岩石学报  2021, Vol. 37 Issue (11): 3287-3294, doi: 10.18654/1000-0569/2021.11.03   PDF    
珠峰地区锂成矿作用: 喜马拉雅淡色花岗岩带首个锂电气石-锂云母型伟晶岩
刘晨1, 王汝成1, 吴福元2,3, 谢磊1, 刘小驰2     
1. 南京大学内生金属矿床成矿机制研究国家重点实验室, 南京大学地球科学与工程学院, 南京 210023;
2. 中国科学院地质与地球物理研究所, 岩石圈演化国家重点实验室, 北京 100029;
3. 中国科学院大学地球与行星科学学院, 北京 100049
摘要: 喜马拉雅淡色花岗岩具有较好的稀有金属成矿前景。珠穆朗玛峰位于该淡色花岗岩带的中部,其中大量的淡色花岗岩和伟晶岩出露,并成为珠穆朗玛重要的岩石组成部分。近期,我们在珠峰前进沟地区发现并采集了锂成矿伟晶岩,在手标本上可以清晰看到浅褐红色的铁锂云母。进一步的全岩地球化学以及矿物学研究表明,前进沟锂成矿伟晶岩为锂电气石-锂云母型伟晶岩,具有稀有金属元素(Be-Nb-Li)含量高、Rb/Sr比值高、Zr/Hf和Nb/Ta比值低等特征。所有的矿物学和地球化学特征都表明该伟晶岩经历了高度的岩浆分异作用。矿物成分上看,云母由铁锂云母演变为锂云母,电气石由黑电气石演变为锂电气石,Fe、Mg含量降低,Li含量升高,这一特征直接指示着演化过程中岩浆成分的变化。这次发现,是首次在该地区发现锂成矿作用,也是我国喜马拉雅首次报道锂电气石-锂云母型伟晶岩的存在。结合珠穆朗玛峰周围(普士拉、热曲)近期发现的锂辉石-透锂长石型伟晶岩,珠穆朗玛地区很可能成为我国重要的一个锂(Li)成矿远景区。
关键词: 喜马拉雅    珠穆朗玛    锂成矿作用    锂电气石-锂云母型伟晶岩    
Lithium mineralization in Qomolangma: First report of elbaite-lepidolite subtype pegmatite in the Himalaya leucogranite belt
LIU Chen1, WANG RuCheng1, WU FuYuan2,3, XIE Lei1, LIU XiaoChi2     
1. State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China;
2. State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
3. College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract: The Himalaya leucogranite belt is evaluated as a prospect for rare-metal mineralization. The Mount Qomolangma is located in the middle part of this leucogranite belt, where a large number of leucogranites and pegmatites occurred as the important components of the Qomolangma orogenic area. Recently, Li-mineralized pegmatites have been recognized and sampled in Hermit Gorge where the light brown red zinnwaldite can be clearly identified in the pegmatite specimens. Further geochemistry and mineralogy study show that these Li mineralized pegmatites have been identified as the elbaite-lepidolite subtype, which are characterized with high contents of rare-metal elements (Be-Nb-Li), high Rb/Sr ratio, and low Zr/Hf and Nb/Ta ratios. All the mineralogical and geochemical features indicate that these pegmatites have experienced a high degree of magma fractionation. In terms of mineral chemistry, micas have evolved from zinnwaldite to lepidolite, and tourmalines from schorl to elbaite, and the contents of Fe and Mg in them decreased, while the Li content increased, which is indicative of the evolution process of magma. It is the first found Li mineralization in the Qomolangma area, and the striking first report of the occurrence of elbaite-lepidolite subtype pegmatite in Himalaya. Combined with the recent researches of spodumene-petalite subtype pegmatites around Mount Qomolangma (Pusila, Rachu), the Qomolangma region is probably a crucial Li mineralization prospect in China.
Key words: Himalaya    Qomolangma    Li mineralization    Elbaite-lepidolite subtype pegmatite    

稀有金属元素,主要包括稀有亲石元素(如:Li、Be)和高场强元素(如:Nb、Ta)。这些稀有金属元素在新型产业(如:新能源、新合金)中作为技术型战略元素,在过去十年中有着巨大的需求,因此国际社会将它们列为“关键金属元素”(Chakhmouradian et al.,2015Benson et al.,2017Sovacool et al.,2020)。稀有金属资源,以代表Be的绿柱石、硅铍石等,代表Nb-Ta的铌铁矿族矿物、细晶石-烧绿石等,代表Li的锂辉石、锂云母等典型矿物的富集为特征,主要赋存在过铝质花岗岩和伟晶岩中(Linnen and Cuney, 2005)。

喜马拉雅淡色花岗岩与典型的稀有金属花岗岩在岩石学和地球化学特征上具有明显的相似性。王汝成等(2017)的研究表明,喜马拉雅淡色花岗岩的稀有金属(Be-Nb-Ta)成矿范围广,具有良好的稀有金属成矿潜力, 可成为中国重要的稀有金属成矿带。这一发现在很大程度上推动了喜马拉雅地区稀有金属成矿潜力的研究。Liu et al. (2020)的工作发现,在普士拉地区,珠穆朗玛峰西北44km处,存在数十条宽约0.5~3m的锂辉石(-透锂长石)型伟晶岩脉体,全岩Li含量高达8460×10-6,首次将普士拉地区确定为喜马拉雅淡色花岗岩带中重要的Li成矿点。

锂(Li)作为最轻的“关键金属元素”,被广泛应用于新兴技术(如:可充电电池)、核聚变技术甚至医学(Gourcerol et al.,2019Bibienne et al.,2020)。锂成矿伟晶岩占全球锂产量的50%~60%(Bowell et al.,2020USGS,2021)。普士拉地区的锂成矿作用主要体现在锂辉石-透锂长石型伟晶岩的产出(Liu et al.,2020)。普士拉东南方不远处的珠峰前进沟地区,在最近的淡色花岗岩地质考察过程中,我们发现了伟晶岩中晶形完好的绿柱石以及具有褐红色-浅红色多色性特征的铁锂云母,表明该地区具有明显的锂成矿潜力。在本次研究中,我们研究并确定了珠峰前进沟地区淡色花岗岩的锂成矿特征,希望能引起大家对珠峰地区锂成矿作用的关注。

1 地质背景与岩相学特征

喜马拉雅淡色花岗岩是青藏高原广泛分布且独具特色的地质组成, 东西长1500多千米,南北宽100千米,是世界上最大且最典型的淡色花岗岩带之一(吴福元等,2015Wu et al.,2020)。按照其分布特征划分为南部的高喜马拉雅淡色花岗岩带和北部的特提斯喜马拉雅淡色花岗岩带。珠峰地区淡色花岗岩位于高喜马拉雅淡色花岗岩带的中部,淡色花岗岩整体沿绒布峡谷广泛分布(图 1a)。沿着绒布峡谷向南,是众多珠穆朗玛峰攀登者的行进路线,同时也是我们研究珠峰淡色花岗岩理想场所。淡色花岗岩和伟晶岩在前进沟的南北两侧出露(图 1b),我们系统采集了不同的淡色花岗岩和伟晶岩样品,并在前进沟沟口海拔~5400m的巨大滚石(峰顶冰劈作用形成的碎石坠落)上采集到了锂电气石-锂云母型伟晶岩(图 1c)。

图 1 珠峰地区地质概况 (a)珠峰地区绒布峡谷地质图(据Cottle et al.,2015修改);(b)珠峰地区前进沟淡色花岗岩野外照片;(c)珠峰地区前进沟锂成矿伟晶岩手标本, Lpd-锂云母, Znw-铁锂云母 Fig. 1 Geological setting of Qomolangma area (a) geological map of the Rongbuk valley in Qomolangma (modified after Cottle et al., 2015); (b) field picture of leucogranites in Hermit Gorge in Qomolangma; (c) rock specimen of Li mineralized pegmatite in Hermit Gorge in Qomolangma, Lpd-lepidolite, Znw-zinnwaldite

珠峰地区广泛分布的淡色花岗岩,主要由二云母花岗岩、白云母花岗岩、钠长石花岗岩和花岗伟晶岩组成。二云母花岗岩主要由细粒的石英(~30%)、钾长石(~28%)、斜长石(~25%;奥长石和钠长石)、白云母(~8%)、黑云母(~7%)、石榴子石(0%~1%)组成;白云母花岗岩主要由细粒的石英(~33%)、钾长石(~22%)、斜长石(~30%,主要为钠长石)、白云母(~7%)、石榴子石(~6%)、电气石(~1%)组成;钠长石花岗岩主要由细粒的石英(~36%)、钾长石(~10%)、钠长石(~37%)、白云母(~7%)、石榴子石(~6%)、电气石(~3%)组成(图 2a-c)。这些淡色花岗岩普遍以席状或脉体的形式侵入到围岩高喜马拉雅变质岩系中,花岗伟晶岩同样以脉体形式出露在海拔更高的围岩中,部分伟晶岩脉切穿了早期的淡色花岗岩。花岗伟晶岩的核部主要是由粗粒的钾长石、钠长石、石英、云母等组成,边部是由细粒的钠长石、石英等组成,在手标本上可以看到晶形完好的石榴子石、电气石、绿柱石等矿物(图 2d),表明在伟晶岩中存在显著的Be成矿作用。本次主要的研究对象为珠峰前进沟锂成矿伟晶岩,主要是由钾长石(~35%)、钠长石(~25%)、石英(~20%)、云母(铁锂云母-锂云母,~12%)、电气石(黑电气石-锂电气石,~6%)等组成,副矿物主要有绿柱石、铌铁矿族矿物、含铌金红石、锆石、独居石等。根据其特征的原生锂矿物,是典型的锂电气石-锂云母型伟晶岩(Černý and Ercit,2005),具有显著的Be-Nb-Ta-Li成矿特征。

图 2 珠峰前进沟淡色花岗岩与伟晶岩岩相学特征 (a)二云母花岗岩光学显微镜照片;(b)白云母花岗岩光学显微镜照片;(c)钠长石花岗岩光学显微镜照片;(d)含绿柱石伟晶岩手标本照片. 矿物缩写: Kfs-钾长石;Pl-斜长石;Qtz-石英;Ab-钠长石;Grt-石榴子石;Mus-白云母;Bt-黑云母;Brl-绿柱石;Tur-电气石 Fig. 2 Petrographic features of leucogranites and pegmatites in Hermit Gorge in Qomolangma (a) optical microscopy image of the two-mica granite; (b) optical microscopy image of the muscovite granite; (c) optical microscopy image of the albite granite; (d) rock specimen of the beryl-bearing pegmatite. Mineral abbreviation: Kfs-K-feldspar; Pl-plagioclase; Qtz-quartz; Ab-albite; Grt-garnet; Mus-muscovite; Bt-biotite; Brl-beryl; Tur-tourmaline
2 分析方法

全岩主量元素分析在核工业二三〇研究所分析测试中心完成,采用湿化学分析方法,F利用离子活度计测定,其他元素使X射线荧光光谱仪测定,具体分析步骤参见国家标准GB/T 14506—2010和DZG93-05,所有主量元素分析结果的相对偏差优于5%。全岩微量元素(包括稀土元素)分析在聚谱检测科技有限公司(南京)使用ICP-MS完成,仪器型号为Agilent 7700X,分析方法参见Qi et al.(2000),使用标样USGS的BHVO-2,AGV-2和W-2,以及GeoPT9的OU-6用于校准,微量元素的分析精度优于10%。

本次研究样品的光学显微镜图像和背散射(BSE)图像的拍摄以及矿物主量元素分析在南京大学内生金属矿床成矿机制研究国家重点实验室完成。拍摄BSE图像所用仪器为Zeiss Supra 55场发射扫描电镜和JEOL JXA-8230电子探针。矿物主量元素使用电子探针(JEOL JXA-8230)进行测定,工作条件为:加速电压15kV,束流20nA,束斑直径1μm(云母束斑直径为5μm)。分析矿物包括铁锂云母-锂云母和黑电气石-锂电气石,矿物的主要组成元素的峰位时间为10s,次要组成元素峰位时间为20s,背景测定时间为峰位时间的一半。分析标样为天然矿物铁橄榄石、角闪石、磷灰石、黄玉等。数据由ZAF程序进行统一校正。

3 分析结果 3.1 全岩成分

表 1列出了珠峰前进沟锂电气石-锂云母型伟晶岩的全岩主、微量元素组成分析结果。其主量元素具有以下特征:富Si和Al,SiO2和Al2O3含量分别大于75.1%和13.6%;富碱低Ca,Na2O+K2O含量为9.2%~9.6 %,CaO含量为0.3%~0.4%;TiO2和MgO含量较低,分别低于为0.02%和0.06%。同时也显示过铝质特征(ACNK=1.05)。其微量元素具有以下特征:稀土总量极低,仅为1.0×10-6~2.6×10-6; 具有明显的Eu负异常,明显四分组效应(图 3);稀有金属元素含量较高,如Be (39×10-6)、Nb (35×10-6)、Li (855×10-6)等;Rb/Sr比值高(67~112),Nb/Ta比值低(2.5~2.9),Zr/Hf比值低(18.7~19.1)。

表 1 珠峰前进沟锂电气石-锂云母型伟晶岩全岩主量(wt%)和微量(×10-6)元素成分 Table 1 Major (wt%) and trace (×10-6) element compositions of the elbaite-lepidolite subtype pegmatite in Hermit Gorge in Qomolangma

图 3 前进沟锂电气石-锂云母型伟晶岩全岩球粒陨石标准化稀土元素配分图解(标准化值据Sun and McDonough, 1989) 普士拉伟晶岩数据来自Liu et al.,2020;详细数据见电子版附表 1 Fig. 3 Chondrite-normalization REE patterns of the elbaite-lepidolite subtype pegmatites in Hermit Gorge (normalization values after Sun and McDonough, 1989) Data of the Pusila spodumene-petalite subtype pegmatites from Liu et al., 2020; see detail data in Appendix Table 1

附表 1 普士拉锂辉石(-透锂长石)型伟晶岩全岩主量(wt%)和微量(×10-6)元素成分 Appendix Table 1 Major (wt%) and trace (×10-6) element compositions of the Pusila spodumene(-petalite) subtype pegmatites
3.2 矿物成分 3.2.1 云母

铁锂云母与锂云母是前进沟锂成矿伟晶岩最主要的锂矿物,两者多共生在一起。云母呈板片状,晶体较大,在手标本上可以清晰看到,云母板片达2~3cm宽。在光学显微镜下,铁锂云母和锂云母具有明显的多色性,分别为褐红-浅褐色,浅红-无色(图 4a)。根据背散射图像(BSE)以及电子探针分析(EMPA),发现云母的核部较亮的是铁锂云母,边部较暗的是锂云母(图 4ab),锂的含量从核部向边缘逐渐增加。核部铁锂云母含有约38.5%~49.4% SiO2、约19.7%~21.7% Al2O3、约1.5%~4.6% Li2O、约8.0%~20.6% FeO和约0.5%~1.5% MgO,边部锂云母含有约52.6%~57.9% SiO2、约16.3%~19.5% Al2O3、约5.5%~7.1% Li2O、约0.8%~5.4% FeO和约0.1%~0.4% MgO(表 2)。

图 4 云母矿物特征与成分 (a)光学显微镜照片;(b)背散射图像, Clb-铌铁矿;(c)云母Al(iv+vi)-R2+-Si成分分类图解(底图据Monier and Robert, 1986);图中引用数据来自Jolliff et al.,1987Černý et al.,1995Lagache and Quéméneur,1997Potter et al.,2009;详细数据见电子版附表 2 Fig. 4 Occurrence and composition of micas (a) optical microscopy image; (b) BSE image, Clb-columbite; (c) micas in the Al(iv+vi)-R2+-Si classification diagram (base map after Monier and Robert, 1986), the data sources from Jolliff et al., 1987; Černý et al., 1995; Lagache and Quéméneur, 1997; Potter et al., 2009; see detail data in Appendix Table 2

附表 2 典型锂成矿伟晶岩中云母成分统计(wt%) Appendix Table 2 Statistics of compositions of micas in typical Li-mineralized pegmatites (wt%)

表 2 珠峰前进沟锂电气石-锂云母型伟晶岩铁锂云母-锂云母成分(wt%) Table 2 Chemical compositions of zinnwaldite and lepidolite from the elbaite-lepidolite subtype pegmatites in Hermit Gorge in Qomolangma (wt%)
3.2.2 电气石

电气石相较于云母颗粒较小,颗粒小于3mm,手标本上可以看到细小的柱状晶形。在光学显微镜下,电气石具有明显多色性,黑电气石呈现褐红-浅褐黄色多色性,锂电气石呈现蓝绿-浅蓝绿的多色性,可见明显的柱状结构(图 5a)。锂电气石常分布在黑电气石的边缘(核部为黑电气石,边缘为锂电气石;图 5a)。背散射图像下,同样观察到很多极细小的锂电气石颗粒(10~20μm;图 5b)。根据电子探针分析(EMPA),黑电气石含有较低的SiO2含量(34.7%~35.6%)、Al2O3含量(32.5%~35.7%)、Li2O含量(0.3%~1.0%),相对较高的FeO含量(9.8%~14.2%)、MgO含量(0.1%~0.5%);锂电气石含有较高的SiO2含量(35.4%~36.6%)、Al2O3含量(35.8%~38.0%)、Li2O含量(1.1%~1.6%),相对较低的FeO含量(3.5%~8.6%)、MgO含量(< 0.1%)(表 3)。

图 5 电气石矿物特征与成分 (a)光学显微镜照片,Elb-锂电气石;Sch-黑电气石;(b)背散射图像;(c)电气石成分分类图解, 表中其他数据来自Jolliff et al.,1986Selway et al.,2000杨岳清等,2010Liu et al.,2020Yang et al.,2021;详细数据见电子版附表 3 Fig. 5 Occurrences and composition of tourmalines (a) optical microscopy image, Elb-elbaite; Sch-schorl; (b) BSE image; (c) tourmalines in the classification diagram, data sources from Jolliff et al., 1986; Selway et al., 2000; Yang et al., 2010; Liu et al., 2020; Yang et al., 2021; and detail data in Appendix Table 3

附表 3 典型锂成矿伟晶岩中电气石成分统计(wt%) Appendix Table 3 Statistics of compositions of tourmaline in typical Li-mineralized pegmatites (wt%)

表 3 珠峰前进沟锂电气石-锂云母型伟晶岩黑电气石-锂电气石成分(wt%) Table 3 Chemical compositions of schorl and elbaite from the elbaite-lepidolite subtype pegmatites in Hermit Gorge in Qomolangma (wt%)
4 讨论 4.1 高分异的锂电气石-锂云母型伟晶岩

传统观念认为,喜马拉雅淡色花岗岩主要来自于高喜马拉雅结晶岩系的原地部分熔融(Le Fort et al.,1987),不同程度的结晶分异作用导致岩浆形成了不同的岩石(Scaillet et al.,1990Liu et al.,20142016ab, 2018Zeng et al.,2014吴福元等,2015),并且产出绿柱石、富Hf锆石、铌铁矿族矿物等矿物组合(王汝成等,2017Xie et al.,2020)。珠峰前进沟锂电气石-锂云母型伟晶岩,全岩具有较高的Rb/Sr比值,低的Zr/Hf、Nb/Ta比值,同时含有极低的TiO2和稀土元素(REE)含量,稀土含量与普士拉锂辉石(-透锂长石)型伟晶岩相类似(图 2),这些都表明它具有极高的结晶分异程度。另外,锂(Li)是一种碱金属元素,在大部分长英质造岩矿物中具有不相容性(London,2005),通常在极晚期的花岗质岩浆中富集。地壳岩石中Li的平均浓度仅为20×10-6(Mason and Moore, 1982),典型花岗岩中Li的平均浓度为65×10-6(London,2017),一般伟晶岩(无Li成矿作用)中Li平均浓度为约52×10-6(6×10-6~288×10-6Černý and Meintzer,1988Selway et al.,2005)、细晶岩中Li平均浓度为约82×10-6(7×10-6~324 ×10-6Breaks and Tindle, 2002Selway et al.,2005)。前进沟锂电气石-锂云母型伟晶岩全岩Li含量有855×10-6,远远高于地壳、花岗岩、伟晶岩和细晶岩中的Li平均含量,与典型的Li成矿伟晶岩,如Tanco伟晶岩(Li >743×10-6; Stilling et al.,2006)、Big Whopper伟晶岩(Li >968×10-6; Breaks and Tindle, 2002)等相类似。假如以25%的比例作为熔体可抽取的临界值, 一个花岗质岩浆体系至少要经过4次结晶分离作用才有可能造成锂矿物的结晶(Wu et al.,2020)。因此,锂(Li)成矿作用的出现必须要求花岗岩岩浆经历极高程度的结晶分异,锂矿物(锂电气石、锂云母等)的出现,直接指示着它的高分异特征。

4.2 成矿矿物的指示作用

电气石和云母作为主要的锂赋存矿物,它们的结晶是锂成矿作用的直接体现,指示极高的演化程度。同时,这些成矿矿物的成分也在随着岩浆的演化而发生改变。云母,由核部的铁锂云母逐渐演变成边部的锂云母(图 4c),成分中Li2O含量显著升高,FeO、MgO含量不断降低(表 2)。通过统计典型的锂成矿伟晶岩(含锂云母)中云母成分(Jolliff et al.,1987Černý et al.,1995Lagache and Quéméneur,1997Potter et al.,2009),我们发现云母成分主要有两种演化趋势,一种是由白云母逐渐向(多硅)锂云母演化,另一种则是像前进沟锂成矿伟晶岩中的云母一样,由铁锂云母逐渐向(多硅)锂云母演化(图 4c)。电气石,由核部的黑电气石逐渐演变成边部的锂电气石,其中Li2O含量显著升高,FeO、MgO含量降低(表 3)。前进沟锂成矿伟晶岩中的电气石与世界上典型的锂成矿伟晶岩中的电气石相类似(例如南阳山,Yang et al.,2021;Tanco,Selway et al.,2000;Black Hills,Jolliff et al.,1986;等等),成分上由Fe端元(黑电气石)逐渐向Li端元(锂电气石)演化(图 5c)。随着岩浆演化的进行,云母和电气石,这两个特征的锂成矿矿物,成分变化上具有一致性,其中Fe、Mg含量均不断降低,与之对应是Li的含量不断升高。这一特征直接指示着演化过程中岩浆成分的变化。

锂矿物的结晶通常具有序列性,锂电气石、锂云母的结晶,相较于锂辉石、透锂长石,指示岩体具有更高的演化程度(Yang et al.,2021)。前进沟锂电气石-锂云母型伟晶岩,可能要比普士拉锂辉石(-透锂长石)型伟晶岩,经历了更高程度的分异作用。从电气石的矿物成分变化上看,前进沟锂成矿伟晶岩中的电气石Mg含量均很低,Fe含量不断降低,Li含量持续升高,由黑电气石演化到锂电气石;而普士拉锂成矿伟晶岩中的电气石从伟晶岩脉体的边部往核部,先是Mg含量不断降低,而后Fe含量降低,Li含量逐渐升高,但并未演化到锂电气石(图 5c)。电气石的成分也表明,前进沟锂电气石-锂云母型伟晶岩比普士拉锂辉石(-透锂长石)型伟晶岩代表着更高的岩浆演化程度。

5 结论与展望

珠峰地区前进沟锂成矿伟晶岩,根据其特征锂矿物,确定为锂电气石-锂云母型伟晶岩。全岩地球化学以及矿物学研究皆表明,前进沟锂电气石-锂云母型伟晶岩具有极高的演化程度。随着岩浆演化的进行,云母由铁锂云母演变为锂云母,电气石由黑电气石演变为锂电气石,Fe、Mg含量逐渐降低,Li含量显著升高,这一特征很好地指示了岩浆演化的趋势。锂电气石、锂云母的出现,相较于锂辉石、透锂长石,代表着更高的演化程度,前进沟很可能也存在更为多样的锂成矿作用,如透锂长石、锂辉石型伟晶岩。

珠穆朗玛峰,作为世界的第三极,一直以来都是众多攀登爱好者的圣地,也是我们地质工作者最向往的地方之一。本次研究,是我国藏南喜马拉雅首次报道锂电气石-锂云母型伟晶岩的存在,珠峰前进沟很可能是继普士拉(Visonà and Zantedeschi, 1994; Liu et al.,2020)之后,喜马拉雅淡色花岗岩带中又一个不同类型的锂(Li)成矿点。另外,在前进沟西北方向以及普士拉北北东方向的热曲,也发现了锂辉石-透锂长石型伟晶岩的存在(刘小驰等,2021)。珠穆朗玛地区众多不同亚型的含锂伟晶岩的发现,表明该地区是我国有重要研究前景的一个锂(Li)成矿远景区。

致谢      感谢两位匿名审稿人的宝贵修改意见和建议,以及期刊编辑的精心修改,使文章得以完善。

参考文献
Benson TR, Coble MA, Rytuba JJ and Mahood GA. 2017. Lithium enrichment in intracontinental rhyolite magmas leads to Li deposits in caldera basins. Nature Communications, 8(1): 270 DOI:10.1038/s41467-017-00234-y
Bibienne T, Magnan JF, Rupp A and Laroche N. 2020. From mine to mind and mobiles: Society's increasing dependence on lithium. Elements, 16(4): 265-270 DOI:10.2138/gselements.16.4.265
Bowell RJ, Lagos L, de los Hoyos CR and Declercq J. 2020. Classification and characteristics of natural lithium resources. Elements, 16(4): 259-264 DOI:10.2138/gselements.16.4.259
Breaks FW and Tindle AG. 2002. Rare-element mineralization of the Separation Lake area, Northwest Ontario: Characteristics of a new discovery of complex-type, petalite-subtype, Li-Rb-Cs-Ta pegmatite. In: Dunlop S and Simandl GJ (eds. ). Industrial Minerals in Canada. Canada: Canadian Institute of Mining, Metallurgy and Petroleum, 159-178
Černý P and Meintzer RE. 1988. Fertile granites in the Archean and Proterozoic fields of rare-element pegmatites: Crustal environment, geochemistry and petrogenetic relationships. In: Taylor RP and Strong DF (eds. ). Recent Advances in the Geology of Granite-related Mineral Deposits. The Canadian Institute of Mining and Metallugy, Special Publication, 170-206
Černý P, Chapman R, Staně J, Nová M, Baadsgaard H, Rieder M, Kavalová M and Ottolini L. 1995. Geochemical and structural evolution of micas in the Rožná and Dobrá Voda pegmatites, Czech Republic. Mineralogy and Petrology, 55(1-3): 177-201 DOI:10.1007/BF01162587
Černý P and Ercit TS. 2005. The classification of granitic pegmatites revisited. The Canadian Mineralogist, 43(6): 2005-2026 DOI:10.2113/gscanmin.43.6.2005
Chakhmouradian AR, Smith MP and Kynicky J. 2015. From "strategic" tungsten to "green" neodymium: A century of critical metals at a glance. Ore Geology Reviews, 64: 455-458 DOI:10.1016/j.oregeorev.2014.06.008
Cottle JM, Searle MP, Jessup MJ, Crowley JL and Law RD. 2015. Rongbuk re-visited: Geochronology of leucogranites in the footwall of the South Tibetan Detachment System, Everest Region, Southern Tibet. Lithos, 227: 94-106 DOI:10.1016/j.lithos.2015.03.019
Gourcerol B, Gloaguen E, Melleton J, Tuduri J and Galiegue X. 2019. Re-assessing the European lithium resource potential: A review of hard-rock resources and metallogeny. Ore Geology Reviews, 109: 494-519 DOI:10.1016/j.oregeorev.2019.04.015
Jolliff BL, Papike JJ and Shearer CK. 1986. Tourmaline as a recorder of pegmatite evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. American Mineralogist, 71(3-4): 472-500
Jolliff BL, Papike JJ and Shearer CK. 1987. Fractionation trends in mica and tourmaline as indicators of pegmatite internal evolution: Bob Ingersoll pegmatite, Black Hills, South Dakota. Geochimica et Cosmochimica Acta, 51(3): 519-534 DOI:10.1016/0016-7037(87)90066-4
Lagache M and Quéméneur J. 1997. The volta grande pegmatites, Minas Gerais, Brazil: An example of rare-element granitic pegmatites exceptionally enriched in lithium and rubidium. The Canadian Mineralogist, 35(1): 153-165
Le Fort P, Cuney M, Deniel C, France-Lanord C, Sheppard SMF, Upreti BN and Vidal P. 1987. Crustal generation of the Himalayan leucogranites. Tectonophysics, 134(1-3): 39-57 DOI:10.1016/0040-1951(87)90248-4
Qi L, Jing H and Gregoire DC. 2000. Determination of trace elements in granites by inductively coupled plasma mass spectrometry. Talanta, 51(3): 507-513 DOI:10.1016/S0039-9140(99)00318-5
Linnen RL and Cuney M. 2005. Granite-related rare-element deposits and experimental constraints on Ta-Nb-W-Sn-Zr-Hf mineralization. In: Linnen RL and Samson IM (eds. ). Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada Short Course Notes, 45-67
Liu C, Wang RC, Wu FY, Xie L, Liu XC, Li XK, Yang L and Li XJ. 2020. Spodumene pegmatites from the Pusila pluton in the higher Himalaya, South Tibet: Lithium mineralization in a highly fractionated leucogranite batholith. Lithos, 358-359: 105421 DOI:10.1016/j.lithos.2020.105421
Liu XC, Wu FY, Yu LJ, Liu ZC, Ji WQ and Wang JG. 2016a. Emplacement age of leucogranite in the Kampa dome, southern Tibet. Tectonophysics, 667: 163-175 DOI:10.1016/j.tecto.2015.12.001
Liu XC, Li XH, Liu Y, Yang L, Li QL, Wu FY, Yu HM and Huang F. 2018. Insights into the origin of purely sediment-derived Himalayan leucogranites: Si-O isotopic constraints. Science Bulletin, 63(19): 1243-1245 DOI:10.1016/j.scib.2018.09.001
Liu XC, Wu FY, Wang RC, Liu ZC, Wang JM, Liu C, Hu FY, Yang L and He SX. 2021. Discovery of spodumene-bearing pegmatites from Ra Chu in the Mount Qomolangma region and its implications for studying rare-metal mineralization in the Himalayan orogen. Acta Petrologica Sinica, 37(11): 3295-3304 (in Chinese with English abstract) DOI:10.18654/1000-0569/2021.11.04
Liu ZC, Wu FY, Ji WQ, Wang JG and Liu CZ. 2014. Petrogenesis of the Ramba leucogranite in the Tethyan Himalaya and constraints on the channel flow model. Lithos, 208-209: 118-136 DOI:10.1016/j.lithos.2014.08.022
Liu ZC, Wu FY, Ding L, Liu XC, Wang JG and Ji WQ. 2016b. Highly fractionated Late Eocene (~35Ma) leucogranite in the Xiaru dome, Tethyan Himalaya, South Tibet. Lithos, 240-243: 337-354 DOI:10.1016/j.lithos.2015.11.026
London D. 2005. Geochemistry of alkali and alkaline earth elements in ore-forming granites, pegmatites, and rhyolites. In: Linnen RL and Samson IM (eds. ). Rare-Element Geochemistry and Mineral Deposits. Geological Association of Canada Short Course Notes, 17-43
London D. 2017. Reading pegmatites: Part 3, what lithium minerals say. Rocks and Minerals, 92(2): 144-157 DOI:10.1080/00357529.2017.1252636
Mason NB and Moore CB. 1982. Principles of Geochemistry. 4th Edition. New York: Wiley
Monier G and Robert JL. 1986. Evolution of the miscibility gap between muscovite and biotite solid solutions with increasing lithium content: An experimental study in the system K2O-Li2O-MgO-FeO-Al2O3-SiO2-H2O-HF at 600℃, 2kbar PH2O: Comparison with natural lithium micas. Mineralogical Magazine, 50(358): 641-651 DOI:10.1180/minmag.1986.050.358.09
Potter EG, Taylor RP, Jones PC, Lalonde AE, Pearse GHK and Rowe R. 2009. Sokolovaite and evolved lithian micas from the eastern Moblan granitic pegmatite, opatica subprovince, Quebec, Canada. The Canadian Mineralogist, 47(2): 337-349 DOI:10.3749/canmin.47.2.337
Scaillet B, France-Lanord C and Le Fort P. 1990. Badrinath-Gangotri plutons (Garhwal, India): Petrological and geochemical evidence for fractionation processes in a high Himalayan leucogranite. Journal of Volcanology and Geothermal Research, 44(1-2): 163-188 DOI:10.1016/0377-0273(90)90017-A
Selway JB, Černý P, Hawthorne FC and Novák M. 2000. The Tanco pegmatite at Bernic Lake, Manitoba. XIV. Internal tourmaline. The Canadian Mineralogist, 38(4): 877-891 DOI:10.2113/gscanmin.38.4.877
Selway JB, Breaks FW and Tindle AG. 2005. A review of rare-element (Li-Cs-Ta) pegmatite exploration techniques for the superior province, Canada, and large worldwide tantalum deposits. Exploration and Mining Geology, 14(1-4): 1-30 DOI:10.2113/gsemg.14.1-4.1
Sovacool BK, Ali SH, Bazilian M, Radley B, Nemery B, Okatz J and Mulvaney D. 2020. Sustainable minerals and metals for a low-carbon future. Science, 367(6473): 30-33 DOI:10.1126/science.aaz6003
Stilling A, Černý P and Vanstone PJ. 2006. The Tanco pegmatite at Bernic Lake, Manitoba. XVI. Zonal and bulk compositions and their petrogenetic significance. The Canadian Mineralogist, 44(3): 599-623 DOI:10.2113/gscanmin.44.3.599
Sun SS and McDonough WF. 1989. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In: Saunders AD and Norry MJ (eds. ). Magmatism in the Ocean Basins. Geological Society, London, Special Publication, 42(1): 313-345
USGS. 2021. Lithium in 2019, tables-only release. https://www.usgs.gov/media/files/lithium-2019-tables-only-release
Visonà D and Zantedeschi C. 1994. Spodumene, petalite and cassiterite, new occurrence in Himalayan leucogranite pegmatites: Petrological implications. Proceedings of the IMA 16th General Meeting. Pisa: 429
Wang RC, Wu FY, Xie L, Liu XC, Wang JM, Yang L, Lai W and Liu C. 2017. A preliminary study of rare-metal mineralization in the Himalayan leucogranite belts, South Tibet. Science China (Earth Sciences), 60(9): 1655-1663 DOI:10.1007/s11430-017-9075-8
Wu FY, Liu ZC, Liu XC and Ji WQ. 2015. Himalayan leucogranite: Petrogenesis and implications to orogenesis and plateau uplift. Acta Petrologica Sinica, 31(1): 1-36 (in Chinese with English abstract)
Wu FY, Liu XC, Liu ZC, Wang RC, Xie L, Wang JM, Ji WQ, Yang L, Liu C, Khanal GP and He SX. 2020. Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353: 105319 DOI:10.1016/j.lithos.2019.105319
Xie L, Tao XY, Wang RC, Wu FY, Liu C, Liu XC, Li XK and Zhang RQ. 2020. Highly fractionated leucogranites in the eastern Himalayan Cuonadong dome and related magmatic Be-Nb-Ta and hydrothermal Be-W-Sn mineralization. Lithos, 354-355: 105286 DOI:10.1016/j.lithos.2019.105286
Yang YQ, Wang Y, Lü QT and Zhao JH. 2010. Characteristics of tourmalines from Nanping granitic pegmatites in Fujian Province. Acta Petrologica et Mineralogica, 29(3): 235-242 (in Chinese with English abstract)
Yang ZY, Wang RC, Che XD, Xie L and Hu H. 2021. Paragenesis of Li minerals in the Nanyangshan rare metal pegmatite, Northern China: Toward a generalized sequence of Li crystallization in Li Cs Ta type granitic pegmatites. American Mineralogists, in press
Zeng LS, Gao LE, Tang SH, Hou KJ, Guo CL and Hu GY. 2014. Eocene magmatism in the Tethyan Himalaya, southern Tibet. In: Mukherjee S, Carosi R, van der Beek PA, Mukherjee BK and Robinson DM (eds. ). Tectonics of the Himalaya. Geological Society, London, Special Publications, 412(1): 287-316
刘小驰, 吴福元, 王汝成, 刘志超, 王佳敏, 刘晨, 胡方泱, 杨雷, 何少雄. 2021. 珠峰地区热曲锂辉石伟晶岩的发现及对喜马拉雅稀有金属成矿作用研究的启示. 岩石学报, 37(11): 3295-3304. DOI:10.18654/1000-0569/2021.11.04
王汝成, 吴福元, 谢磊, 刘小驰, 王佳敏, 杨雷, 赖文, 刘晨. 2017. 藏南喜马拉雅淡色花岗岩稀有金属成矿作用初步研究. 中国科学(地球科学), 47(8): 871-880.
吴福元, 刘志超, 刘小驰, 纪伟强. 2015. 喜马拉雅淡色花岗岩. 岩石学报, 31(1): 1-36.
杨岳清, 王勇, 吕庆田, 赵金花. 2010. 福建南平花岗伟晶岩中的电气石研究. 岩石矿物学杂志, 29(3): 235-242. DOI:10.3969/j.issn.1000-6524.2010.03.002