壳部分熔融形成了可含铜、金矿的埃达克质斑岩(Chung et al., 2003; Hou et al., 2004, 2015b; Guo et al., 2007; Chen et al., 2011; Zhang et al., 2015c)。冈底斯岩浆弧具有从俯冲到碰撞的完整演化历史,发生在增生和碰撞造山过程中的多期深熔再造已经使新生的弧地壳转变成了成熟的大陆地壳(Zhang et al., 2020)。

6 主要认识

(1) 俯冲带的变质作用可划分为两个大的类型,即俯冲板块型和上板块型。俯冲板块具有低的地温梯度(5~15℃/km地温梯度),可进一步划分为冷俯冲板块型(5~10℃/km)和热俯冲板块型(10~15℃/km)。俯冲带上板块具有热的地温梯度(15~50℃/km),可进一步划为冷地壳型(15~25℃/km)和热地壳型(25~50℃/km)。

(2) 冷俯冲板块的变质作用是以大洋和大陆地壳岩石深俯冲到地幔,发生超高压变质作用为特征。所形成的超高压变质岩具有顺时针型P-T轨迹,在其折返过程中叠加近等温或升温和降压变质作用,并发生脱水熔融。

(3) 热俯冲板片型变质作用发生在年轻板块的正常俯冲和古老板块的平缓俯冲过程中。从大洋岩石圈初始俯冲到成熟俯冲,俯冲板块的地温梯度由高到低,由热俯冲型转变成冷俯冲型变质作用。热俯冲板块的变质岩可具有顺时针型和逆时针型P-T轨迹,可以在高温和高压下发生部分熔融形成埃达克质岩浆岩。

(4) 冷地壳型变质作用发生在上板块构造挤压导致的加厚地壳环境。加厚的下地壳发生高温、高压麻粒岩相和榴辉岩相变质作用和部分熔融,形成埃达克质岩浆岩和高密度的弧榴辉岩残留体。高温和高压变质岩可具有顺时针和逆时针型P-T轨迹。

(5) 热地壳型变质作用发生在上板块构造伸展导致的减薄地壳环境。由于幔源岩浆增生和软流圈上涌,下地壳发生高温或超高温麻粒岩相变质作用和部分熔融形成花岗岩。高温或超高温变质岩可具有顺时针型或逆时针型P-T轨迹。在岩浆弧加厚地壳的伸展过程中,先期形成的高温和高压变质岩可以叠加超高温变质作用。岩浆弧可能是超高温变质岩形成的最主要构造环境。

(6) 俯冲带上板块除了发育强烈的幔源岩浆作用外,其加厚和减薄下地壳都可以部分熔融形成大体积的花岗岩。由此导致新生地壳组成和成分的分异,是大陆地壳生长和成熟的重要机制。

(7) 大陆碰撞造山带的加厚下地壳具有较低的地温梯度,可以发生高压麻粒岩和榴辉岩相变质作用。这些高压变质岩具有顺时针型P-T轨迹,在其折返过程中可以叠加中压和高温,甚至超高温变质作用。碰撞造山带下地壳可经历长期部分熔融形成不同成分的壳源花岗岩。

俯冲带变质作用研究具有重要的构造意义,是国际地质学界的研究焦点,取得了许多重要成果。由于作者水平有限,难以全面总结取得的重要进展,不当之处在所难免,敬请批评指正!

致谢      感谢赵国春院士的指导!感谢张建新研究员和张贵宾教授审阅全文,并提出了重要的修改意见。

参考文献
Agard P, Monié P, Gerber W, Omrani J, Molinaro M, Meyer B, Labrousse L, Vrielynck B, Jolivet L and Yamato P. 2006. Transient, synobduction exhumation of Zagros blueschists inferred from P-T, deformation, time, and kinematic constraints: Implications for Neotethyan wedge dynamics. Journal of Geophysical Research: Solid Earth, 111(B11): B11401
Agard P, Yamato P, Jolivet L and Burov E. 2009. Exhumation of oceanic blueschists and eclogites in subduction zones: Timing and mechanisms. Earth-Science Reviews, 92(1-2): 53-79 DOI:10.1016/j.earscirev.2008.11.002
Agard P, Plunder A, Angiboust S, Bonnet G and Ruh J. 2018. The subduction plate interface: Rock record and mechanical coupling (from long to short timescales). Lithos, 320-321: 537-566 DOI:10.1016/j.lithos.2018.09.029
Agard P, Prigent C, Soret M, Dubacq B, Guillot S and Deldicque D. 2020. Slabitization: Mechanisms controlling subduction development and viscous coupling. Earth-Science Reviews, 208: 103259 DOI:10.1016/j.earscirev.2020.103259
Angiboust S, Hyppolito T, Glodny J, Cambeses A, Garcia-Casco A, Calderón M and Juliani C. 2017. Hot subduction in the middle Jurassic and partial melting of oceanic crust in Chilean Patagonia. Gondwana Research, 42: 104-125 DOI:10.1016/j.gr.2016.10.007
Ao A and Bhowmik SK. 2014. Cold subduction of the Neotethys: The metamorphic record from finely banded lawsonite and epidote blueschists and associated metabasalts of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 32(8): 829-860 DOI:10.1111/jmg.12096
Beaumont C, Nguyen MH, Jamieson RA and Ellis S. 2006. Crustal flow modes in large hot orogens. In: Law RD, Searle MP and Godin L (eds.). Channel Flow, Ductile Extrusion and Exhumation in Continental Collision Zones. Geological Society, London, Special Publications, 268(1): 91-145
Beaumont C, Jamieson R and Nguyen M. 2010. Models of large, hot orogens containing a collage of reworked and accreted terranes. Canadian Journal of Earth Sciences, 47(4): 485-515 DOI:10.1139/E10-002
Berger J, Caby R, Liégeois JP, Mercier JCC and Demaiffe D. 2009. Dehydration, melting and related garnet growth in the deep root of the Amalaoulaou Neoproterozoic magmatic arc (Gourma, NE Mali). Geological Magazine, 146(2): 173-186 DOI:10.1017/S0016756808005499
Bhowmik SK and Ao A. 2016. Subduction initiation in the Neo-Tethys: Constraints from counterclockwise P-T paths in amphibolite rocks of the Nagaland Ophiolite Complex, India. Journal of Metamorphic Geology, 34(1): 17-44 DOI:10.1111/jmg.12169
Bi HZ, Song SG, Whitney DL, Wang C and Su L. 2021. HP-UHT granulites in the East Kunlun Orogen, NW China: Constraints on the transition from compression to extension in an arc setting of the Proto-Tethys Ocean. Journal of Metamorphic Geology, 39(8): 1071-1095 DOI:10.1111/jmg.12602
Blanco-Quintero IF, García-Casco A, Rojas-Agramonte Y, Rodríguez-Vega A, Lázaro C and Iturralde-Vinent MA. 2010. Metamorphic evolution of subducted hot oceanic crust (La Corea mélange, Cuba). American Journal of Science, 310(9): 889-915 DOI:10.2475/11.2010.01
Blanco-Quintero IF, García-Casco A and Gerya TV. 2011. Tectonic blocks in serpentinite mélange (eastern Cuba) reveal large-scale convective flow of the subduction channel. Geology, 39(1): 79-82 DOI:10.1130/G31494.1
Bohlen SR. 1987. Pressure-temperature-time paths and a tectonic model for the evolution of granulites. The Journal of Geology, 95(5): 617-632 DOI:10.1086/629159
Bohlen SR. 1991. On the formation of granulites. Journal of Metamorphic Geology, 9(3): 223-229 DOI:10.1111/j.1525-1314.1991.tb00518.x
Breitsprecher K, Thorkelson DJ, Groome WG and Dostal J. 2003. Geochemical confirmation of the Kula-Farallon slab window beneath the Pacific Northwest in Eocene time. Geology, 31(4): 351-354 DOI:10.1130/0091-7613(2003)031<0351:GCOTKF>2.0.CO;2
Brown EH. 1996. High-pressure metamorphism caused by magma loading in Fiordland, New Zealand. Journal of Metamorphic Geology, 14(4): 441-452 DOI:10.1046/j.1525-1314.1996.06024.x
Brown M. 2006. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology, 34(11): 961-964 DOI:10.1130/G22853A.1
Brown M and Rushmer T. 2006. Evolution and Differentiation of the Continental Crust. Cambridge: Cambridge University Press, 332-384
Brown M. 2007a. Metamorphic conditions in orogenic belts: A record of secular change. International Geology Review, 49(3): 193-234 DOI:10.2747/0020-6814.49.3.193
Brown M. 2007b. Crustal melting and melt extraction, ascent and emplacement in orogens: Mechanisms and consequences. Journal of the Geological Society, 164(4): 709-730 DOI:10.1144/0016-76492006-171
Brown M. 2010a. Melting of the continental crust during orogenesis: The thermal, rheological, and compositional consequences of melt transport from lower to upper continental crust. Canadian Journal of Earth Sciences, 47(5): 655-694 DOI:10.1139/E09-057
Brown M. 2010b. Paired metamorphic belts revisited. Gondwana Research, 18(1): 46-59 DOI:10.1016/j.gr.2009.11.004
Brown M. 2014. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geoscience Frontiers, 5(4): 553-569 DOI:10.1016/j.gsf.2014.02.005
Brown M and Johnson T. 2018. Secular change in metamorphism and the onset of global plate tectonics. American Mineralogist, 103(2): 181-196 DOI:10.2138/am-2018-6166
Brown M and Johnson T. 2019. Metamorphism and the evolution of subduction on Earth. American Mineralogist, 104(8): 1065-1082 DOI:10.2138/am-2019-6956
Butcher LA, Mahan KH and Allaz JM. 2017. Late Cretaceous crustal hydration in the Colorado Plateau, USA, from xenolith petrology and monazite geochronology. Lithosphere, 9(4): 561-578
Cao WR, Paterson S, Saleeby J and Zalunardo S. 2016. Bulk arc strain, crustal thickening, magma emplacement, and mass balances in the Mesozoic Sierra Nevada arc. Journal of Structural Geology, 84: 14-30 DOI:10.1016/j.jsg.2015.11.002
Chapman AD, Saleeby JB, Wood DJ, Piasecki A, Kidder S, Ducea MN and Farley KA. 2012. Late Cretaceous gravitational collapse of the southern Sierra Nevada batholith, California. Geosphere, 8(2): 314-341 DOI:10.1130/GES00740.1
Chapman AD, Rautela O, Shields J, Ducea MN and Saleeby J. 2019. Fate of the lower lithosphere during shallow-angle subduction: The Laramide example. GSA Today, 30(1): 4-10
Chapman JB, Dafov MN, Gehrels G, Ducea MN, Valley JW and Ishida A. 2018. Lithospheric architecture and tectonic evolution of the southwestern U.S. Cordillera: Constraints from zircon Hf and O isotopic data. GSA Bulletin, 130(13-12): 2031-2046
Chapman JB, Greig R and Haxel GB. 2020. Geochemical evidence for an orogenic plateau in the southern U.S. and northern Mexican Cordillera during the Laramide orogeny. Geology, 48(2): 164-168
Chapman JB, Runyon SE, Shields JE, Lawler BL, Pridmore CJ, Scoggin SH, Swaim NT, Trzinski AE, Wiley HN, Barth AP and Haxel GB. 2021. The North American Cordilleran anatectic belt. Earth-Science Reviews, 215: 103576 DOI:10.1016/j.earscirev.2021.103576
Chatterjee N and Ghose NC. 2010. Metamorphic evolution of the Naga Hills eclogite and blueschist, Northeast India: Implications for early subduction of the Indian plate under the Burma microplate. Journal of Metamorphic Geology, 28(2): 209-225 DOI:10.1111/j.1525-1314.2009.00861.x
Chen JL, Xu JF, Zhao WX, Dong YH, Wang BD and Kang ZQ. 2011. Geochemical variations in Miocene adakitic rocks from the western and eastern Lhasa terrane: Implications for lower crustal flow beneath the Southern Tibetan Plateau. Lithos, 125(3-4): 928-939 DOI:10.1016/j.lithos.2011.05.006
Chen Y, Ye K, Wu TF and Guo S. 2013. Exhumation of oceanic eclogites: Thermodynamic constraints on pressure, temperature, bulk composition and density. Journal of Metamorphic Geology, 31(5): 549-570 DOI:10.1111/jmg.12033
Chen YX, Zhou K and Gao XY. 2017. Partial melting of ultrahigh-pressure metamorphic rocks during continental collision: Evidence, time, mechanism, and effect. Journal of Asian Earth Sciences, 145: 177-191 DOI:10.1016/j.jseaes.2017.03.020
Chopin C. 1984. Coesite and pure pyrope in high-grade blueschists of the western Alps: A first record and some consequences. Contributions to Mineralogy and Petrology, 86(2): 107-118 DOI:10.1007/BF00381838
Chopin C. 2003. Ultrahigh-pressure metamorphism: Tracing continental crust into the mantle. Earth and Planetary Science Letters, 212(1-2): 1-14 DOI:10.1016/S0012-821X(03)00261-9
Chung SL, Liu DY, Ji JQ, Chu MF, Lee HY, Wen DJ, Lo CH, Lee TY, Qian Q and Zhang Q. 2003. Adakites from continental collision zones: Melting of thickened lower crust beneath southern Tibet. Geology, 31(11): 1021-1024 DOI:10.1130/G19796.1
Chung SL, Chu MF, Zhang YQ, Xie YW, Lo CH, Lee TY, Lan CY, Li XH, Zhang Q and Wang YZ. 2005. Tibetan tectonic evolution inferred from spatial and temporal variations in post-collisional magmatism. Earth-Science Reviews, 68(3-4): 173-196
Chung SL, Chu MF, Ji JQ, O'Reilly SY, Pearson NJ, Liu DY, Lee TY and Lo CH. 2009. The nature and timing of crustal thickening in Southern Tibet: Geochemical and zircon Hf isotopic constraints from postcollisional adakites. Tectonophysics, 477(1-2): 36-48 DOI:10.1016/j.tecto.2009.08.008
Cipar JH, Garber JM, Kylander-Clark ARC and Smye AJ. 2020. Active crustal differentiation beneath the Rio Grande Rift. Nature Geoscience, 13(11): 758-763 DOI:10.1038/s41561-020-0640-z
Clark C, Fitzsimons ICW, Healy D and Harley SL. 2011. How does the continental crust get really hot?. Elements, 7(4): 235-240 DOI:10.2113/gselements.7.4.235
Clarke GL, Klepeis KA and Daczko NR. 2000. Cretaceous high-P granulites at Milford Sound, New Zealand: Metamorphic history and emplacement in a convergent margin setting. Journal of Metamorphic Geology, 18(4): 359-374 DOI:10.1046/j.1525-1314.2000.00259.x
Clarke GL, Daczko NR, Klepeis KA and Rushmer T. 2005. Roles for fluid and/or melt advection in forming high-P mafic migmatites, Fiordland, New Zealand. Journal of Metamorphic Geology, 23(7): 557-567 DOI:10.1111/j.1525-1314.2005.00594.x
Clarke GL, Daczko NR and Miescher D. 2013. Identifying relic igneous garnet and clinopyroxene in eclogite and granulite, Breaksea orthogneiss, New Zealand. Journal of Petrology, 54(9): 1921-1938 DOI:10.1093/petrology/egt036
Cole RB and Stewart BW. 2009. Continental margin volcanism at sites of spreading ridge subduction: Examples from southern Alaska and western California. Tectonophysics, 464(1-4): 118-136 DOI:10.1016/j.tecto.2007.12.005
Collins WJ. 2002. Hot orogens, tectonic switching, and creation of continental crust. Geology, 30(6): 535-538 DOI:10.1130/0091-7613(2002)030<0535:HOTSAC>2.0.CO;2
Collins WJ, Huang HQ and Jiang XY. 2016. Water-fluxed crustal melting produces Cordilleran batholiths. Geology, 44(2): 143-146 DOI:10.1130/G37398.1
Condie KC. 1998. Episodic continental growth and supercontinents: A mantle avalanche connection?. Earth and Planetary Science Letters, 163(1-4): 97-108 DOI:10.1016/S0012-821X(98)00178-2
Condie KC. 2005. TTGs and adakites: Are they both slab melts?. Lithos, 80(1-4): 33-44 DOI:10.1016/j.lithos.2003.11.001
Coney PJ and Harms TA. 1984. Cordilleran metamorphic core complexes: Cenozoic extensional relics of Mesozoic compression. Geology, 12(9): 550-554 DOI:10.1130/0091-7613(1984)12<550:CMCCCE>2.0.CO;2
Currie CA, Ducea MN, DeCelles PG and Beaumont C. 2015. Geodynamic models of Cordilleran orogens: Gravitational instability of magmatic arc roots. In: DeCelles PG, Ducea MN, Carrapa B and Kapp PA (eds. ). Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. America: Geological Society of America, 212: 1-22
Daczko NR, Clarke GL and Klepeis KA. 2001. Transformation of two-pyroxene hornblende granulite to garnet granulite involving simultaneous melting and fracturing of the lower crust, Fiordland, New Zealand. Journal of Metamorphic Geology, 19(5): 549-562 DOI:10.1046/j.0263-4929.2001.00328.x
Daczko NR, Clarke GL and Klepeis KA. 2002. Kyanite-paragonite-bearing assemblages, northern Fiordland, New Zealand: Rapid cooling of the lower crustal root to a Cretaceous magmatic arc. Journal of Metamorphic Geology, 20(9): 887-902 DOI:10.1046/j.1525-1314.2002.00421.x
Dasgupta S and Bhowmik SK. 2021. Types of metamorphism. In: Alderton D and Elias SA (eds. ). Encyclopedia of Geology. 2nd Edition. Pittsburgh: Academic Press, 345-365
De Paoli MC, Clarke GL, Klepeis KA, Allibone AH and Turnbull IM. 2009. The eclogite-granulite transition: Mafic and intermediate assemblages at Breaksea Sound, New Zealand. Journal of Petrology, 50(12): 2307-2343 DOI:10.1093/petrology/egp078
DeCelles PG, Ducea MN, Kapp P and Zandt G. 2009. Cyclicity in Cordilleran orogenic systems. Nature Geoscience, 2(4): 251-257 DOI:10.1038/ngeo469
DeCelles PG, Zandt G, Beck SL, Currie CA, Ducea MN, Kapp P, Gehrels GE, Carrapa B, Quade J and Schoenbohm LM. 2015. Cyclical orogenic processes in the Cenozoic Central Andes.In: DeCelles PG, Ducea MN, Carrapa B and Kapp PA (eds.). Geodynamics of a Cordilleran Orogenic System: The Central Andes of Argentina and Northern Chile. America: Geological Society of America, 212: 459-490
Defant MJ and Drummond MS. 1990. Derivation of some modern arc magmas by melting of young subducted lithosphere. Nature, 347(6294): 662-665 DOI:10.1038/347662a0
Dewey JF and Bird JM. 1970. Mountain belts and the new global tectonics. Journal of Geophysical Research, 75(14): 2625-2647 DOI:10.1029/JB075i014p02625
Dickinson WR. 2004. Evolution of the North American Cordillera. Annual Review of Earth and Planetary Sciences, 32: 13-45 DOI:10.1146/annurev.earth.32.101802.120257
Ding HX, Kohn MJ and Zhang ZM. 2021a. Long-lived (ca.22~24Myr) partial melts in the eastern Himalaya: Petrochronologic constraints and tectonic implications. Earth and Planetary Science Letters, 558: 116764
Ding HX, Zhang ZM, Kohn MJ and Gou ZB. 2021b. Timescales of partial melting and melt crystallization in the eastern Himalayan orogen: Insights from zircon petrochronology. Geochemistry, Geophysics, Geosystems, 22(4): e2020GC009539
Ding L, Kapp P, Zhong DL and Deng WM. 2003. Cenozoic volcanism in Tibet: Evidence for a transition from oceanic to continental subduction. Journal of Petrology, 44(10): 1833-1865 DOI:10.1093/petrology/egg061
Dong J, Wei CJ, Clarke GL and Zhang JX. 2018a. Metamorphic evolution during deep subduction and exhumation of continental crust: Insights from felsic granulites in South Altyn Tagh, West China. Journal of Petrology, 59(10): 1965-1990
Dong J, Wei CJ and Zhang JX. 2019. Ultra high temperature metamorphism of mafic granulites from South Altyn Orogen, West China: A result from the rapid exhumation of deeply subducted continental crust. Journal of Metamorphic Geology, 37(3): 315-338 DOI:10.1111/jmg.12464
Dong J, Wei CJ and Song SG. 2021. Deep subduction and exhumation of micro-continents in the Proto-Tethys realm: Evidence from metamorphism of HP-UHT rocks in the North Qinling Orogen, central China. Gondwana Research DOI:10.1016/j.gr.2021.07.007
Dong X, Zhang ZM and Santosh M. 2010. Zircon U-Pb chronology of the Nyingtri Group, Southern Lhasa Terrane, Tibetan Plateau: Implications for Grenvillian and Pan-African provenance and Mesozoic-Cenozoic metamorphism. The Journal of Geology, 118(6): 677-690 DOI:10.1086/656355
Dong X, Zhang ZM, Liu F, Wang W, Yu F, Lin YH, Jiang HY and He ZY. 2012. Genesis of the metamorphic rock from southeastern Lhasa terrane and the Mesozoic-Cenozoic orogenesis. Acta Petrologica Sinica, 28(6): 1765-1784 (in Chinese with English abstract)
Dong X, Zhang ZM, Liu F, He ZY and Lin YH. 2014. Late Paleozoic intrusive rocks from the southeastern Lhasa terrane, Tibetan Plateau, and their Late Mesozoic metamorphism and tectonic implications. Lithos, 198-199: 249-262 DOI:10.1016/j.lithos.2014.04.001
Dong X, Zhang ZM, Klemd R, He ZY and Tian ZL. 2018b. Late Cretaceous tectonothermal evolution of the southern Lhasa terrane, South Tibet: Consequence of a Mesozoic Andean-type orogeny. Tectonophysics, 730: 100-113 DOI:10.1016/j.tecto.2018.03.001
Ducea M and Saleeby J. 1998. A case for delamination of the deep batholithic crust beneath the Sierra Nevada, California. International Geology Review, 40(1): 78-93 DOI:10.1080/00206819809465199
Ducea M. 2001. The California arc: Thick granitic batholiths, eclogitic residues, lithospheric-scale thrusting, and magmatic flare-ups. GSA Today, 11(11): 4-10 DOI:10.1130/1052-5173(2001)011<0004:TCATGB>2.0.CO;2
Ducea MN and Saleeby JB. 1996. Buoyancy sources for a large, unrooted mountain range, the Sierra Nevada, California: Evidence from xenolith thermobarometry. Journal of Geophysical Research: Solid Earth, 101(B4): 8229-8244 DOI:10.1029/95JB03452
Ducea MN. 2002. Constraints on the bulk composition and root foundering rates of continental arcs: A California arc perspective. Journal of Geophysical Research: Solid Earth, 107(B11): 2304
Ducea MN, Lutkov V, Minaev VT, Hacker B, Ratschbacher L, Luffi P, Schwab M, Gehrels GE, McWilliams M, Vervoort J and Metcalf J. 2003. Building the Pamirs: The view from the underside. Geology, 31(10): 849-852 DOI:10.1130/G19707.1
Ducea MN, Saleeby JB and Bergantz G. 2015. The architecture, chemistry, and evolution of continental magmatic arcs. Annual Review of Earth and Planetary Sciences, 43: 299-331 DOI:10.1146/annurev-earth-060614-105049
Ducea MN, Chapman AD, Bowman E and Triantafyllou A. 2021a. Arclogites and their role in continental evolution; Part 1:Background, locations, petrography, geochemistry, chronology and thermobarometry. Earth-Science Reviews, 214: 103375 DOI:10.1016/j.earscirev.2020.103375
Ducea MN, Chapman AD, Bowman E and Balica C. 2021b. Arclogites and their role in continental evolution; Part 2:Relationship to batholiths and volcanoes, density and foundering, remelting and long-term storage in the mantle. Earth-Science Reviews, 214: 103476 DOI:10.1016/j.earscirev.2020.103476
Dumond G, Williams ML, Baldwin JA and Jercinovic MJ. 2017. Backarc origin for Neoarchean ultrahigh-temperature metamorphism, eclogitization, and orogenic root growth. Geology, 45(10): 943-946 DOI:10.1130/G39254.1
Endo S, Wallis SR, Tsuboi M, Aoya M and Uehara SI. 2012. Slow subduction and buoyant exhumation of the Sanbagawa eclogite. Lithos, 146-147: 183-201 DOI:10.1016/j.lithos.2012.05.010
Erdman ME, Lee CTA, Levander A and Jiang HH. 2016. Role of arc magmatism and lower crustal foundering in controlling elevation history of the Nevadaplano and Colorado Plateau: A case study of pyroxenitic lower crust from central Arizona, USA. Earth and Planetary Science Letters, 439: 48-57 DOI:10.1016/j.epsl.2016.01.032
Ernst WG. 1971. Metamorphic zonations on presumably subducted lithospheric plates from Japan, California and the Alps. Contributions to Mineralogy and Petrology, 34(1): 43-59 DOI:10.1007/BF00376030
Ernst WG. 1972. Possible Permian oceanic crust and plate junction in central Shikoku, Japan. Tectonophysics, 15(3): 233-239 DOI:10.1016/0040-1951(72)90087-X
Ernst WG. 1988. Tectonic history of subduction zones inferred from retrograde blueschist P-T paths. Geology, 16(12): 1081-1084 DOI:10.1130/0091-7613(1988)016<1081:THOSZI>2.3.CO;2
Escuder-Viruete J, Pérez-Estaún A, Gabites J and Suárez-Rodríguez á. 2011. Structural development of a high-pressure collisional accretionary wedge: The Samaná complex, Northern Hispaniola. Journal of Structural Geology, 33(5): 928-950 DOI:10.1016/j.jsg.2011.02.006
Faccenna C, Becker TW, Holt AF and Brun JP. 2021. Mountain building, mantle convection, and supercontinents: Holmes (1931) revisited. Earth and Planetary Science Letters, 564: 116905 DOI:10.1016/j.epsl.2021.116905
Federico L, Crispini L, Scambelluri M and Capponi G. 2007. Ophiolite mélange zone records exhumation in a fossil subduction channel. Geology, 35(6): 499-502 DOI:10.1130/G23190A.1
Fischer R and Gerya T. 2016. Early Earth plume-lid tectonics: A high-resolution 3D numerical modelling approach. Journal of Geodynamics, 100: 198-214 DOI:10.1016/j.jog.2016.03.004
Fitzherbert JA, Clarke GL and Powell R. 2003. Lawsonite-omphacite-bearing metabasites of the Pam Peninsula, NE New Caledonia: Evidence for disrupted blueschist-to eclogite-facies conditions. Journal of Petrology, 44(10): 1805-1831 DOI:10.1093/petrology/egg060
Flowers RM, Bowring SA, Tulloch AJ and Klepeis KA. 2005. Tempo of burial and exhumation within the deep roots of a magmatic arc, Fiordland, New Zealand. Geology, 33(1): 17-20 DOI:10.1130/G21010.1
Gallien F, Mogessie A, Bjerg E, Delpino S, de Machuca BC, Thöni M and Klötzli U. 2010. Timing and rate of granulite facies metamorphism and cooling from multi-mineral chronology on migmatitic gneisses, Sierras de La Huerta and Valle Fértil, NW Argentina. Lithos, 114(1-2): 229-252 DOI:10.1016/j.lithos.2009.08.011
Ganade CE, Basei MAS, Grandjean FC, Armstrong R and Brito RS. 2017. Contrasting Archaean (2.85~2.68Ga) TTGs from the Tróia Massif (NE-Brazil) and their geodynamic implications for flat to steep subduction transition. Precambrian Research, 297: 1-18
Ganade CE, Lanari P, Rubatto D, Hermann J, Weinberg RF, Basei MAS, Tesser LR, Caby R, Agbossoumondé Y and Ribeiro CM. 2021. Magmatic flare-up causes crustal thickening at the transition from subduction to continental collision. Communications Earth & Environment, 2(1): 41
Gao LE, Zeng LS and Asimow PD. 2017. Contrasting geochemical signatures of fluid-absent versus fluid-fluxed melting of muscovite in metasedimentary sources: The Himalayan leucogranites. Geology, 45(1): 39-42 DOI:10.1130/G38336.1
Gao XY, Zheng YF and Chen YX. 2012. Dehydration melting of ultrahigh-pressure eclogite in the Dabie orogen: Evidence from multiphase solid inclusions in garnet. Journal of Metamorphic Geology, 30(2): 193-212 DOI:10.1111/j.1525-1314.2011.00962.x
García-Casco A, Lázaro C, Rojas-Agramonte Y, Kröner A, Torres-Roldán RL, Núñez K, Neubauer F, Millán G and Blanco-Quintero I. 2007. Partial melting and counterclockwise P-T path of subducted oceanic crust (Sierra del Convento mélange, Cuba). Journal of Petrology, 49(1): 129-161 DOI:10.1093/petrology/egm074
Garrido CJ, Bodinier JL, Burg JP, Zeilinger G, Hussain SS, Dawood H, Chaudhry MN and Gervilla F. 2006. Petrogenesis of mafic garnet granulite in the lower crust of the Kohistan paleo-arc complex (northern Pakistan): Implications for intra-crustal differentiation of island arcs and generation of continental crust. Journal of Petrology, 47(10): 1873-1914 DOI:10.1093/petrology/egl030
Gordon SM, Bowring SA, Whitney DL, Miller RB and McLean N. 2010. Time scales of metamorphism, deformation, and crustal melting in a continental arc, North Cascades USA. GSA Bulletin, 122(7-8): 1308-1330 DOI:10.1130/B30060.1
Gordon SM, Luffi P, Hacker B, Valley J, Spicuzza M, Kozdon R, Kelemen P, Ratshbacher L and Minaev V. 2012. The thermal structure of continental crust in active orogens: Insight from Miocene eclogite and granulite xenoliths of the Pamir Mountains. Journal of Metamorphic Geology, 30(4): 413-434 DOI:10.1111/j.1525-1314.2012.00973.x
Gou ZB, Zhang ZM, Dong X, Xiang H, Ding HX, Tian ZL and Lei HC. 2016. Petrogenesis and tectonic implications of the Yadong leucogranites, southern Himalaya. Lithos, 256-257: 300-310 DOI:10.1016/j.lithos.2016.04.009
Groppo C, Lombardo B, Rolfo F and Pertusati P. 2007. Clockwise exhumation path of granulitized eclogites from the Ama Drime range (Eastern Himalayas). Journal of Metamorphic Geology, 25(1): 51-75 DOI:10.1111/j.1525-1314.2006.00678.x
Guillot S and Replumaz A. 2013. Importance of continental subductions for the growth of the Tibetan plateau. Bulletin de la Société Géologique de France, 184(3): 199-223 DOI:10.2113/gssgfbull.184.3.199
Guilmette C, Indares A and Hébert R. 2011. High-pressure anatectic paragneisses from the Namche Barwa, Eastern Himalayan Syntaxis: Textural evidence for partial melting, phase equilibria modeling and tectonic implications. Lithos, 124(1-2): 66-81 DOI:10.1016/j.lithos.2010.09.003
Guo JH, Peng P, Chen Y, Jiao SJ and Windley BF. 2012b. UHT sapphirine granulite metamorphism at 1.93~1.92Ga caused by gabbronorite intrusions: Implications for tectonic evolution of the northern margin of the North China Craton. Precambrian Research, 222-223: 124-142
Guo L, Zhang HF, Harris N, Pan FB and Xu WC. 2011. Origin and evolution of multi-stage felsic melts in eastern Gangdese belt: Constraints from U-Pb zircon dating and Hf isotopic composition. Lithos, 127(1-2): 54-67 DOI:10.1016/j.lithos.2011.08.005
Guo L, Zhang HF, Harris N, Parrish R, Xu WC and Shi ZL. 2012a. Paleogene crustal anatexis and metamorphism in Lhasa terrane, eastern Himalayan syntaxis: Evidence from U-Pb zircon ages and Hf isotopic compositions of the Nyingchi Complex. Gondwana Research, 21(1): 100-111 DOI:10.1016/j.gr.2011.03.002
Guo L, Zhang HF, Harris N, Pan FB and Xu WC. 2013. Late Cretaceous (~81Ma) high-temperature metamorphism in the southeastern Lhasa terrane: Implication for the Neo-Tethys ocean ridge subduction. Tectonophysics, 608: 112-126 DOI:10.1016/j.tecto.2013.10.007
Guo ZF, Wilson M and Liu JQ. 2007. Post-collisional adakites in south Tibet: Products of partial melting of subduction-modified lower crust. Lithos, 96(1-2): 205-224 DOI:10.1016/j.lithos.2006.09.011
Guo ZF and Wilson M. 2012. The Himalayan leucogranites: Constraints on the nature of their crustal source region and geodynamic setting. Gondwana Research, 22(2): 360-376 DOI:10.1016/j.gr.2011.07.027
Gutscher MA, Maury R, Eissen JP and Bourdon E. 2000. Can slab melting be caused by flat subduction?. Geology, 18(6): 535-538
Hacker B, Luffi P, Lutkov V, Minaev V, Ratschbacher L, Plank T, Ducea M, Patiño-Douce A, McWilliams M and Metcalf J. 2005. Near-ultrahigh pressure processing of continental crust: Miocene crustal xenoliths from the Pamir. Journal of Petrology, 46(8): 1661-1687 DOI:10.1093/petrology/egi030
Hacker BR, Gnos E, Ratschbacher L, Grove M, McWilliams M, Sobolev SV, Jiang W and Wu ZH. 2000. Hot and dry deep crustal xenoliths from Tibet. Science, 287(5462): 2463-2466 DOI:10.1126/science.287.5462.2463
Hacker BR, Mehl L, Kelemen PB, Rioux M, Behn MD and Luffi P. 2008. Reconstruction of the Talkeetna intraoceanic arc of Alaska through thermobarometry. Journal of Geophysical Research: Solid Earth, 113(B3): B03204
Hacker BR, Kelemen PB, Rioux M, McWilliams MO, Gans PB, Reiners PW, Layer PW, Soderlund U and Vervoort JD. 2011a. Thermochronology of the Talkeetna intraoceanic arc of Alaska: Ar/Ar, U-Th/He, Sm-Nd, and Lu-Hf dating. Tectonics, 30(1): TC1011
Hacker BR, Kelemen PB and Behn MD. 2011b. Differentiation of the continental crust by relamination. Earth and Planetary Science Letters, 307(3-4): 501-516 DOI:10.1016/j.epsl.2011.05.024
Hacker BR, Kelemen PB and Behn MD. 2015. Continental lower crust. Annual Review of Earth and Planetary Sciences, 43: 167-205 DOI:10.1146/annurev-earth-050212-124117
Hallett BW and Spear FS. 2014. The P-T history of anatectic pelites of the Northern East Humboldt Range, Nevada: Evidence for tectonic loading, decompression, and anatexis. Journal of Petrology, 55(1): 3-36 DOI:10.1093/petrology/egt057
Hallett BW and Spear FS. 2015. Versatile monazite: Resolving geological records and solving challenges in materials science.Monazite, zircon, and garnet growth in migmatitic pelites as a record of metamorphism and partial melting in the East Humboldt Range, Nevada. American Mineralogist, 100(4): 951-972
Harley SL. 1998. On the occurrence and characterization of ultrahigh-temperature crustal metamorphism.In: Treloar PJ and O'Brien PJ (eds.). What Drives Metamorphism and Metamorphic Reactions?. Geological Society, London, Special Publication, 138(1): 81-107
Harley SL. 2008. Refining the P-T records of UHT crustal metamorphism. Journal of Metamorphic Geology, 26(2): 125-154 DOI:10.1111/j.1525-1314.2008.00765.x
Hermann J and Rubatto D. 2014. Subduction of continental crust to mantle depth: Geochemistry of ultrahigh-pressure rocks. Treatise on Geochemistry (Second Edition), 4: 309-340
Herzberg C, Condie K and Korenaga J. 2010. Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292(1-2): 79-88 DOI:10.1016/j.epsl.2010.01.022
Holder RM, Viete DR, Brown M and Johnson TE. 2019. Metamorphism and the evolution of plate tectonics. Nature, 572(7769): 378-381 DOI:10.1038/s41586-019-1462-2
Hollis JA, Clarke GL, Klepeis KA, Daczko NR and Ireland TR. 2003. Geochronology and geochemistry of high-pressure granulites of the Arthur River Complex, Fiordland, New Zealand: Cretaceous magmatism and metamorphism on the Palaeo-Pacific margin. Journal of Metamorphic Geology, 21(3): 299-313 DOI:10.1046/j.1525-1314.2003.00443.x
Hollis JA, Clarke GL, Klepeis KA, Daczko NR and Ireland TR. 2004. The regional significance of Cretaceous magmatism and metamorphism in Fiordland, New Zealand, from U-Pb zircon geochronology. Journal of Metamorphic Geology, 22(7): 607-627 DOI:10.1111/j.1525-1314.2004.00537.x
Hou ZQ, Gao YF, Qu XM, Rui ZY and Mo XX. 2004. Origin of adakitic intrusives generated during Mid-Miocene east-west extension in southern Tibet. Earth and Planetary Science Letters, 220(1-2): 139-155 DOI:10.1016/S0012-821X(04)00007-X
Hou ZQ, Zheng YC, Zeng LS, Gao LE, Huang KX, Li W, Li QY, Fu Q, Liang W and Sun QZ. 2012. Eocene-Oligocene granitoids in southern Tibet: Constraints on crustal anatexis and tectonic evolution of the Himalayan orogen. Earth and Planetary Science Letters, 349-350: 38-52 DOI:10.1016/j.epsl.2012.06.030
Hou ZQ, Duan LF, Lu YJ, Zheng YC, Zhu DC, Yang ZM, Yang ZS, Wang BD, Pei YR, Zhao ZD and McCuaig TC. 2015a. Lithospheric architecture of the Lhasa terrane and its control on ore deposits in the Himalayan-Tibetan orogen. Economic Geology, 110(6): 1541-1575 DOI:10.2113/econgeo.110.6.1541
Hou ZQ, Yang ZM, Lu YJ, Kemp A, Zheng YC, Li QY, Tang JX, Yang ZS and Duan LF. 2015b. A genetic linkage between subduction-and collision-related porphyry Cu deposits in continental collision zones. Geology, 43(3): 247-250 DOI:10.1130/G36362.1
Hyppolito T, García-Casco A, Juliani C, Meira VT and Hall C. 2014. Late Paleozoic onset of subduction and exhumation at the western margin of Gondwana (Chilenia Terrane): Counterclockwise P-T paths and timing of metamorphism of deep-seated garnet-mica schist and amphibolite of Punta Sirena, Coastal Accretionary Complex, central Chile (34°S). Lithos, 206-207: 409-434 DOI:10.1016/j.lithos.2014.07.023
Jagoutz O and Behn MD. 2013. Foundering of lower island-arc crust as an explanation for the origin of the continental Moho. Nature, 504(7478): 131-134 DOI:10.1038/nature12758
Jagoutz O and Schmidt MW. 2013. The composition of the foundered complement to the continental crust and a re-evaluation of fluxes in arcs. Earth and Planetary Science Letters, 371-372: 177-190 DOI:10.1016/j.epsl.2013.03.051
Jagoutz O, Schmidt MW, Enggist E, Burg JP, Hamid D and Hussain S. 2013. TTG-type plutonic rocks formed in a modern arc batholith by hydrous fractionation in the lower arc crust. Contributions to Mineralogy and Petrology, 166(4): 1099-1118 DOI:10.1007/s00410-013-0911-4
Jagoutz O. 2014. Arc crustal differentiation mechanisms. Earth and Planetary Science Letters, 396: 267-277 DOI:10.1016/j.epsl.2014.03.060
Jagoutz O and Kelemen PB. 2015. Role of arc processes in the formation of continental crust. Annual Review of Earth and Planetary Sciences, 43: 363-404 DOI:10.1146/annurev-earth-040809-152345
Ji WQ, Wu FY, Chung SL, Li JX and Liu CZ. 2009. Zircon U-Pb geochronology and Hf isotopic constraints on petrogenesis of the Gangdese batholith, southern Tibet. Chemical Geology, 262(3-4): 229-245 DOI:10.1016/j.chemgeo.2009.01.020
Ji WQ, Wu FY, Chung SL and Liu CZ. 2014. The Gangdese magmatic constraints on a latest Cretaceous lithospheric delamination of the Lhasa terrane, southern Tibet. Lithos, 210-211: 168-180 DOI:10.1016/j.lithos.2014.10.001
Jiang YY, Zhang ZM, Ding HX, Qin SK, Li WT, Zhang CY, Kang DY and Mo XX. 2020. Metamorphism of pelites in the eastern Gangdese magmatic arc and its tectonic implications. Acta Petrologica Sinica, 36(9): 2631-2645 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.09.03
Jiang YY, Zhang ZM, Palin RM, Ding HX and Mo XX. 2021. Early Cenozoic partial melting of meta-sedimentary rocks of the eastern Gangdese arc, southern Tibet, and its contribution to syn-collisional magmatism. GSA Bulletin DOI:10.1130/B35763.1
Jiao SJ, Fitzsimons ICW and Guo JH. 2017. Paleoproterozoic UHT metamorphism in the Daqingshan Terrane, North China Craton: New constraints from phase equilibria modeling and SIMS U-Pb zircon dating. Precambrian Research, 303: 208-227 DOI:10.1016/j.precamres.2017.03.024
Jiao SJ and Guo JH. 2020. Paleoproterozoic UHT metamorphism with isobaric cooling (IBC) followed by decompression-heating in the Khondalite Belt (North China Craton): New evidence from two sapphirine formation processes. Journal of Metamorphic Geology, 38(4): 357-378 DOI:10.1111/jmg.12525
Kang DY, Zhang ZM, Dong X, Tian ZL, Xiang H and Mo XX. 2019. Anticlockwise P-T-t path and tectonic mechanism of metapelites from the eastern Gangdese arc, southern Tibet. Acta Petrologica Sinica, 35(2): 349-362 (in Chinese with English abstract)
Kang DY, Zhang ZM, Palin RM, Tian ZL and Dong X. 2020. Prolonged partial melting of garnet amphibolite from the eastern Himalayan syntaxis: Implications for the tectonic evolution of large hot orogens. Journal of Geophysical Research: Solid Earth, 125(6): e2019JB019119
Karlstrom L, Lee CTA and Manga M. 2014. The role of magmatically driven lithospheric thickening on arc front migration. Geochemistry, Geophysics, Geosystems, 15(6): 2655-2675 DOI:10.1002/2014GC005355
Kato TT, Sharp WD and Godoy E. 2008. Inception of a Devonian subduction zone along the southwestern Gondwana margin: 40Ar-39Ar dating of eclogite-amphibolite assemblages in blueschist boulders from the Coastal Range of Chile (41°S). Canadian Journal of Earth Sciences, 45(3): 337-351 DOI:10.1139/E08-006
Katz MB. 1972. Paired metamorphic belts of the Gondwanaland Precambrian and plate tectonics. Nature, 239(5370): 271-273 DOI:10.1038/239271a0
Kay RW. 1978. Aleutian magnesian andesites: Melts from subducted Pacific Ocean crust. Journal of Volcanology and Geothermal Research, 4(1-2): 117-132 DOI:10.1016/0377-0273(78)90032-X
Kelsey DE and Hand M. 2015. On ultrahigh temperature crustal metamorphism: Phase equilibria, trace element thermometry, bulk composition, heat sources, timescales and tectonic settings. Geoscience Frontiers, 6(3): 311-356 DOI:10.1016/j.gsf.2014.09.006
Kemp AIS, Shimura T and Hawkesworth CJ. 2007. Linking granulites, silicic magmatism, and crustal growth in arcs: Ion microprobe (zircon) U-Pb ages from the Hidaka metamorphic belt, Japan. Geology, 35(9): 807-810 DOI:10.1130/G23586A.1
Keyser W, Tsai CH, Iizuka Y, Oberhänsli R and Ernst WG. 2016. High-pressure metamorphism in the Chinshuichi area, Yuli belt, eastern Taiwan. Tectonophysics, 692: 191-202 DOI:10.1016/j.tecto.2015.09.012
Kidder S, Ducea M, Gehrels G, Patchett PJ and Vervoort J. 2003. Tectonic and magmatic development of the Salinian Coast Ridge Belt, California. Tectonics, 22(5): 1058
Klepeis KA, Clarke GL, Gehrels G and Vervoort J. 2004. Processes controlling vertical coupling and decoupling between the upper and lower crust of orogens: Results from Fiordland, New Zealand. Journal of Structural Geology, 26(4): 765-791 DOI:10.1016/j.jsg.2003.08.012
Kohn MJ. 2014. Himalayan metamorphism and its tectonic implications. Annual Review of Earth and Planetary Sciences, 42: 381-419 DOI:10.1146/annurev-earth-060313-055005
Krebs M, Schertl HP, Maresch WV and Draper G. 2011. Mass flow in serpentinite-hosted subduction channels: P-T-t path patterns of metamorphic blocks in the Rio San Juan mélange (Dominican Republic). Journal of Asian Earth Sciences, 42(4): 569-595 DOI:10.1016/j.jseaes.2011.01.011
Lázaro C and García-Casco A. 2008. Geochemical and Sr-Nd isotope signatures of pristine slab melts and their residues (Sierra del Convento mélange, eastern Cuba). Chemical Geology, 255(1-2): 120-133 DOI:10.1016/j.chemgeo.2008.06.017
Lázaro C, Blanco-Quintero IF, Marchesi C, Bosch D, Rojas-Agramonte Y and García-Casco A. 2011. The imprint of subduction fluids on subducted MORB-derived melts (Sierra del Convento Mélange, Cuba). Lithos, 126(3-4): 341-354 DOI:10.1016/j.lithos.2011.07.011
Le Bayon B, Pitra P, Ballevre M and Bohn M. 2006. Reconstructing P-T paths during continental collision using multi-stage garnet (Gran Paradiso nappe, Western Alps). Journal of Metamorphic Geology, 24(6): 477-496 DOI:10.1111/j.1525-1314.2006.00649.x
Lee CT, Yin QZ, Rudnick RL, Chesley JT and Jacobsen SB. 2000. Osmium isotopic evidence for Mesozoic removal of lithospheric mantle beneath the Sierra Nevada, California. Science, 289(5486): 1912-1916 DOI:10.1126/science.289.5486.1912
Lee CTA, Cheng X and Horodyskyj U. 2006. The development and refinement of continental arcs by primary basaltic magmatism, garnet pyroxenite accumulation, basaltic recharge and delamination: Insights from the Sierra Nevada, California. Contributions to Mineralogy and Petrology, 151(2): 222-242 DOI:10.1007/s00410-005-0056-1
Lee CTA and Anderson DL. 2015. Continental crust formation at arcs, the arclogite "delamination" cycle, and one origin for fertile melting anomalies in the mantle. Science Bulletin, 60(13): 1141-1156 DOI:10.1007/s11434-015-0828-6
Li JL, Klemd R, Gao J and John T. 2016. Poly-cyclic metamorphic evolution of eclogite: Evidence for multistage burial-exhumation cycling in a subduction channel. Journal of Petrology, 57(1): 119-146 DOI:10.1093/petrology/egw002
Li QY, Zhang LF, Fu B, Bader T and Yu HL. 2019. Petrology and zircon U-Pb dating of well-preserved eclogites from the Thongmön area in central Himalaya and their tectonic Implications. Journal of Metamorphic Geology, 37(2): 203-226 DOI:10.1111/jmg.12457
Li ZH, Liu MQ and Gerya T. 2015. Material transportation and fluid-melt activity in the subduction channel: Numerical modeling. Science China (Earth Sciences), 58(8): 1251-1268 DOI:10.1007/s11430-015-5123-5
Liou JG, Ernst WG, Zhang RY, Tsujimori T and Jahn BM. 2009. Ultrahigh-pressure minerals and metamorphic terranes: The view from China. Journal of Asian Earth Sciences, 35(3-4): 199-231 DOI:10.1016/j.jseaes.2008.10.012
Liu FL, Robinson PT and Liu PH. 2012. Multiple partial melting events in the Sulu UHP terrane: Zircon U-Pb dating of granitic leucosomes within amphibolite and gneiss. Journal of Metamorphic Geology, 30(8): 887-906 DOI:10.1111/j.1525-1314.2012.01005.x
Liu L, Liao XY, Wang YW, Wang C, Santosh M, Yang M, Zhang CL and Chen DL. 2016. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Science Reviews, 159: 58-81 DOI:10.1016/j.earscirev.2016.05.005
Liu L, Zhang JF, Cao YT, Green HW, Yang WQ, Xu HJ, Liao XY and Kang L. 2018. Evidence of former stishovite in UHP eclogite from the South Altyn Tagh, western China. Earth and Planetary Science Letters, 484: 353-362 DOI:10.1016/j.epsl.2017.12.023
Liu PL, Wu Y, Liu Q, Zhang JF, Zhang L and Jin ZM. 2014b. Partial melting of UHP calc-gneiss from the Dabie Mountains. Lithos, 192-195: 86-101 DOI:10.1016/j.lithos.2014.01.012
Liu XC, Zhao Y and Hu JM. 2013. The c.1000~900Ma and c. 550~500Ma tectonothermal events in the Prince Charles Mountains-Prydz Bay region, East Antarctica, and their relations to supercontinent evolution. In: Harley SL, Fitzsimons ICW and Zhao Y (eds.). Antarctica and Supercontinent Evolution. Geological Society, London, Special Publication, 383(1): 95-112
Liu XC, Wang W, Zhao Y, Liu J and Song B. 2014a. Early Neoproterozoic granulite facies metamorphism of mafic dykes from the Vestfold Block, east Antarctica. Journal of Metamorphic Geology, 32(9): 1041-1062 DOI:10.1111/jmg.12106
Liu XC, Chen Y, Wang W, Xia MM, Hu J, Li YB, Hu DG and Song B. 2020. Carboniferous eclogite and garnet-omphacite granulite from northeastern Hainan Island, South China: Implications for the evolution of the eastern Palaeo-Tethys. Journal of Metamorphic Geology, 39(1): 101-132
Lü Z, Zhang LF, Du JX and Bucher K. 2008. Coesite inclusions in garnet from eclogitic rocks in western Tianshan, Northwest China: Convincing proof of UHP metamorphism. American Mineralogist, 93(11-12): 1845-1850 DOI:10.2138/am.2008.2800
Ma XX, Xu ZQ, Meert JG, Tian ZL and Li HB. 2021. Early Eocene high-flux magmatism and concurrent high-temperature metamorphism in the Gangdese belt, southern Tibet. GSA Bulletin, 133(5-6): 1194-1216 DOI:10.1130/B35770.1
Martin H. 1999. Adakitic magmas: Modern analogues of Archaean granitoids. Lithos, 46(3): 411-429 DOI:10.1016/S0024-4937(98)00076-0
Martin H, Moyen JF, Guitreau M, Blichert-Toft J and Le Pennec JL. 2014. Why Archaean TTG cannot be generated by MORB melting in subduction zones. Lithos, 198-199: 1-13 DOI:10.1016/j.lithos.2014.02.017
Massonne HJ and Fockenberg T. 2012. Melting of metasedimentary rocks at ultrahigh pressure: Insights from experiments and thermodynamic calculations. Lithosphere, 4(4): 269-285 DOI:10.1130/L185.1
Miller RB and Snoke AW. 2009. Crustal Cross Sections from the Western North American Cordillera and Elsewhere: Implications for Tectonic and Petrologic Processes. America: Geological Society of America, 456-286
Miyashiro A. 1961. Evolution of metamorphic belts. Journal of Petrology, 2(3): 277-311 DOI:10.1093/petrology/2.3.277
Miyashiro A. 1972. Metamorphism and related magmatism in plate tectonics. American Journal of Science, 272(7): 629-656 DOI:10.2475/ajs.272.7.629
Miyashiro A. 1973. Metamorphism and Metamorphic Belts. London: George Allen and Unwin
Mo XX, Hou ZQ, Niu YL, Dong GC, Qu XM, Zhao ZD and Yang ZM. 2007. Mantle contributions to crustal thickening during continental collision: Evidence from Cenozoic igneous rocks in southern Tibet. Lithos, 96(1-2): 225-242 DOI:10.1016/j.lithos.2006.10.005
Mo XX, Niu YL, Dong GC, Zhao ZD, Hou ZQ, Zhou S and Ke S. 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Paleogene Linzizong volcanic succession in southern Tibet. Chemical Geology, 250(1-4): 49-67 DOI:10.1016/j.chemgeo.2008.02.003
Niu YL, Zhao ZD, Zhu DC and Mo XX. 2013. Continental collision zones are primary sites for net continental crust growth: A testable hypothesis. Earth-Science Reviews, 127: 96-110 DOI:10.1016/j.earscirev.2013.09.004
Niu ZX, Zhang ZM, Ding HX, Chen YF, Zhang N and Li WT. 2019. Late Cretaceous magmatism and metamorphism records and its tectonic significance of garnet amphibolite from the eastern end of the Gangdese magmatic arc. Acta Petrologica Sinica, 35(2): 376-386 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.07
O'Brien PJ, Zotov N, Law R, Khan MA and Jan MQ. 2001. Coesite in Himalayan eclogite and implications for models of India-Asia collision. Geology, 29(5): 435-438 DOI:10.1130/0091-7613(2001)029<0435:CIHEAI>2.0.CO;2
Ota T, Gladkochub DP, Sklyarov EV, Mazukabzov AM and Watanabe T. 2004. P-T history of garnet-websterites in the Sharyzhalgai complex, southwestern margin of Siberian craton: Evidence for Paleoproterozoic high-pressure metamorphism. Precambrian Research, 132(4): 327-348 DOI:10.1016/j.precamres.2004.03.009
Otamendi JE, Ducea MN, Tibaldi AM, Bergantz GW, De La Rosa JD and Vujovich GI. 2009. Generation of tonalitic and dioritic magmas by coupled partial melting of gabbroic and metasedimentary rocks within the deep crust of the Famatinian magmatic arc, Argentina. Journal of Petrology, 50(5): 841-873 DOI:10.1093/petrology/egp022
Otamendi JE, Ducea MN and Bergantz GW. 2012. Geological, petrological and geochemical evidence for progressive construction of an arc crustal section, Sierra de Valle Fértil, Famatinian Arc, Argentina. Journal of Petrology, 53(4): 761-800 DOI:10.1093/petrology/egr079
Oxburgh ER and Turcotte DL. 1971. Origin of paired metamorphic belts and crustal dilation in island arc regions. Journal of Geophysical Research, 76(5): 1315-1327 DOI:10.1029/JB076i005p01315
Palin RM, Searle MP, Waters DJ, Horstwood MSA and Parrish RR. 2012. Combined thermobarometry and geochronology of peraluminous metapelites from the Karakoram metamorphic complex, North Pakistan: New insight into the tectonothermal evolution of the Baltoro and Hunza Valley regions. Journal of Metamorphic Geology, 30(8): 793-820 DOI:10.1111/j.1525-1314.2012.00999.x
Palin RM, Searle MP, St-Onge MR, Waters DJ, Roberts NMW, Horstwood MSA, Parrish RR, Weller OM, Chen S and Yang J. 2014. Monazite geochronology and petrology of kyanite-and sillimanite-grade migmatites from the northwestern flank of the eastern Himalayan syntaxis. Gondwana Research, 26(1): 323-347 DOI:10.1016/j.gr.2013.06.022
Palin RM, White RW and Green ECR. 2016. Partial melting of metabasic rocks and the generation of tonalitic-trondhjemitic-granodioritic (TTG) crust in the Archaean: Constraints from phase equilibrium modelling. Precambrian Research, 287: 73-90 DOI:10.1016/j.precamres.2016.11.001
Palin RM, Reuber GS, White RW, Kaus BJP and Weller OM. 2017. Subduction metamorphism in the Himalayan ultrahigh-pressure Tso Morari Massif: An integrated geodynamic and petrological modelling approach. Earth and Planetary Science Letters, 467: 108-119 DOI:10.1016/j.epsl.2017.03.029
Peacock SM, Rushmer T and Thompson AB. 1994. Partial melting of subducting oceanic crust. Earth and Planetary Science Letters, 121(1-2): 227-244 DOI:10.1016/0012-821X(94)90042-6
Penniston-Dorland SC, Kohn MJ and Manning CE. 2015. The global range of subduction zone thermal structures from exhumed blueschists and eclogites: Rocks are hotter than models. Earth and Planetary Science Letters, 428: 243-254 DOI:10.1016/j.epsl.2015.07.031
Pickett DA and Saleeby JB. 1993. Thermobarometric constraints on the depth of exposure and conditions of plutonism and metamorphism at deep levels of the Sierra Nevada Batholith, Tehachapi Mountains, California. Journal of Geophysical Research: Solid Earth, 98(B1): 609-629 DOI:10.1029/92JB01889
Pownall JM, Hall R, Armstrong RA and Forster MA. 2014. Earth's youngest known ultrahigh-temperature granulites discovered on Seram, eastern Indonesia. Geology, 42(4): 279-282 DOI:10.1130/G35230.1
Qin SK, Zhang ZM, Jiang YY, Chen YF, Zhang N and Zhang CY. 2019. Metamorphic P-T path and tectonic implication of the sillimanite-garnet-biotite schist in the eastern Gangdese magmatic arc. Acta Petrologica Sinica, 35(2): 363-375 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.06
Rapp RP and Watson EB. 1995. Dehydration melting of metabasalt at 8~32kbar: Implications for continental growth and crust-mantle recycling. Journal of Petrology, 36(4): 891-931 DOI:10.1093/petrology/36.4.891
Reinecke T. 1991. Very-high-pressure metamorphism and uplift of coesite-bearing metasediments from the Zermatt-Saas zone, Western Alps. European Journal of Mineralogy, 3(1): 7-18 DOI:10.1127/ejm/3/1/0007
Reinecke T. 1998. Prograde high-to ultrahigh-pressure metamorphism and exhumation of oceanic sediments at Lago di Cignana, Zermatt-Saas Zone, western Alps. Lithos, 42(3-4): 147-189 DOI:10.1016/S0024-4937(97)00041-8
Rolland Y, Mahéo G, Guillot S and Pecher A. 2001. Tectono-metamorphic evolution of the Karakorum Metamorphic complex (Dassu-Askole area, NE Pakistan): Exhumation of mid-crustal HT-MP gneisses in a convergent context. Journal of Metamorphic Geology, 19(6): 717-737 DOI:10.1046/j.0263-4929.2001.00342.x
Rolland Y, Carrio-Schaffhauser E, Sheppard SMF, Pêcher A and Esclauze L. 2006. Metamorphic zoning and geodynamic evolution of an inverted crustal section (Karakorum margin, N Pakistan), evidence for two metamorphic events. International Journal of Earth Sciences, 95(2): 288-305 DOI:10.1007/s00531-005-0026-x
Rossetti F, Nasrabady M, Vignaroli G, Theye T, Gerdes A, Razavi MH and Vaziri HM. 2010. Early Cretaceous migmatitic mafic granulites from the Sabzevar range (NE Iran): Implications for the closure of the Mesozoic peri-Tethyan oceans in Central Iran. Terra Nova, 22(1): 26-34 DOI:10.1111/j.1365-3121.2009.00912.x
Rossetti F, Nasrabady M, Theye T, Gerdes A, Monié P, Lucci F and Vignaroli G. 2014. Adakite differentiation and emplacement in a subduction channel: The Late Paleocene Sabzevar magmatism (NE Iran). GSA Bulletin, 126(3-4): 317-343 DOI:10.1130/B30913.1
Rubatto D, Regis D, Hermann J, Boston K, Engi M, Beltrando M and McAlpine SRB. 2011. Yo-yo subduction recorded by accessory minerals in the Italian Western Alps. Nature Geoscience, 4(5): 338-342 DOI:10.1038/ngeo1124
Saleeby J, Ducea M and Clemens-Knott D. 2003. Production and loss of high-density batholithic root, Southern Sierra Nevada, California. Tectonics, 22(6): 1064
Saleeby JB. 1990. Progress in tectonic and petrogenetic studies in an exposed cross-section of young (~100Ma) continental crust, southern Sierra Nevada, California. In: Salisbury MH and Fountain DM (eds. ). Exposed Cross-Sections of the Continental Crust. Dordrecht: Springer, 137-158
Schröter FC, Stevenson JA, Daczko NR, Clarke GL, Pearson NJ and Klepeis KA. 2004. Trace element partitioning during high-P partial melting and melt-rock interaction; an example from northern Fiordland, New Zealand. Journal of Metamorphic Geology, 22(5): 443-457 DOI:10.1111/j.1525-1314.2004.00525.x
Schulz B. 2017. Polymetamorphism in garnet micaschists of the Saualpe Eclogite Unit (Eastern Alps, Austria), resolved by automated SEM methods and EMP-Th-U-Pb monazite dating. Journal of Metamorphic Geology, 35(2): 141-163 DOI:10.1111/jmg.12224
Schwartz JJ, Klepeis KA, Sadorski JF, Stowell HH, Tulloch AJ and Coble MA. 2017. The tempo of continental arc construction in the Mesozoic Median Batholith, Fiordland, New Zealand. Lithosphere, 9(3): 343-365 DOI:10.1130/L610.1
Schwindinger M and Weinberg RF. 2017. A felsic MASH zone of crustal magmas: feedback between granite magma intrusion and in situ crustal anatexis. Lithos, 284-285: 109-121 DOI:10.1016/j.lithos.2017.03.030
Scott JM, Cooper AF, Palin JM, Tulloch AJ, Kula J, Jongens R, Spell TL and Pearson NJ. 2009. Tracking the influence of a continental margin on growth of a magmatic arc, Fiordland, New Zealand, using thermobarometry, thermochronology, and zircon U-Pb and Hf isotopes. Tectonics, 28(6): TC6007
Searle MP, Rex AJ, Tirrul R, Rex DC, Barnicoat A and Windley BF. 1989. Metamorphic, Magmatic and Tectonic Evolution of the Central Karakoram in the Biafo-Baltoro-Hushe Regions of Northern Pakistan. America: Geological Society of America, Special Paper, 47-74
Smith DC. 1984. Coesite in clinopyroxene in the Caledonides and its implications for geodynamics. Nature, 310(5979): 641-644 DOI:10.1038/310641a0
Smithies RH, Champion DC and Cassidy KF. 2003. Formation of Earth's early Archaean continental crust. Precambrian Research, 127(1-3): 89-101 DOI:10.1016/S0301-9268(03)00182-7
Sobolev NV and Shatsky VS. 1990. Diamond inclusions in garnets from metamorphic rocks: A new environment for diamond formation. Nature, 343(6260): 742-746 DOI:10.1038/343742a0
Song SG, Zhang LF, Niu YL, Wei CJ, Liou JG and Shu GM. 2007. Eclogite and carpholite-bearing metasedimentary rocks in the North Qilian suture zone, NW China: Implications for Early Palaeozoic cold oceanic subduction and water transport into mantle. Journal of Metamorphic Geology, 25(5): 547-563 DOI:10.1111/j.1525-1314.2007.00713.x
Song SG, Niu YL, Su L, Wei CJ and Zhang LF. 2014. Adakitic (tonalitic-trondhjemitic) magmas resulting from eclogite decompression and dehydration melting during exhumation in response to continental collision. Geochimica et Cosmochimica Acta, 130(1): 42-62
Song SG, Wang MJ, Wang C and Niu YL. 2015. Magmatism during continental collision, subduction, exhumation and mountain collapse in collisional orogenic belts and continental net growth: A perspective. Science China (Earth Sciences), 58(8): 1284-1304 DOI:10.1007/s11430-015-5102-x
Sorensen SS and Barton MD. 1987. Metasomatism and partial melting in a subduction complex Catalina Schist. southern California. Geology, 15(2): 115-118
Stepanov AS, Hermann J, Rubatto D, Korsakov AV and Danyushevsky LV. 2016. Melting history of an ultrahigh-pressure paragneiss revealed by multiphase solid inclusions in garnet, Kokchetav Massif, Kazakhstan. Journal of Petrology, 57(8): 1531-1554
Stern RJ. 2002. Subduction zones. Reviews of Geophysics, 40(4): 1012
Stevenson JA, Daczko NR, Clarke GL, Pearson N and Klepeis KA. 2005. Direct observation of adakite melts generated in the lower continental crust, Fiordland, New Zealand. Terra Nova, 17(1): 73-79 DOI:10.1111/j.1365-3121.2004.00586.x
Stowell H, Tulloch A, Zuluaga C and Koenig A. 2010. Timing and duration of garnet granulite metamorphism in magmatic arc crust, Fiordland, New Zealand. Chemical Geology, 273(1-2): 91-110 DOI:10.1016/j.chemgeo.2010.02.015
Stowell H, Parker KO, Gatewood M, Tulloch A and Koenig A. 2014. Temporal links between pluton emplacement, garnet granulite metamorphism, partial melting and extensional collapse in the lower crust of a Cretaceous magmatic arc, Fiordland, New Zealand. Journal of Metamorphic Geology, 32(2): 151-175 DOI:10.1111/jmg.12064
Stowell HH and Crawford ML. 2000. Metamorphic history of the Coast Mountains orogen, western British Columbia and southeastern Alaska. In: Stowell HH and McClelland WC (eds. ). Tectonics of the Coast Mountains, Southeastern Alaska and British Columbia. America: Geological Society of America, 257-284
Stuart CA, Daczko NR and Piazolo S. 2017. Local partial melting of the lower crust triggered by hydration through melt-rock interaction: An example from Fiordland, New Zealand. Journal of Metamorphic Geology, 35(2): 213-230 DOI:10.1111/jmg.12229
Syracuse EM, van Keken PE and Abers GA. 2010. The global range of subduction zone thermal models. Physics of the Earth and Planetary Interiors, 183(1-2): 73-90 DOI:10.1016/j.pepi.2010.02.004
Tagiri M, Yano T, Bakirov A, Nakajima T and Uchiumi S. 1995. Mineral parageneses and metamorphic P-T paths of ultrahigh-pressure eclogites from Kyrghyzstan Tien-Shan. Island Arc, 4(4): 280-292 DOI:10.1111/j.1440-1738.1995.tb00150.x
Tang YW, Chen L, Zhao ZF and Zheng YF. 2020. Geochemical evidence for the production of granitoids through reworking of the juvenile mafic arc crust in the Gangdese orogen, southern Tibet. GSA Bulletin, 132(7-8): 1347-1364 DOI:10.1130/B35304.1
Tenczer V and Stüwe K. 2003. The metamorphic field gradient in the eclogite type locality, Koralpe region, Eastern Alps. Journal of Metamorphic Geology, 21(4): 377-393 DOI:10.1046/j.1525-1314.2003.00448.x
Thorkelson DJ. 2021. Ridge subduction and slab windows. In: Alderton D and Elias SA (eds. ). Encyclopedia of Geology. 2nd Edition. Pittsburgh: Academic Press, 957-967
Tibaldi AM, Otamendi JE, Cristofolini EA, Baliani I, Walker BA and Bergantz GW. 2013. Reconstruction of the Early Ordovician Famatinian arc through thermobarometry in lower and middle crustal exposures, Sierra de Valle Fértil, Argentina. Tectonophysics, 589: 151-166 DOI:10.1016/j.tecto.2012.12.032
Tsujimori T and Liou JG. 2005. Low-pressure and low-temperature K-bearing kosmochloric diopside from the Osayama serpentinite mélange, SW Japan. American Mineralogist, 90(10): 1629-1635 DOI:10.2138/am.2005.1749
Tulloch AJ and Kimbrough D. 2003. Paired plutonic belts in convergent margins and the development of high Sr/Y magmatism: Peninsular Ranges batholith of Baja California and Median batholith of New Zealand. In: Johnson SE, Paterson SR, Fletcher JM, Girty GH, Kimbrough DL and Martín-Barajas A (eds. ). Tectonic Evolution of Northwestern Mexico and the Southwestern USA. America: Geological Society of America, 275-296
Valley PM, Whitney DL, Paterson SR, Miller RB and Alsleben H. 2003. Metamorphism of the deepest exposed arc rocks in the Cretaceous to Paleogene Cascades belt, Washington: Evidence for large-scale vertical motion in a continental arc. Journal of Metamorphic Geology, 21(2): 203-220 DOI:10.1046/j.1525-1314.2003.00437.x
Van Hunen J and Moyen JF. 2012. Archean subduction: Fact or fiction?. Annual Review of Earth and Planetary Sciences, 40: 195-219 DOI:10.1146/annurev-earth-042711-105255
Wallis S, Tsuboi M, Suzuki K, Fanning M, Jiang LL and Tanaka T. 2005. Role of partial melting in the evolution of the Sulu (eastern China) ultrahigh-pressure terrane. Geology, 33(2): 129-132 DOI:10.1130/G20991.1
Wan B, Windley BF, Xiao WJ, Feng JY and Zhang JE. 2015. Paleoproterozoic high-pressure metamorphism in the northern North China Craton and implications for the Nuna supercontinent. Nature Communications, 6(1): 8344 DOI:10.1038/ncomms9344
Wang D, Liu FL, Palin R, Wang JM, Wolf M, Ji L and Wang F. 2021a. A newly discovered Late Cretaceous metamorphic belt along the active continental margin of the Neo-Tethys ocean. GSA Bulletin, doi: 10.1130/B35900.1
Wang HYC, Chen HX, Lu JS, Wang GD, Peng T, Zhang HCG, Yan QR, Hou QL, Zhang Q and Wu CM. 2016. Metamorphic evolution and SIMS U-Pb geochronology of the Qingshigou area, Dunhuang block, NW China: Tectonic implications of the southernmost Central Asian orogenic belt. Lithosphere, 8(5): 463-479
Wang HYC, Chen HX, Zhang QWL, Shi MY, Yan QR, Hou QL, Zhang Q, Kusky T and Wu CM. 2017b. Tectonic mélange records the Silurian-Devonian subduction-metamorphic process of the southern Dunhuang terrane, southernmost Central Asian Orogenic Belt. Geology, 45(5): 427-430 DOI:10.1130/G38834.1
Wang JL, Zhang ZM, Dong X, Liu F, Yu F, Wang W, Xu FJ and Shen K. 2009. Discovery of Late Cretaceous garnet two-pyroxene granulite in the southern Lhasa terrane, Tibet and its tectonic significances. Acta Petrologica Sinica, 25(7): 1695-1706 (in Chinese with English abstract)
Wang JM, Lanari P, Wu FY, Zhang JJ, Khanal GP and Yang L. 2021b. First evidence of eclogites overprinted by ultrahigh temperature metamorphism in Everest East, Himalaya: Implications for collisional tectonics on early Earth. Earth and Planetary Science Letters, 558: 116760 DOI:10.1016/j.epsl.2021.116760
Wang L, Kusky TM, Polat A, Wang SJ, Jiang XF, Zong KQ, Wang JP, Deng H and Fu JM. 2014. Partial melting of deeply subducted eclogite from the Sulu orogen in China. Nature Communications, 5(1): 5604 DOI:10.1038/ncomms6604
Wang YH, Zhang LF, Zhang JJ and Wei CJ. 2017a. The Youngest eclogite in central Himalaya: P-T path, U-Pb zircon age and its tectonic implication. Gondwana Research, 41: 188-206 DOI:10.1016/j.gr.2015.10.013
Wei CJ, Wang W, Clarke GL, Zhang LF and Song SG. 2009. Metamorphism of high/ultrahigh-pressure pelitic-felsic schist in the South Tianshan orogen, NW China: Phase equilibria and P-T path. Journal of Petrology, 50(10): 1973-1991 DOI:10.1093/petrology/egp064
Willner AP, Glodny J, Gerya TV, Godoy E and Massonne HJ. 2004. A counterclockwise PTt path of high-pressure/low-temperature rocks from the Coastal Cordillera accretionary complex of south-central Chile: Constraints for the earliest stage of subduction mass flow. Lithos, 75(3-4): 283-310 DOI:10.1016/j.lithos.2004.03.002
Willner AP. 2005. Pressure-temperature evolution of a Late Palaeozoic paired metamorphic belt in North-Central Chile (34°~35°30'S). Journal of Petrology, 46(9): 1805-1833 DOI:10.1093/petrology/egi035
Willner AP, Thomson SN, Kröner A, Wartho JA, Wijbrans JR and Hervé F. 2005. Time markers for the evolution and exhumation history of a Late Palaeozoic paired metamorphic belt in North-Central Chile (34°~35°30'S). Journal of Petrology, 46(9): 1835-1855 DOI:10.1093/petrology/egi036
Winter JD. 2014. Principles of Igneous and Metamorphic Petrology. 2nd Edition. Harlow: Pearson Education Limited
Wolfram LC, Weinberg RF, Nebel O, Hamza K, Hasalová P, Míková J and Becchio R. 2019. A 60-Myr record of continental back-arc differentiation through cyclic melting. Nature Geoscience, 12(3): 215-219 DOI:10.1038/s41561-019-0298-6
Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)
Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 DOI:10.1016/j.lithos.2019.105319
Xia QX, Zheng YF and Zhou LG. 2008. Dehydration and melting during continental collision: Constraints from element and isotope geochemistry of low-T/UHP granitic gneiss in the Dabie orogen. Chemical Geology, 247(1-2): 36-65 DOI:10.1016/j.chemgeo.2007.09.013
Xiang H, Zhang L, Zhong ZQ, Santosh M, Zhou HW, Zhang HF, Zheng JP and Zheng S. 2012. Ultrahigh-temperature metamorphism and anticlockwise P-T-t path of Paleozoic granulites from North Qinling-Tongbai orogen, Central China. Gondwana Research, 21(2-3): 559-576 DOI:10.1016/j.gr.2011.07.002
Yin A and Harrison TM. 2000. Geologic evolution of the Himalayan-Tibetan orogen. Annual Review of Earth and Planetary Sciences, 28(1): 211-280 DOI:10.1146/annurev.earth.28.1.211
Yoshino T, Yamamoto H, Okudaira T and Toriumi M. 1998. Crustal thickening of the lower crust of the Kohistan arc (N.Pakistan) deduced from Al zoning in clinopyroxene and plagioclase. Journal of Metamorphic Geology, 16(6): 729-748
Yoshino T and Okudaira T. 2004. Crustal growth by magmatic accretion constrained by metamorphic P-T paths and thermal models of the Kohistan arc, NW Himalayas. Journal of Petrology, 45(11): 2287-2302 DOI:10.1093/petrology/egh056
Yu SY, Zhang JX, Li SZ, Santosh M, Li YS, Liu YJ, Li XY, Peng YB, Sun DY, Wang ZY and Lv P. 2019. TTG-adakitic-like (tonalitic-trondhjemitic) magmas resulting from partial melting of metagabbro under high-pressure condition during continental collision in the North Qaidam UHP terrane, western China. Tectonics, 38(3): 791-822 DOI:10.1029/2018TC005259
Zandt G, Gilbert H, Owens TJ, Ducea M, Saleeby J and Jones CH. 2004. Active foundering of a continental arc root beneath the southern Sierra Nevada in California. Nature, 431(7004): 41-46 DOI:10.1038/nature02847
Zeng LS, Gao LE, Xie KJ and Liu-Zeng J. 2011. Mid-Eocene high Sr/Y granites in the Northern Himalayan Gneiss Domes: Melting thickened lower continental crust. Earth and Planetary Science Letters, 303(3-4): 251-266 DOI:10.1016/j.epsl.2011.01.005
Zeng LS and Gao LE. 2017. Cenozoic crustal anatexis and the leucogranites in the Himalayan collisional orogenic belt. Acta Petrologica Sinica, 33(5): 1420-1444 (in Chinese with English abstract)
Zhang GB, Niu YL, Song SG, Zhang LF, Tian ZL, Christy AG and Han L. 2015b. Trace element behavior and P-T-t evolution during partial melting of exhumed eclogite in the North Qaidam UHPM belt (NW China): Implications for adakite genesis. Lithos, 226: 65-80 DOI:10.1016/j.lithos.2014.12.009
Zhang JX, Mattinson CG, Meng FC and Wan YS. 2005b. An Early Palaeozoic HP/HT granulite-garnet peridotite association in the south Altyn Tagh, NW China: P-T history and U-Pb geochronology. Journal of Metamorphic Geology, 23(7): 491-510 DOI:10.1111/j.1525-1314.2005.00585.x
Zhang JX, Meng FC and Wan YS. 2007. A cold Early Palaeozoic subduction zone in the North Qilian Mountains, NW China: Petrological and U-Pb geochronological constraints. Journal of Metamorphic Geology, 25(3): 285-304 DOI:10.1111/j.1525-1314.2006.00689.x
Zhang JX, Yu SY, Meng FC and Li JP. 2009. Paired high-pressure granulite and eclogite in collision orogens and their geodynamic implications. Acta Petrologica Sinica, 25(9): 2050-2066 (in Chinese with English abstract)
Zhang JX, Mattinson CG, Yu SY and Li YS. 2014b. Combined rutile-zircon thermometry and U-Pb geochronology: New constraints on early Paleozoic HP/UHT granulite in the South Altyn Tagh, North Tibet, China. Lithos, 200-201: 241-257 DOI:10.1016/j.lithos.2014.05.006
Zhang JX, Yu SY and Mattinson CG. 2017. Early Paleozoic polyphase metamorphism in northern Tibet, China. Gondwana Research, 41: 267-289 DOI:10.1016/j.gr.2015.11.009
Zhang JX. 2020. The study of subduction channels: Progress, controversies, and challenges. Science China (Earth Sciences), 63(12): 1831-1851 DOI:10.1007/s11430-019-9626-5
Zhang LF, Ellis DJ and Jiang WB. 2002. Ultrahigh-pressure metamorphism in western Tianshan, China: Part Ⅰ.Evidence from inclusions of coesite pseudomorphs in garnet and from quartz exsolution lamellae in omphacite in eclogites. American Mineralogist, 87(7): 853-860
Zhang LF, Song SG, Liou JG, Ai YL and Li XP. 2005a. Relict coesite exsolution in omphacite from Western Tianshan eclogites, China. American Mineralogist, 90(1): 181-186 DOI:10.2138/am.2005.1587
Zhang LF, Wang QJ and Song SG. 2009a. Lawsonite blueschist in Northern Qilian, NW China: P-T pseudosections and petrologic implications. Journal of Asian Earth Sciences, 35(3-4): 354-366 DOI:10.1016/j.jseaes.2008.11.007
Zhang LF, Wang Y, Zhang LJ and Lü Z. 2019. Ultrahigh pressure metamorphism and tectonic evolution of southwestern Tianshan orogenic belt, China: A comprehensive review.In: Zhang LF, Zhang ZM, Schertl HP and Wei CJ (eds.). Geological Society, London, Special Publications, 474: 133-152
Zhang RY, Liou JG and Ernst WG. 2009b. The Dabie-Sulu continental collision zone: A comprehensive review. Gondwana Research, 16(1): 1-26 DOI:10.1016/j.gr.2009.03.008
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Shen K. 2010a. Late Cretaceous charnockite with adakitic affinities from the Gangdese batholith, southeastern Tibet: Evidence for Neo-Tethyan mid-ocean ridge subduction?. Gondwana Research, 17(4): 615-631 DOI:10.1016/j.gr.2009.10.007
Zhang ZM, Zhao GC, Santosh M, Wang JL, Dong X and Liou JG. 2010b. Two stages of granulite facies metamorphism in the eastern Himalayan syntaxis, South Tibet: Petrology, zircon geochronology and implications for the subduction of Neo-Tethys and the Indian continent beneath Asia. Journal of Metamorphic Geology, 28(7): 719-733
Zhang ZM, Dong X, Xiang H, Liou JG and Santosh M. 2013. Building of the deep Gangdese arc, South Tibet: Paleocene plutonism and granulite-facies metamorphism. Journal of Petrology, 54(12): 2547-2580 DOI:10.1093/petrology/egt056
Zhang ZM, Dong X, Xiang H, He ZY and Liou JG. 2014a. Metagabbros of the Gangdese arc root, South Tibet: Implications for the growth of continental crust. Geochimica et Cosmochimica Acta, 143: 268-284 DOI:10.1016/j.gca.2014.01.045
Zhang ZM, Xiang H, Dong X, Ding HX and He ZY. 2015a. Long-lived high-temperature granulite-facies metamorphism in the Eastern Himalayan orogen, south Tibet. Lithos, 212-215: 1-15 DOI:10.1016/j.lithos.2014.10.009
Zhang ZM, Dong X, Xiang H, Ding HX, He ZY and Liou JG. 2015c. Reworking of the Gangdese magmatic arc, southeastern Tibet: Post-collisional metamorphism and anatexis. Journal of Metamorphic Geology, 33(1): 1-21 DOI:10.1111/jmg.12107
Zhang ZM, Dong X, Ding HX, Tian ZL and Xiang H. 2017. Metamorphism and partial melting of the Himalayan orogen. Acta Petrologica Sinica, 33(8): 2313-2341 (in Chinese with English abstract)
Zhang ZM, Ding HX, Dong X, Tian ZL, Kang DY, Mu HC, Qin SK, Jiang YY and Li MM. 2018. High-temperature metamorphism, anataxis and tectonic evolution of a mafic granulite from the Eastern Himalayan Orogen. Journal of Earth Science, 29(5): 1010-1025 DOI:10.1007/s12583-018-0852-y
Zhang ZM, Kang DY, Ding HX, Tian ZL, Dong X, Qin SK, Mu HC and Li MM. 2018. Partial melting of Himalayan orogen and formation mechanism of leucogranites. Earth Science, 43(1): 82-98 (in Chinese with English abstract)
Zhang ZM, Ding HX, Dong X and Tian ZL. 2019. Formation and evolution of the Gangdese magmatic arc, southern Tibet. Acta Petrologica Sinica, 35(2): 275-294 (in Chinese with English abstract) DOI:10.18654/1000-0569/2019.02.01
Zhang ZM, Ding HX, Palin RM, Dong X, Tian ZL and Chen YF. 2020. The lower crust of the Gangdese magmatic arc, southern Tibet, implication for the growth of continental crust. Gondwana Research, 77: 136-146 DOI:10.1016/j.gr.2019.07.010
Zhang ZM, Ding HX, Dong X and Tian ZL. 2020. Partial melting of subduction zones. Acta Petrologica Sinica, 36(9): 2589-2615 (in Chinese with English abstract) DOI:10.18654/1000-0569/2020.09.01
Zhang ZM, Ding HX, Palin RM, Dong X, Tian ZL, Kang DY, Jiang YY, Qin SK and Li WT. 2021. On the origin of high-pressure mafic granulite in the Eastern Himalayan Syntaxis: Implications for the tectonic evolution of the Himalayan orogen. Gondwana Research DOI:10.1016/j.gr.2021.05.011
Zhao GC, Wilde SA, Cawood PA and Sun M. 2001. Archean blocks and their boundaries in the North China Craton: Lithological, geochemical, structural and P-T path constraints and tectonic evolution. Precambrian Research, 107(1-2): 45-73 DOI:10.1016/S0301-9268(00)00154-6
Zheng YF, Xia QX, Chen RX and Gao XY. 2011. Partial melting, fluid supercriticality and element mobility in ultrahigh-pressure metamorphic rocks during continental collision. Earth-Science Reviews, 107(3-4): 342-374 DOI:10.1016/j.earscirev.2011.04.004
Zheng YF, Zhao ZF and Chen YX. 2013. Continental subduction channel processes: Plate interface interaction during continental collision. Chinese Science Bulletin, 58(35): 4371-4377 DOI:10.1007/s11434-013-6066-x
Zheng YF and Chen YX. 2016. Continental versus oceanic subduction zones. National Science Review, 3(4): 495-519 DOI:10.1093/nsr/nww049
Zheng YF and Chen RX. 2017. Regional metamorphism at extreme conditions: Implications for orogeny at convergent plate margins. Journal of Asian Earth Sciences, 145: 46-73 DOI:10.1016/j.jseaes.2017.03.009
Zheng YF and Zhao ZF. 2017. Introduction to the structures and processes of subduction zones. Journal of Asian Earth Sciences, 145: 1-15 DOI:10.1016/j.jseaes.2017.06.034
Zheng YF and Zhao GC. 2020. Two styles of plate tectonics in Earth's history. Science Bulletin, 65(4): 329-334 DOI:10.1016/j.scib.2018.12.029
Zheng YF. 2021. Metamorphism in subduction zones. In: Alderton D and Elias SA (eds. ). Encyclopedia of Geology. 2nd Edition. Pittsburgh: Academic Press, 612-622
Zhu DC, Zhao ZD, Niu YL, Mo XX, Chung SL, Hou ZQ, Wang LQ and Wu FY. 2011. The Lhasa terrane: Record of a microcontinent and its histories of drift and growth. Earth and Planetary Science Letters, 301(1-2): 241-255 DOI:10.1016/j.epsl.2010.11.005
Zhu DC, Wang Q, Chung SL, Cawood PA and Zhao ZD. 2018. Gangdese magmatism in southern Tibet and India-Asia convergence since 120Ma.In: Treloar PJ and Searle MP (eds.). Himalayan Tectonics: A Modern Synthesis. Geological Society, London, Special Publications, 483: 583-604
董昕, 张泽明, 刘峰, 王伟, 于飞, 林彦蒿, 姜洪颖, 贺振宇. 2012. 拉萨地体东南部变质岩的成因与中-新生代造山作用. 岩石学报, 28(6): 1765-1784.
江媛媛, 张泽明, 丁慧霞, 秦圣凯, 李文坛, 张成圆, 康东艳, 莫宣学. 2020. 冈底斯岩浆弧东端泥质岩的变质作用及构造意义. 岩石学报, 36(9): 2631-2645.
康东艳, 张泽明, 董昕, 田作林, 向华, 莫宣学. 2019. 冈底斯岩浆弧东段变泥质岩的逆时针P-T-t轨迹与构造机制. 岩石学报, 35(2): 349-362.
牛志祥, 张泽明, 丁慧霞, 陈言飞, 张宁, 李文坛. 2019. 冈底斯岩浆弧东端石榴斜长角闪岩的晚白垩世岩浆与变质作用记录及构造意义. 岩石学报, 35(2): 376-386.
秦圣凯, 张泽明, 江媛媛, 陈言飞, 张宁, 张成圆. 2019. 冈底斯岩浆弧东段夕线石榴黑云片岩的变质作用P-T轨迹与构造意义. 岩石学报, 35(2): 363-375.
王金丽, 张泽明, 董昕, 刘峰, 于飞, 王伟, 徐方建, 沈昆. 2009. 西藏拉萨地体南部晚白垩纪石榴石二辉麻粒岩的发现及其构造意义. 岩石学报, 25(7): 1695-1706.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
曾令森, 高利娥. 2017. 喜马拉雅碰撞造山带新生代地壳深熔作用与淡色花岗岩. 岩石学报, 33(5): 1420-1444.
张建新, 于胜尧, 孟繁聪, 李金平. 2009. 造山带中成对出现的高压麻粒岩与榴辉岩及其地球动力学意义. 岩石学报, 25(9): 2050-2066.
张泽明, 董昕, 丁慧霞, 田作林, 向华. 2017. 喜马拉雅造山带的变质作用与部分熔融. 岩石学报, 33(8): 2313-2341.
张泽明, 康东艳, 丁慧霞, 田作林, 董昕, 秦圣凯, 穆虹辰, 李梦梅. 2018. 喜马拉雅造山带的部分熔融与淡色花岗岩成因机制. 地球科学, 43(1): 82-98.
张泽明, 丁慧霞, 董昕, 田作林. 2019. 冈底斯岩浆弧的形成与演化. 岩石学报, 35(2): 275-294.
张泽明, 丁慧霞, 董昕, 田作林. 2020. 俯冲带部分熔融. 岩石学报, 36(9): 2589-2615.